
ates, and non-steroidal anti-inflammatory drugs are re-
viewed along with recent literature and ongoing clinical 
trials in this area. Regional anesthesia is increasingly 
emerging as a safer option with less cancer recurrence 
potential as compared to general anesthesia. Blood 
transfusion, pain, stress, use of beta-blockers, and hy-
pothermia are other potentially important perioperative 
factors to consider.
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Core tip: Cancer mortality is frequently related to meta-
static disease. An altered balance between the tenden-
cy of the tumor to spread via  metastasis and the body’s 
anti defense processes is the most plausible mechanism 
of cancer spread. This comprehensive review summa-
rizes the role of anesthetic technique and perioperative 
interventions and their influence in cancer recurrence. 
An exhaustive compilation of the latest research and 
ongoing clinical trials in this area is presented to the 
reader.
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INTRODUCTION 
Cancer is a major source of  morbidity and mortality 
throughout the world. Recent statistics from the Centers 
for Disease Control indicate that cancer is the second 
most common cause of  death in the United States[1]. 
Although age-adjusted death rates for cancer and heart 

Perioperative care and cancer recurrence: Is there a 
connection?

Ashish K Khanna, Efrain Riveros Perez, Krzysztof Laudanski, Amanda Moraska, Kenneth C Cummings III

Ashish K Khanna, Efrain Riveros Perez, Amanda Moraska, 
Cleveland Clinic Foundation, Cleveland, OH 44195, United 
States
Krzysztof Laudanski, Department of Anesthesiology and Criti-
cal Care, University of Pennsylvania, Philadelphia, PA 19104, 
United States
Kenneth C Cummings III, Anesthesiology Institute, Cleveland 
Clinic Foundation, Cleveland, OH 44195, United States
Author contributions: Khanna AK contributed to the design, 
initial organization and acquisition of data, formatting and final 
approval of the drafted manuscript; Perez ER, Laudanski K and 
Moraska A contributed to the acquisition of data, formatting and 
write up of the drafted manuscript; Cummings KC III contributed 
to the design, initial organization and acquisition of data, format-
ting and final approval of the drafted manuscript.
Correspondence to: Kenneth C Cummings III, MD, MS, 
Staff Anesthesiologist, Anesthesiology Institute, Cleveland 
Clinic Foundation, 9500, Euclid Avenue, E-30, Cleveland, OH 
44195, United States. cummink2@ccf.org
Telephone: +1-216-4441016  Fax: +1-216-4444383
Received: October 21, 2013    Revised: January 27, 2014
Accepted: February 16, 2014
Published online: March 27, 2014

Abstract
Cancer is the second most common cause of death in 
the United States. Metastatic disease is a more impor-
tant cause of cancer-related death relative to primary 
tumor progression. Surgical excision is the primary 
treatment for most malignant tumors. However, sur-
gery itself can inhibit important host defenses and 
promote the development of metastases. An altered 
balance between the metastatic potential of the tumor 
and the anti-metastatic host defenses, including cell-
mediated immunity and natural killer cell function, is a 
plausible mechanism of increased cancer metastasis. 
This article reviews the increasingly recognized concept 
of anesthetic technique along with perioperative factors 
and their potential to affect long-term outcome after 
cancer surgery. The potential effect of intravenous 
anesthetics, volatile agents, local anesthetic drugs, opi-
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disease have slowly declined since 1991, approximately 
one in four deaths are still attributed to cancer. It is esti-
mated that in the United States alone, there were over 1.6 
million new cancer diagnoses in 2012 and over 577000 
deaths from cancer[2]. Of  those cases, the most common 
cancer diagnoses are prostate in men (29%) and breast in 
women (29%), followed by lung cancer (14% in men and 
women), and colorectal cancer (9% in men and women). 
However, lung cancer remains the most common cause 
of  cancer-related mortality in both men and women[2].

Of  the deaths due to cancer each year, only about 
10% are due to complications of  the primary tumor[3]. 
The vast majority of  cancer-related deaths occur due to 
metastatic disease. Local recurrence and metastasis rates 
are influenced by a multitude of  factors. For example, 
one study of  nearly 3000 women with Stage Ⅰ, Ⅱ, or Ⅲ, 
breast cancer from 1985 to 2001 who underwent sur-
gery followed by chemo- or hormonal therapy found an 
overall recurrence rate of  11% at 5 years and 20% at 10 
years[4]. However, recurrence rates at 5 years were nearly 
50% lower in the subgroup that had Stage Ⅰ breast can-
cer (7%) than those with Stage Ⅲ breast cancer (13%) 
at diagnosis. Additionally, risk of  recurrence differed 
substantially between those with hormone receptor posi-
tive versus negative tumors. Overall recurrence rates of  
breast cancer would likely be lower today, as treatment 
advances have been made since the time of  this study, 
including the introduction of  aromatase inhibitors and 
trastuzumab immunotherapy. However, this study illus-
trates that cancer recurrence is multifactorial, and even 
for a specific type of  cancer can vary substantially based 
upon stage and grade at diagnosis, biologic characteris-
tics of  the tumor, initial treatment modalities, and host 
immune function.

Surgical excision is considered the first line of  treat-
ment for most solid organ tumors. However, even “cu-
rative” surgery leaves the possibility of  microscopic re-
sidual disease[3]. Tumor cells can be left at the excisional 
margins or released into circulation during the dissection 
and removal of  the bulk tumor mass. It is also possible 
that primary tumor cells intravasate preoperatively and 
travel to distant organs, forming undetected microme-
tastases that continue to grow postoperatively[5-7]. In 
addition, surgery and perioperative factors such as pain 
stimulate neuroendocrine and stress responses that sup-
press cell-mediated immunity (CMI) and promote tumor 
growth and metastasis[5,7].

