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Abstract
Recently, increasing attention has been paid to the application of artificial 
intelligence (AI) to the diagnosis of diverse hepatic diseases, which comprises 
traditional machine learning and deep learning. Recent studies have shown the 
possible value of AI based data mining in predicting the incidence of hepatitis, 
classifying the different stages of hepatitis, diagnosing or screening for hepatitis, 
forecasting the progression of hepatitis, and predicting response to antiviral drugs 
in chronic hepatitis C patients. More importantly, AI based on radiology has been 
proven to be useful in predicting hepatitis and liver fibrosis as well as grading 
hepatocellular carcinoma (HCC) and differentiating it from benign liver tumors. It 
can predict the risk of vascular invasion of HCC, the risk of hepatic enceph-
alopathy secondary to hepatitis B related cirrhosis, and the risk of liver failure 
after hepatectomy in HCC patients. In this review, we summarize the application 
of AI in hepatitis, and identify the challenges and future perspectives.

Key Words: Machine learning; Deep learning; Radiomics; Hepatitis; Fibrosis; 
Hepatocellular carcinoma
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Core Tip: Currently, there is a need of a comprehensive review to introduce the applic-
ations of artificial intelligence (AI) in hepatitis. We first discuss the possible value of 
AI based data mining in predicting the incidence of hepatitis, classifying the different 
stages of hepatitis, diagnosing or screening for hepatitis, forecasting the progression of 
hepatitis, and predicting response to antiviral drugs in chronic hepatitis C patients. In 
addition, we introduce the applications of AI based on radiology in predicting hepatitis 
and liver fibrosis, grading hepatocellular carcinoma (HCC) and differentiating it from 
benign liver tumors, and predicting the risk of vascular invasion of HCC as well as the 
risk of hepatic encephalopathy secondary to hepatitis B related cirrhosis.

Citation: Liu W, Liu X, Peng M, Chen GQ, Liu PH, Cui XW, Jiang F, Dietrich CF. Artificial 
intelligence for hepatitis evaluation. World J Gastroenterol 2021; 27(34): 5715-5726
URL: https://www.wjgnet.com/1007-9327/full/v27/i34/5715.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i34.5715

INTRODUCTION
Artificial intelligence (AI) is a new discipline that aims to simulate, extend, and expand 
human intelligence and integrates theory, method, and application research and 
development[1]. According to the different algorithms of AI, AI is usually divided into 
traditional AI (e.g., traditional machine learning) and deep learning (based on neural 
network structure) in the medical field[2]. Compared with traditional AI, deep 
learning can directly apply the image to the learning process without manual feature 
extraction, while traditional machine learning needs manual recognition and 
extraction of different features. Therefore, deep learning has the advantage of no 
manual extraction of various features, which makes its learning process faster, 
intelligent, and accurate. In addition, deep learning can iterate and improve from past 
mistakes, but it needs more big data and more result analysis to fully show its robust 
and precise efficiency[3].

Lately, AI technology has been at the forefront of scientific research. The benefits of 
the AI model in various fields have triggered an upsurge in the use of this technology 
for data mining and analysis in more areas, and it has also attracted attention in the 
field of medicine and biological cognition[4]. For instance, AI has been widely used in 
the examination of superficial glands such as the thyroid and breast to assist 
radiologists to evaluate whether nodules are benign or malignant, with a high level of 
accuracy. The accuracy is lower than that of senior radiologists but higher than that of 
junior radiologists[5-7]. Some literature has reported the application of AI technology 
based on data mining or radiology in predicting hepatitis, evaluating fibrosis, and 
diagnosing benign and malignant liver masses[8-10].

This systematic review is intended to ascertain the clinical utility in routine practice 
of AI based on data mining, predict the incidence of hepatitis A, B, C, or E, categorize 
the different stages of hepatitis B, predict the progression of hepatitis C in veterans, 
and diagnose or screen for hepatitis B. Particularly, this review focuses on the 
application of deep learning or radiomics based on radiology to stage hepatic fibrosis, 
predict the occurrence of HCC, identify microvascular invasion, and predict the risk of 
liver failure after hepatectomy in HCC patients.