Metastases occur via a complex process of  cellular 
changes and mutations balanced against host immune 
defenses. Primary tumors initially receive blood and 
nutrients from simple diffusion. As the tumor grows, it 
develops mutations in factors such as vascular endothelial 
growth factor (VEGF), which promote angiogenesis[3,8]. 
Eventually, some tumor cells acquire mutations that allow 
invasion through the basement membrane into blood ves-
sels and lymphatic channels, where they can be transport-
ed throughout the body. In patients with intact immune 
systems, most tumor cells are destroyed in circulation[3]. 

However, surviving cells have potential to extravasate 
through capillary beds in distant organs, proliferate, and 
form micrometastases. Each primary tumor requires a 
particular biologic microenvironment to survive[9]. There-
fore, micrometastases tend to flourish in certain organs 
and not others. For example, prostate cancer typically 
metastasizes to the bone and colon cancer to the liver[3].

The host cellular immune system is a critical defense 
mechanism against the development of  metastases[10]. 
Early on, cancer cells have weak antigenicity. With time, 
random mutations accumulate and the cells become more 
antigenic[3]. Natural killer (NK) cells and cytotoxic T cells 
appear to be key players in immune surveillance[11,12]. 
NK cells, which are activated by interleukin-2 (IL-2) and 
interferon-γ (IFN-γ), are able to spontaneously recognize 
and lyse tumor cells, as well as activate other immune 
cells[3,13]. Loss of  Major Histocompatibility Complex 
class Ⅰ (MHC-Ⅰ), which is almost universally expressed 
on normal cells, is a common mechanism for tumor cells 
to evade T-cell recognition. However, NK cells are able 
to recognize this abnormality and trigger apoptosis of  the 
neoplastic cells[13]. There is evidence from human stud-
ies that patients with depressed NK cell function have 
a higher incidence of  cancer and of  metastatic disease 
after “curative” surgery[14-17]. There is also evidence that 
increased stress, like that occurring in the perioperative 
period, causes a reduction in NK cell activity[17]. In animal 
models, decreased NK cell activity due to stress has been 
associated with increased tumor development[18]. For all 
of  these reasons, immunotherapies designed to enhance 
NK cell function are currently an area of  extensive re-
search for cancer treatments[13].

The essential nature of  immune surveillance in pre-
venting the development of  metastatic lesions is also 
seen in solid-organ transplant recipients. These patients, 
who are on life-long immunosuppressive therapy, have a 
significantly increased risk of  developing metastases[19]. 
Based upon the current evidence, identifying and target-
ing factors in the perioperative period that influence the 
immune system, and particularly NK cell function, could 
have a significant impact on development of  metastases 
and long-term survival in cancer patients.

RATIONALE FOR REGIONAL 
ANESTHESIA
The curative treatment of  cancer usually involves surgi-
cal resection of  the primary tumor and/or metastases. 
Although complete eradication of  the malignancy is the 
primary goal, the immune suppression associated with 
surgical stress may lead to tumor extension[20]. On the 
other hand, with the marked decrease of  anesthesia-
related morbidity and mortality in the last decades and 
the difficulty in discriminating differences between anes-
thetic techniques, it has been suggested that new analyses 
on long-term anesthetic effects should focus on patient-
centered outcomes, including but not limited to cancer 
recurrence[21].
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Effects of surgery and anesthesia on tumor cells
There is a large amount of  data from anecdotal reports, 
observational and retrospective human studies and animal 
studies that emphasizes the so-called “deleterious” effects 
of  general anesthesia and or surgical stress on cancer 
recurrence and outcomes. The authors would like to fore 
warn the reader that in the absence of  large randomized 
prospective studies the clinician should not immediately 
change practices based on this data.

The immune response to cancer plays a pivotal role 
in recovery from oncologic disease. Cancer is character-
ized by the presence of  genetic abnormalities that lead 
to alterations of  regulatory processes[22]. As a result, the 
malignant cells express different surface antigens that, 
coupled with MHC class Ⅰ molecules, are presented to 
the immune system and recognized by CD8 T cells, lead-
ing to cytotoxic antineoplastic responses and immuno-
modulatory counterbalancing responses[23,24]. The role of  
cytokines such as IFN-γ is essential to prevent primary 
tumor development and growth[25,26]. Besides the activity 
of  adaptive immunity (T and B cell-receptor mediated), 
NK cells, derived from innate lymphoid cells, constitute 
a primary line of  defense against tumor cells by both 
direct cytotoxicity and IFN-γ production[27,28]. Evidently 
the immune system is unable to completely clear cancer 
cells in some instances. Moreover, in a process called 
immunoediting, tumor cell growth is actually promoted 
by the immune system[29]. The immunosuppresive ef-
fect of  surgery and anesthesia depends on a fine balance 
between activation/inhibition of  pro-inflammatory and 
anti-inflammatory pathways.

Effects of  surgery: During the last few years, it has 
been recognized that even though surgery is the mainstay 
for cancer treatment in many patients, surgical interven-
tion may accelerate tumor progression and micrometas-
tasis development[10,30,31]. Right after surgical removal of  
the primary tumor, an array of  local and systemic conse-
quences ensues. First, due to mechanical manipulation of  
the tumor, malignant cells can get access to blood vessels 
and lymphatics[32-34]. In addition, important humoral fac-
tors related to angiogenesis and cell proliferation, such 
as VEGF, are released from the primary source of  can-
cerous cells during surgery[35-37]. Conversely, with tumor 
removal, local production of  antiangiogenic factors such 
as angiostatin and endostatin[38,39] is markedly reduced. 
Taken together, the combination of  the aforementioned 
factors creates a favorable milieu for neoplastic cell prolif-
eration and metastasis development.

CMI is assumed to be important to control residual 
tumor activity once the primary tumor is resected; how-
ever, because of  a variety of  mechanisms, many periop-
erative factors tend to suppress CMI. Stress associated 
with surgery activates the sympathetic nervous system 
and neurohumoral pathways, resulting in high concentra-
tion of  mediators that affect CMI at different levels.