HEPATITIS DETECTION BASED ON DATA MINING
Predicting incidence of hepatitis
Newborn babies are required to be vaccinated with hepatitis B vaccine in numerous 
countries, which has reduced the incidence of hepatitis worldwide. However, viral 
hepatitis is still a serious health problem[11]. Hence, Guan et al[12] designed the AI 
model of artificial neural network (ANN) and autoregressive integrated moving 
average (ARIMA) with hepatitis data mined from Liaoning Disease Control and 
Prevention Center, which aimed to forecast the incidence of hepatitis A. They 
extracted data concerning the incidence of hepatitis A from 1987 to 2001 in the above-
mentioned Disease Control and Prevention Center. The incidence of hepatitis A from 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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1981 to 1997 was taken as the training group and from 1998 to 2001 as the validation 
group. The forecasting statistical effect value and the correlation coefficient are 
summarized in Table 1. Intelligently mining hepatitis B-related medical record data 
from local health websites authorized by the local Health Commission, the AI model 
of ARIMA (0, 1, 1) and ElmanNN (Elman neural network) with eight neurons were 
established by Zheng et al[13]. From January 2012 to August 2019, the local health 
bureau reported 486983 cases of hepatitis B. Hepatitis B incidence from January 2012 to 
December 2018 was used to build and train ARIMA (0, 1, 1) model and ElmanNN 
model with eight neurons, and hepatitis B incidence from January 2019 to August 2019 
was used to validate ARIMA (0, 1, 1) model and ElmanNN with eight neurons, with 
root-mean-square error (RMSE) and mean absolute error (MAE) applied to evaluate 
the prediction effect of the model. The RMSE and MAE of the above-mentioned 
ARIMA (0, 1, 1) model and ElmanNN with eight neurons are shown in Table 1. Gan et 
al[14] also tried to forecast the incidence of hepatitis B using a hybrid model combing 
Grey system and BP-ANN (back propagation artificial neural networks), with trained 
and validated data collected from National Health Commission. From 2003 to 2012, 
10486959 cases of hepatitis B were reported by National Health Commission. 
Compared with the above data, the prediction effect of a hybrid model, Grey model (1, 
1) and Grey model (2, 1), was calculated. The predictive results are summarized in 
Table 1. The results showed that the hybrid algorithm was superior to the Grey model 
algorithm in all assessment norms, and a better prediction effect was achieved. 
Intending to predict the incidence of hepatitis E, Guo et al[15] mined monthly 
incidence and cases of hepatitis E from the local Center for Disease Control and 
Prevention as samples. All above-mentioned data were collected from January 2005 to 
December 2017 in the local Centers for Disease Control. The monthly incidence and 
cases from January 2005 to June 2015 were used as the input variable to establish an AI 
model of the ARIMA, supporter vector machine (SVM), and long-short time memory 
neural network (LSTM), and those from July 2015 to December 2017 as the validating 
group. The assessment indexes of the ARIMA, SVM, and LSTM models were RMSE 
and MAE, whose corresponding values are given in Table 1.

Classifying different stages of hepatitis 
According to the serological level of transaminase and serological titer of hepatitis B 
antigen or antibody, hepatitis B can be categorized into five stages: I, HBeAg (+) 
chronic infection; II, HBeAg (+) chronic hepatitis; III, HBeAg (-) chronic infection; IV, 
HBeAg (-) chronic hepatitis; V, HBsAg (-) stage. For young doctors, it can be difficult 
to accurately classify the clinical types of hepatitis. Therefore, with 52 patients 
included, an automated diagnosis of hepatitis B using multilayer mamdani fuzzy 
inference system expert system (ADHB-ML-MFIS) was established by Ahmad et al[16] 
to categorize the different stages of hepatitis B. In the ADHB-ML-MFIS expert system, 
there were two levels of input variables. The input variables of the first layer were 
transaminase, and the input variables of the second layer were serological markers of 
hepatitis B. The diagnostic accuracy of the ADHB-ML-MFIS expert system for differen-
tiating stages of hepatitis B was 92.2% with the detailed results shown in Table 1.