The stress response includes the massive release of  
multiple mediators including glucocorticoids, endogenous 

opioids, catecholamines, angiogenic factors, and cyto-
kines. Special interest has been focused on the role of  
catecholamines and prostaglandins and their secondary 
effect on other mediator production. Tissue concentra-
tion of  cyclooxygenase-2 (COX-2), an enzyme necessary 
for prostaglandin E2 synthesis, is low under normal cir-
cumstances[40]; however, in malignant tumors, its produc-
tion is abnormally high[41]. Inhibition of  COX-2 activity 
has been shown to decrease neoplastic invasive potential 
and tumor angiogenesis in animals and humans[42,43]. 
On the other hand, some clinical studies have shown an 
inhibitory effect of  β-adrenergic blockade on stress in-
duced tumor progression[44], whereas in vitro studies have 
evidenced the ability of  β-adrenergic agonists to stimulate 
malignant cell proliferation even in absence of  stress[45,46]. 
Several mechanisms have been implicated in adrenergic 
enhancement of  disease progression, including IL-6 and 
IL-8 overproduction by both the immune system and 
the tumor, apoptosis resistance[44,47-50], suppression of  
NK cell cytotoxic activity[51], angiogenic stimulation[52], 
increased tissue invasion and increased arachidonic acid 
signaling[53-55].

Acute pain: Studies in animals have shown that acute 
pain inhibits NK cell activity[56-58] and tumor progres-
sion[59,60], whereas other experiments have demonstrated 
enhanced NK cytotoxicity and increased lymphocyte pro-
liferation[61]. On the other hand, treatment of  postopera-
tive pain with opioids has been able to reduce cancer re-
currence, despite their potential “prometastatic” effect[62] 
(see opioid section below). It is difficult to ascertain the 
independent effect of  acute postoperative pain on tumor 
progression, as it overlaps with the bimodal effect of  
opioids. It is likely that the stimulating effect of  opioids 
on tumor cells is only evident in the absence of  acute 
pain[63]. Finally, there are no studies evaluating the impact 
of  chronic pain on cancer recurrence.

Volatile anesthetics: The association between volatile 
anesthetics and cancer progression was observed more 
than four decades ago. Lundy et al[64] proposed that the 
combination of  halothane, surgery and immunosuppres-
sion increased pulmonary metastases in mice inoculated 
with tumor cells. Shapiro et al[65] found that lung tumor 
progression was accelerated in mouse models when 
exposed to halothane and nitrous oxide. There are no 
human studies on the isolated effect of  volatile anesthet-
ics on tumor spread and metastasis, due probably to the 
multifactorial nature of  immune system and tumor cell 
biology during the perioperative period. However, since 
inhaled anesthetics have direct and indirect effects on 
different aspects of  the immune response, it could be 
hypothesized that they are important factors in postop-
erative immunosuppression and residual malignant cell 
invasion and migration.

Extensive experimental work has been carried out to 
elucidate the mechanisms underlying the immunosuppres-
sion induced by volatile anesthetics. Immunomodulatory 
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Intravenous anesthetics: Intravenous (IV) anesthetics 
are used to induce hypnosis during anesthesia. As is the 
case for volatile anesthetics, special interest in IV agents 
has developed in the last decades in relation to neoplastic 
tissue growth and propagation in the perioperative pe-
riod. Propofol, a non-barbiturate induction agent used in 
anesthesia and critical care (and its lipid carrier vehicle) 
has anti-inflammatory properties by a direct effect on 
innate immunity[92]; however, it appears to lack effect on 
NK cell and lymphocyte function[93]. Furthermore, the 
Th1/Th2 ratio was increased by propofol[94]. Th1 cyto-
kines activate CMI whereas Th2 cytokines stimulate B 
cells. Also relevant to antineoplastic immune response, is 
the fact that propofol impairs monocyte and macrophage 
function, including phagocytosis and cytokine produc-
tion[95-97], in addition to its ability to induce apoptosis in 
these cellular groups[97].

Etomidate is a hypnotic agent used in cases where 
hemodynamic stability is a concern. It has the ability to 
suppress cortisol production; however, there are no re-
ports linking this effect to tumor progression. Peripheral-
type benzodiazepine receptors and gamma aminobutyric 
acid (GABA) are expressed in breast cancer cells[98]. Since 
both receptors are targeted by etomidate, Garib studied 
the effect of  the anesthetic agent in breast cancer cell mi-
gration in vitro, finding that it has no significant effect[99]. 
Ketamine is a dissociative anesthetic agent, widely used 
in cancer with analgesic purposes. Ketamine significantly 
decreases NK cell cytotoxicity[93,100], but at lower preinci-
sional doses has shown to control pain with minimal ef-
fect on NK-cell in oral maxilofacial surgery[101].

Opioids: Opioid derivatives are widely used in anesthesia 
and pain management. There is growing evidence sug-
gesting a role of  these medications in cancer progression 
and metastasis. The effect of  opioids on tumor progres-
sion could be related to their ability to interfere with the 
barrier integrity against tumor propagation[102], the angio-
genic potential of  the tumor, a direct immunosuppressive 
effect, or a combination of  factors[103].

Although the mechanisms underlying opioid-induced 
immunosuppression are not yet fully understood, it is rec-
ognized that μ-receptors[104] and neuroendocrine mecha-
nisms may play a role[105-107]. The activation of  opioid 
receptors elicits the stimulation of  adrenocorticotropic 
hormone production with its consequent cortisol release, 
which suppresses immune responses[108,109]. Natural and 
synthetic opioids are potent activators of  the sympathetic 
nervous system to produce high concentrations of  cat-
echolamines[110], which are involved in tumor progression 
(see above).

Fentanyl has a dose-dependent depressant effect on 
T lymphocyte function and NK cell cytotoxicity that 
parallels lung tumor progression in animals. Remifentanil 
has not been widely studied in reference to its effects on 
malignancies, however there is a single study evaluating 
its effect on neutrophil function, showing that neither 
fentanyl nor remifentanil suppress neutrophil respiratory 
burst in vitro[111]. Tramadol limits NK cell suppression 

properties have been attributed to these agents[66], includ-
ing their effect on neutrophil function; reactive oxygen 
species production; and macrophage, lymphocyte and 
NK cell physiology[67]. As neutrophils are a primary line 
of  host defense, it is speculated that as halothane, isoflu-
rane, and sevoflurane are able to blunt either neutrophil 
adhesion to endothelium via intercellular adhesion mol-
ecule-1 (ICAM-1), and superoxide production in vitro[68-71], 
early phases of  immunity might be compromised.

The role of  the interaction between inhaled anesthet-
ics and Hypoxia Inducible Factors (HIF) has received 
special attention in the last few years[72]. These transcrip-
tion factors are involved in organ protection in hypoxic 
situations[73-75]. Isoflurane, desflurane and xenon have 
been shown to stimulate the expression of  HIF in phar-
macologic preconditioning, analogous to the one occur-
ring under hypoxic conditions[76-79]. There is an associa-
tion between high levels of  HIF and clinical prognosis in 
cancer, colorectal and breast cancer. It is speculated then 
that tumor cells could also benefit from pharmacologic 
preconditioning induced by volatile agents.

The effect of  volatile anesthetics on neutrophils and 
HIF, as mentioned above, tends to favor tumor progres-
sion via pharmacologic preconditioning and depression 
of  primary immunity. However, the depressant effect of  
these agents on the immune system might turn out to be 
beneficial in some instances. For example, sevoflurane 
and desflurane have been shown to reduce invasion of  
colorectal cancer cells through down-regulation of  matrix 
metalloproteinases[80].

In regard to lymphocyte function, sevoflurane and 
isoflurane are able to interfere with integrin-mediated 
lymphocyte adhesion by means of  an allosteric block[81,82]. 
In addition, volatile agents are able to induce caspase-
dependent apoptosis in T-lymphocytes[83]. These qualita-
tive abnormalities added to lymphocytopenia induced by 
agents such as halothane and nitrous oxide, lead to de-
pression of  CMI and potential tumor progression in the 
perioperative period[84].

Since NK cells represent a key element in the immune 
response against malignant cell progression and growth, 
many studies have focused on the effect of  inhaled 
agents on this cell line[85]. In vitro studies have shown that 
halothane and enflurane reversibly depress NK cell cyto-
toxicity elicited by IFN[86,87]. The underlying mechanism 
for this effect is poorly understood but might be related 
to cortisol-mediated inhibition[88] or CD8 T lymphocyte 
stimulation[89].

Finally, although most studies linking volatile anesthe-
sia to cancer progression show the immune system as the 
target for their facilitating actions on tumor cells, recent 
evidence shows oxidative DNA damage induced by iso-
flurane in elective surgery[90]. Furthermore, Musak et al[91] 
showed that healthcare personnel exposed to volatile an-
esthetics exhibit higher frequency of  chromosomal dam-
age. These findings open a window for possible direct 
carcinogenic effects of  inhaled anesthetic agents, making 
the issue of  perioperative tumor progression an even 
more complex matter.
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caused by surgery in rats[112,113] and preserves immune 
function in cancer patients[114]. There is a lack of  evidence 
linking alfentanil, hydromorphone, and oxycodone to 
cancer metastasis.

Morphine is the opioid most widely studied in asso-
ciation to cancer recurrence. Peripheral opioid receptors 
are involved in modulation of  cell proliferation[115] and 
apoptosis[116]. In vitro studies have shown the pro-apoptot-
ic action of  morphine on cancer cells by different mecha-
nisms including inhibition of  NFκB via nitric oxide[117,118], 
whereas other studies have shown inhibition of  apoptotic 
processes via p53[119-121], a key factor in programmed cell 
death. In general, most studies report the ability of  mor-
phine to inhibit tumor cell proliferation in vitro[122-124].

Although the immunosuppressive effect of  opioids 
has been widely documented, some reports describe 
opioids’ immunomodulatory properties that might prove 
beneficial in the context of  malignant disease[125-127]. It is 
reasonable to conclude that the effects of  opioids on the 
cancer immunity depend on the extent of  their analgesic 
action, counterbalancing their primary protumoral effect.

An additional potential confounder here would be 
psychological symptoms such as depression and its link-
ages with cancer pain and that those patients with depres-
sion are usually on a higher dose of  opioids to treat this 
cancer pain. Cancer chemotherapy in more metastatic 
and advanced tumors (and those that potentially cause 
more pain and depression and need more opioids) with 
pharmacological agents that induce immunosuppres-
sion has depression as one of  its side effects as well[128]. 
Specifically, IFN-α has been seen to decrease serum 
activity of  prolyl endopeptidase (PEP). This enzyme is 
a cytosolic peptidase that is widely distributed in human 
tissues and body fluids. By playing an important role in 
intracellular protein turnover PEP is indirectly involved 
in the pathophysiology of  psychiatric dysfunction in rela-
tion to mood disorder. High-risk melanoma patients re-
ceiving IFN-α were seen to have a clear decrease in PEP 
activity in the first four weeks of  therapy[129]. Van Gool et 
al[130] also investigated the levels of  PEP in patients with 
metastatic renal cell carcinoma receiving immunotherapy 
and concluded that a role for PEP in the pathophysiol-
ogy of  IFN-α induced mood disturbance can neither be 
confirmed nor excluded.

The complex interplay of  opioids, cancer pain, im-
munotherapy, depression and immunomodulation means 
that clearly the effect of  opioids themselves on cancer re-
currence and metastases cannot be clearly elucidated and 
there is much more associated with this cause and effect 
relationship than what is plainly evident based on current 
literature.

Local anesthetics: Amide-type but not ester-type local 
anesthetics possess anti-inflammatory properties[131]. In 
addition, local anesthetics have antimicrobial proper-
ties[132]. Taken together, these effects of  local anesthetics 
have led some to hypothesize that they may have a poten-
tial role to deter tumor progression after surgery. Some in 
vitro studies have tested the ability of  ropivacaine[133], lido-

caine[134], and procaine[135]. Both lidocaine and ropivacaine 
inhibit TNF-α driven Src activation and ICAM-1 phos-
phorylation in lung cancer tumor cells in vitro through a 
sodium-channel-blockade independent mechanism[136]. 
Procaine has DNA-demethylating properties[135] that po-
tentiate antineoplastic action of  cis-platin[137,138]. There are 
no clinical studies evaluating the isolated effect of  local 
anesthetics on cancer recurrence and metastases, so that 
the contribution of  the direct effect of  these agents to 
the beneficial effect of  regional anesthesia in cancer pa-
tients is for now speculative.

Regional anesthesia effects: In vitro and experimental 
data in animals
The association between pain and immunosuppression 
has been documented for a long time in animals. Inter-
mittent footshock in rats elicits immune dysfunction 
including NK cell hypoactivity[57,58,139,140]. On the other 
hand, Page et al[141] demonstrated that postoperative pain 
is directly involved in surgery-related tumor progression. 
After these findings, different authors have documented 
beneficial effects of  regional anesthetic techniques on 
immune function. Wada et al[142] demonstrated the pres-
ervation of  the cytokine balance between TH1 and TH2 
lymphocytes as the factor involved on attenuation of  
liver metastasis by combined regional and general anes-
thesia in mice. Bar-Yosef  et al[59] used a rat model to show 
that spinal anesthesia preserved NK cell cytotoxicity and 
attenuated metastasis progression after inoculation of  ad-
enocarcinoma cells. Finally, Deegan et al[143] demonstrated 
that serum from patients with breast cancer who under-
went general anesthesia with paravertebral block inhibited 
proliferation but not migration of  malignant ER-MDA-
MB-231 cells in vitro.

Regional anesthesia effects: Observational studies
Evidence regarding the facilitation of  tumor progres-
sion induced by surgery and enhanced by some general 
anesthetics, has led researchers to postulate that regional 
anesthetic techniques might ameliorate those deleteri-
ous pro-metastatic effects, which could translate into 
better overall survival rates and recurrence-free survival 
in cancer patients. One landmark study that opened the 
window to explore the field of  the effect of  regional 
anesthesia on cancer progression was published by Exa-
daktylos et al[144] in 2006. They retrospectively studied 129 
patients with breast cancer who underwent mastectomy 
with axillary clearance, with a follow-up time of  32 ± 5 
mo. This cohort retrospective study showed that recur-
rence and metastasis-free survival was 94% (95%CI: 
87%-100%) and 82% (95%CI: 74%-91%) at 24 mo and 
94% (95%CI: 87%-100%) and 77% (95%CI: 68%-87%) 
at 36 mo in the paravertebral and general anesthesia pa-
tients respectively (P = 0.012). The study has limitations 
inherent to its retrospective nature, including selection 
bias and biological plausibility[145]. With the sample size 
in a retrospective study like the one of  Exadaktylos, it is 
possible that the association is the result of  uneven distri-
bution of  risk factors between the groups. For instance, 
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it is likely that the severity of  disease had been the cause 
of  the anesthetic technique decision rather than the con-
sequence. Additionally, the author used the Nottingham 
Prognostic Score to determine propensity to cancer re-
currence, when this scale has not been validated for that 
purpose[146]. Despite its limitations, this study stands as a 
landmark publication because it generated the hypothesis 
of  a true association between anesthetic technique and 
cancer progression, which has led to development of  
other observational and new experimental studies on the 
subject.

In 2008, Biki et al[147] addressed the issue of  the effect 
of  epidural anesthesia/analgesia on cancer recurrence 
after radical prostatectomy. This retrospective review 
showed that the epidural plus general anesthesia group 
had a 57% (95%CI: 17%-78%) lower risk of  recurrence 
compared with the general anesthesia plus opioid group. 
Limitations of  the study that could limit its validity in-
clude incomplete information about the protocol used[148]. 
There is no mention of  the quantitative postoperative 
opioid requirement, which might prove important as 
there is a relationship between opioids and immune de-
pression/cell proliferation. In addition, no power analysis 
was performed and there are no data about the number 
of  individuals who had surgery and were not included in 
the review as well as the number of  patients dropped be-
cause of  inadequate information. The evidence provided 
by Biki is not enough to change practice; nonetheless, it 
remains as an important study as it encouraged other au-
thors to design prospective studies to clarify the cause-ef-
fect relationship between anesthetic technique and cancer 
recurrence. A potential pathophysiological mechanism to 
explain the results of  Biki could be the higher Th1/Th2 
lymphocyte ratio with regional anesthesia compared with 
general anesthesia[149]. In contrast to the study of  Biki, in 
2013 Wuethrich et al[150] published a retrospective study 
of  148 patients with prostate cancer, concluding that 
general anesthesia combined with epidural analgesia did 
not reduce the risk of  cancer progression or improve 
survival after radical prostatectomy after 14 years of  
observation. The main strength of  this study was the 
prolonged follow-up time. However, as no differences 
were detected, the study might be underpowered. As in 
any retrospective study, selection bias cannot be excluded. 
Finally, the general anesthesia group included ketorolac in 
the analgesic regimen. It has been shown that ketorolac, 
by its action on the enzyme COX-2, may suppress cancer 
relapse[151]. It is possible that this effect could have influ-
enced the results. By the same token, Tsui et al[152] per-
formed a secondary analysis on 99 patients undergoing 
radical prostatectomy, who had participated in a previous 
randomized controlled trial evaluating pain control, blood 
loss, and transfusion. They found no difference between 
epidural and control groups in terms of  disease free 
survival after a follow-up time of  4.5 years. Among the 
99 patients, 22 were lost to follow-up. Biochemical recur-
rence was detected in 31% of  epidural patients compared 
to 40% of  general anesthesia patients, with a hazard ratio 
of  1.3 slightly favoring general anesthesia, but with a 

95%CI of  0.6-2.7. Despite randomization, the fact that 
the study was originally designed for different endpoints, 
renders the study underpowered for evaluating cancer 
recurrence[153]. Again, the authors call for design of  larger 
prospective trials.

Cummings et al[154] in 2012 conducted a retrospective 
cohort study with 42151 patients who underwent sur-
gery for colon cancer. The results are ambiguous, show-
ing that the patients in the epidural group had a 5-year 
survival of  61% compared to 55% in the non-epidural 
group, whereas no significant reduction in cancer recur-
rence in the epidural group could be demonstrated. In 
spite of  the limitations of  a retrospective study including, 
selection bias despite propensity score use and informa-
tion bias related to the administrative claims source for 
procedures; this large population-based study is robust 
enough to suggest a beneficial effect of  epidural anesthe-
sia/analgesia on survival after resection of  nonmetastatic 
colon cancer, although no effect of  epidural anesthesia/
analgesia on cancer recurrence could be demonstrated. In 
a retrospective analysis, by means of  a multiple regression 
analysis, Gupta et al[155] showed a higher risk of  death as-
sociated with patient-controlled analgesia (PCA) but not 
with epidural analgesia in rectal but not colon cancer sur-
gery. This study included 655 patients in Sweden. The in-
herent limitations of  a retrospective study were addressed 
by the authors; however there might be bias related to 
group allocation. There is a marked difference in group 
size (epidural group n = 562, PCA group n = 93), with 
no apparent cause, which raises the possibility of  selec-
tion bias. Some confounding variables such as use of  ste-
roids and fluid therapy used were not addressed. Finally, 
the authors stated that the cause of  death in both group 
was not validated. Taken together, the validity of  the 
results from the study by Gupta et al[155] is questionable. 
The results of  Christopherson et al[156], in a retrospective 
analysis, also demonstrated a survival benefit of  epidural 
analgesia on survival at 1.46 years in non-metastatic co-
lon cancer surgery. Conversely, Gottschalk et al[157] did not 
find an association between epidural analgesia and cancer 
recurrence after colorectal surgery; however, a post-hoc 
analysis suggested some benefit in older patients. This 
is also a retrospective study that included 509 patients 
with colorectal cancer. The epidural group had more 
patients with rectal cancer, higher histologic grade, more 
adjuvant therapy and fluid loss. Additionally, there is no 
clear definition of  rectal cancer recurrence, and the use 
of  non-steroidal antiinflammatory medications was not 
adequately reported. These limitations make the results 
of  Forget et al[158] inconclusive.

Merquiol et al[159] in 2013 published a retrospective 
study with propensity-based matching of  patients with la-
ryngeal and hypopharyngeal cancer surgery under general 
anesthesia with morphine or cervical epidural analgesia. 
The epidural group exhibited higher 5-year cancer-free 
survival (68%; 95%CI: 57%-82%) compared to the non-
epidural group (37%; 95%CI: 25%-54%), and increased 
overall survival. Despite the use of  propensity scores, se-
lection bias and influence of  confounding factors cannot 
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be ruled out; nevertheless, this study suggested a possible 
beneficial effect of  neuraxial analgesia in neck cancer. 
Schlagenhauff et al[160] conducted a retrospective analysis 
of  cancer registry data using matched pair analysis inves-
tigating survival after malignant melanoma. They found 
that patients who experienced local anesthesia had higher 
10-year survival rates. This effect was visible after 3 years.

Conflicting reports in ovarian cancer have been pub-
lished recently. Lacassie et al[161] found no benefit in over-
all surival or time to recurrence in patients with advanced 
stages of  ovarian cancer with epidural analgesia/anesthe-
sia. They retrospectively studied 89 patients with propen-
sity score matching and weighting. Again, the limitations 
of  retrospective studies are observed with this study and 
the exclusion of  9 patients due to incomplete documen-
tation might affect the validity of  the results. Binczak et 
al[162] failed to demonstrate a statistically significant associ-
ation between the perioperative analgesia and recurrence-
free survival after abdominal surgery for cancer. This 
study is a retrospective analysis of  patients randomized 
for a prospective study with different endpoints, and as 
such is underpowered to detect a difference between 
analgesic regimens in terms of  cancer recurrence and 
survival. Finally, in a meta-analysis of  retrospective and 
prospective studies on the effect of  anesthetic technique 
on survival in cancer, Chen et al[163] suggest that, especially 
in colorectal cancer, epidural anesthesia and/or analgesia 
might be associated with improved overall survival in 
cancer undergoing surgery; however, their results do not 
support an association between epidural anesthesia and 
cancer control.

In conclusion, the possible association between re-
gional anesthesia and cancer survival and recurrence, yet 
intriguing, has emerged mainly from experimental animal 
studies and retrospective human analysis. Prospective 
studies, ideally randomized clinical trials are needed to 
establish causation.

CLINICAL TRIALS OF THE EFFECT OF 
ANESTHESIA ON CANCER RECURRENCE
It is challenging to design a study with sufficient power 
and robustness to clearly prove the idea that a specific 
type of  anesthesia can reduce the occurrence of  cancer, 
as long-term follow-up is required. Anesthetic effects 
must be clearly discernible from a multitude of  other 
factors related to the neoplasm propagation. Interindi-
vidual variability in immune system performance as well 
response to anesthesia further complicates the issue. This 
also means that large studies are needed to understand 
the difficult-to-single-out effects of  anesthesia on tumor 
propagation.

The review of  clinical trials should be started from 
animal studies. Bar-Yosef  et al[59] conducted an interest-
ing study in which rats were subjected to a laparotomy 
during general halothane anesthesia alone or combined 
with either systemic morphine or spinal block using bupi-
vacaine with morphine. Control groups were either anes-

thetized or undisturbed. The animals were subjected to a 
standard load of  adenocarcinoma cells, and the “clinical 
outcome” was measured by change in tumor load and 
activity of  NK cells. Strikingly, spinal anesthesia signifi-
cantly reduced tumor load that was initially elevated after 
surgery. More specifically, laparotomy conducted during 
general anesthesia alone increased lung tumor retention 
up to 17-fold. The addition of  spinal block reduced this 
effect by 70%. The number of  metastases increased from 
16.7 ± 10.5 (mean ± SD) in the control group to 37.2 ± 
24.4 after surgery and was reduced to 10.5 ± 4.7 during 
spinal block. This study is seminal and many follow-up 
clinical trials used the results generated by Bar-Yosef  et 
al[59] to calculate power of  their randomized clinical tri-
als even though they did not use any clinical metrics of  
tumor progression. Further support to this study was 
brought by Wade et al[142]. This group inoculated mice 
with liver tumor cells via laparotomy while the mice were 
under general anesthesia alone or combined with spinal 
block. They concurred that spinal anesthesia significantly 
reduces tumor load. However, both studies are problem-
atic because injecting the cells into the bloodstream and 
measuring the tumor load later may have little clinical 
relevance to human patients.

Currently, there is not a finished randomized clinical 
trial investigating the relationship between type of  anes-
thesia and neoplastic growth. Some studies were termi-
nated without enrolling patients while several other stud-
ies are underway but have not yet reported the results.

Study NCT00418457 will investigate the relationship 
between the addition of  regional anesthesia to the general 
surgery regimen and recurrence of  breast cancer. This 
study is planning to enroll 1100 patients and to investi-
gate the effect of  a paravertebral block. Using data from 
animal experiments, investigators predict such a sample 
size over 5 years will provide 85% power for detecting a 
30% treatment effect at an alpha of  0.05 with a total of  
four potential stopping points[59,142]. Follow-up is planned 
for 10 years.

Exadaktylos et al[144] have previously shown that the 
use of  regional anesthesia in cancer surgery reduced the 
risk of  recurrence and metastases of  breast cancer by 
four fold. In a recent analysis of  a previously conducted 
study of  paravertebral blocks for breast cancer surgery, 
oppfeldt and carlson evaluated the effects of  regional 
anesthesia on cancer recurrence[164]. Eighty-eight patients 
having breast cancer surgery were enrolled in this study. 
The patients received 4-6 paravertebral injections from 
level C7 through T5 on the side of  surgery. The treat-
ment group received a total of  30 mL of  ropivacaine 0.5% 
and the placebo group received placebo injections of  
isotonic saline in an equivalent volume. Both groups had 
a standardized anesthesia consisting of  propofol, fentanyl 
and ventilation via a laryngeal mask.

Six years or more after surgery the investigators 
found that local or metastatic recurrence of  the cancer 
in five patients (13%) in the ropivacaine group and in 
fourteen (37%) patients in the saline group, RR = 0.35 
(95%CI: 0.14-0.87). In addition, the mortality related to 
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the breast cancer was significantly lower in the ropiva-
caine group (ropivacaine 4, saline 12), RR = 0.32 (95%CI: 
0.11-0.92). Also, patients without recurrence of  cancer 
consumed significantly lesser opioids (45 mg morphine 
equipotent doses) compared to patients with recurrence 
of  cancer (58 mg morphine equipotent doses), P = 0.016. 
The authors concluded that attenuation of  surgical stress 
and reduced opioid consumption reduces the risk of  de-
veloping metastases[164].

A very similar design is being tested in NCT00684229. 
In this multicenter clinical trial a comparison of  colorec-
tal cancer recurrence will be measured between patients 
randomly assigned to epidural anesthesia combined 
with general versus general anesthesia only. Follow-up is 
planned for 5 years.

In NCT01588847 the investigators hypothesize that 
patients suffering from malignant melanoma who un-
dergo radical inguinal lymph node dissection will dem-
onstrate less immune function compromise and superior 
long-term survival when spinal anesthesia is used, com-
pared to general anesthesia. The time frame for this study 
is 5 years. Investigators will be evaluating in the short 
term some aspects of  immune system performance.

NCT01179308 is focusing on patients undergoing 
lung resection. Again, investigators propose to evaluate 
the effect of  combined epidural-general anesthesia com-
pared to general anesthesia on cancer recurrence semi-
annually over a period of  5 years.

The National Science Council of  Taiwan will co-
sponsor a study looking into the effect of  local infiltra-
tion anesthesia with lidocaine and bupivacaine on the 
recurrence of  breast cancer while patients are rendered 
unconscious with propofol (NCT015332233). A second 
avenue of  this study involves standard general inhala-
tional anesthesia with opioids. Estimated enrollment is 
scheduled for 40, which seems to be too small to achieve 
significant power. This number of  enrollment is in clear 
contrast to other the target number of  other studies.

The EPICOL study (NCT01318161) enrolls patients 
after undergoing surgery for colorectal cancer in Sweden. 
Regional anesthesia in the form of  epidural anesthesia 
will be contrasted to oral narcotics. The follow-up is 
planned for total of  7 years and the enrollment goal is 
400 patients. Additionally, authors of  the study plan to 
conduct large-scale measurements of  cytokine and an-
giogenesis factors in the patient population. No effect of  
epidural or spinal blockade will be examined. Researchers 
plan to enroll 60 subjects and measure only immune sys-
tem functions in the short-term after surgery.

Similarly, NCT01902849 focuses on the modulation 
of  immune aspects after surgery. The investigators will 
analyze IL-6 and IL-10 levels until 24 h post-op.

In the interesting spin CTC study (NCT01716065), 
researchers will look at the circulating tumor load in sub-
jects undergoing surgery for primary nonmetastatic can-
cer. Though this study parallels aforementioned studies in 
animals, the target goal is 20 subjects.

These clinical trials and the planned studies going for-
ward if  properly powered and statistically robust will go a 
long way in answering the as yet unanswered question of  

modifying the anesthetic plan to provide a better cancer 
related outcome for the patient in question.

OTHER POTENTIALLY IMPORTANT 
FACTORS
Blood transfusion
It is now a well know theoretical fact that transfusion-
associated immunomodulation (TRIM) is the driving 
force behind allogeneic blood transfusion related tumor 
recurrence. This is related to the immunosuppressive ef-
fects of  the allogeneic blood[165,166].

Patients undergoing surgery for colorectal cancer 
have experienced a significant decline in immune func-
tion as measured by a reduction in T-helper and NK cell 
lines. The roles of  these cells in the immunopathology of  
cell defense and tumor immunity have been highlighted 
in the earlier text[167-170].

So what really is the biggest villain within a unit of  
allogeneic blood transfusion itself? Much needs to done 
to reach a precise answer. The current evidence points 
towards white blood cells[169]. A study investigating pa-
tients undergoing resection of  gastric cancer randomized 
patients to allogeneic or autologous transfusion. IFN-γ, 
T-helper cell, and T-helper/cytotoxic T-cell ratio were 
reduced in both groups after operation. The reduction 
was greater in the allogeneic transfusion group. Five days 
after the operation, levels had returned to baseline for 
patients receiving autologous transfusions but remained 
suppressed in the allogeneic group[171]. Literature has not 
clearly supported TRIM as an effector of  cancer recur-
rence. As might be expected, several potential confound-
ers such as severity or stage of  the cancer, and or co-mor-
bid conditions, have emerged and are difficult to control 
for while designing studies[172]. Other observational stud-
ies (esophageal cancer) and randomized control trials 
(colorectal cancer) have not reported leukocyte depletion 
or allogeneic white blood cells to affect cancer out-
come[173-176]. The clinical evidence of  whether TRIM is as-
sociated with a worse oncologic outcome, and of  whether 
leukodepletion reduces TRIM, remains unanswered.

Immunotherapy
Opioids have been known to suppress immune response, 
specifically NK cell activity. It has been seen that in rats 
that pretreatment with an IFN inducer increases NK cell 
activity to above baseline in rats and attenuates the fentan-
yl-induced suppression to above baseline levels[177].

Similarly, when IFN-α and IFN-β are used before 
surgery in rats, they may offset some of  the inhibition of  
NK cell cytotoxicity associated with surgery and anesthe-
sia[178]. Going forward the use of  immunotherapy for can-
cer in humans during the perioperative period has been 
proposed, though present literature has not reported 
significant success[179].

Beta-blockers
A large body of  recent data supports the use of  beta-
blockers in cancer patients. The proposed mechanisms 
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revolve around the attenuation of  the anxiety driven 
intense sympathetic drive and related IL release during 
the initial phase of  cancer seeding. The growing evi-
dence that norepinephrine and epinephrine affect some 
types of  cancer backs this. The body’s “fight or flight” 
response related to psychological stressors may release 
these hormones and affect cancer by interacting with mo-
lecular pathways already implicated in abnormal cellular 
replication, such as the P38/MAPK pathway, or via oxi-
dative stress. Various studies have shown less distant me-
tastases in patients with prostate[180] and lung cancer[181]. 
The strongest evidence probably comes from the breast 
cancer subgroup wherein there is a favorable benefit 
for cancer recurrence in particular[182,183]. An important 
consideration with these studies is that all of  them are 
retrospective in nature. Stronger evidence with blinded 
randomized trials is probably needed before we can think 
of  specifically initiating beta-blockers in the perioperative 
period to decrease cancer recurrence.

Hypothermia
Based on the premise that hypothermia excites a stress 
response and glucocorticoid release that in turn increases 
immunosuppressive effects, hypothermia has a mechanis-
tic linkage to cancer recurrence. In animal studies, a tem-
perature of  30.8 ℃ has been shown to suppress NK cell 
activity and also suppress resistance to metastasis using a 
specific tumor model[184]. In humans, mild hypothermia 
to 35.5 ℃ exacerbates the immunosuppressive effects of  
abdominal surgery[185].

Stress response
In humans as well as in animals, stress responses have 
been linked to NK cell suppression, perioperative immu-
nosuppression and increase tumor retention[17,186].

The stress level in cancer patients is associated with 
the degree of  postoperative immunosuppression and 
has been shown to predict NK cell toxicity and T-cell 
responses. This may be the reason for success with beta 
blocker therapy as highlighted in the section above and 
an area of  interest for anesthesiologists.

Future directions
Though much has been said and done about anesthetic 
technique and cancer recurrence, the question very 
much remains unanswered. Multiple high quality, well-
designed and validated studies are needed before a strong 
statement can be made one way or the other about the 
influence of  an anesthetic technique on the recurrence 
and behavior of  certain cancer types. The currently avail-
able data do favor regional anesthesia as a sole vehicle 
or in combination with general anesthesia, in addition 
to an increasing trend to autologous blood transfusion 
and attenuation of  stress responses in the perioperative 
period. Areas of  future interest could be related to some 
of  the other anti-inflammatory and immunomodulatory 
drugs that we use in the perioperative period. These in-
clude a better categorization of  various types of  opioids, 
NSAIDs and other analgesics. A greater focus needs to 

be on longer follow-up of  patients in these observational 
studies and long term outcomes related to the anesthetic 
technique and perioperative interventions.

As an anesthesiologist and a perioperative physician 
these variables are important and while we wait for better 
clinical studies in humans, we have to move to shaping 
these perioperative factors for better outcomes in surgical 
cancer patients.
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