Diagnosing or screening for hepatitis 
Raman spectroscopy has been used to diagnose hepatitis B, showing a superior 
performance compared to traditional serological tests. Obtaining 119 confirmed 
hepatitis B virus (HBV) infected samples from histopathology department, Khan et al
[8] combined Raman spectroscopy with pattern recognition technology, and 
established an AI model based on the SVM algorithm and radial basis function to 
diagnose hepatitis B. In the study, the AI model achieved high diagnostic performance 
for hepatitis B, with the data presented in Table 1. Collecting data from 1134 blood 
samples, Wang et al[17] proposed a method for promptly screening hepatitis B patients 
and non-hepatitis B patients using serum Raman spectroscopy combined with LSTM. 
Then, LSTM was used to train the spectral data. Several models can distinguish 
hepatitis B from non-hepatitis B, with the highest diagnostic efficacy acquired by 
serum Raman spectroscopy combined with LSTM. The accuracy of serum Raman 
spectroscopy combined with LSTM for screening hepatitis B from non-hepatitis B was 
0.9732. About 50% of hepatitis C virus (HCV) infected persons worldwide have not 
been diagnosed or treated, and it remains a significant risk factor for human health
[18]. Thus, it is vital that clinicians could find these undiagnosed patients with 
hepatitis C infection, a nowadays-treatable disease. With 120023 HCV patients and 
9601900 non-HCV patients used as modeling data, Doyle et al[19]developed five kinds 
of AI models attempting to find undiagnosed hepatitis C infection: Logistic regression, 
gradient boosting trees, gradient boosting trees with temporal variables, stacked 
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Table 1 Hepatitis detection based on data mining

No. Task Algorithms Sample size (type) Evaluation index Ref.

1 Predicting 
incidence of 
hepatitis A

ANN; ARIMA N/A (CDC data) ANN: Correlation coefficient 0.71; ARIMA: Correlation 
coefficient 0.66

[12]

2 Predicting 
incidence of 
hepatitis B

ARIMA; ElmanNN 486983 cases (data 
from health 
commission)

ARIMA: RMSE 0.94, MAE 0.81; ElmanNN: RMSE 0.89, MAE 
0.70

[13]

3 Forecasting 
incidence of 
hepatitis B

Hybrid method (combing GM 
and BP-ANN)

10486959 cases (data 
from health 
ministry)

R 0.9495, RMSE 4.863 × 103, MAE 3.9704 × 104 [14]

4 Prediction of 
incidence of 
hepatitis E

ARIMA; SVM; LSTM N/A (CDC data) ARIMA: RMSE 0.022, MAE 0.018; SVM: RMSE 0.0204, MAE 
0.0167; LSTM: RMSE 0.01, MAE 0.011

[15]

5 Automated 
classification of the 
different stages of 
hepatitis B

ADHB-ML-MFIS expert system 52 patients 
(serological data)

Overall accuracy: 0.922; No hepatitis accuracy: 1; Due to 
infection accuracy: 0.75; Acute HBV accuracy: 0.95; Chronic 
HBV accuracy: 0.91

[16]

6 Analyzing HBV 
infection from 
normal blood 
samples

Polynomial function; RBF 119 serum samples 
from HBV infected 
patients (Raman 
spectroscopy data)

Polynomial kernel (order-2): Quadratic programming/least 
squares: Accuracy 98%, precision 97%, sensitivity 100%, 
specificity 95%; RBF kernel (RBF sigma-2): Quadratic 
programming: accuracy 94%, precision 90%, sensitivity 100%, 
specificity 87%; RBF kernel (RBF sigma-2): Least squares: 
Accuracy 95%, precision 92%, sensitivity 100%, specificity 
90%

[8]

7 Rapidly screening 
hepatitis B from 
non-hepatitis B

LSTM 1134 blood samples 
(Raman 
spectroscopy data)

Accuracy 97.32%, sensitivity 97.87%, specificity 96.77%, 
precision 96.84%

[17]

8 Finding 
undiagnosed 
patients with 
hepatitis C 
infection

Logistic regression; Gradient 
boosting trees; Gradient boosting 
trees with temporal variables; 
Stacked ensemble; Random forest

9721923 patients 
(data from the 
patient’s medical 
history)

The stacked ensemble had a specificity of 0.99 and precision 
of 0.97 at a recall level of 0.50

[19]

9 Predicting hepatitis 
C virus 
progression among 
veterans 

CS Cox modellongitudinal Cox 
model; CS boosting 
modelLongitudinal-boosting 
model

72683 CHC 
individuals (VHA 
data)

CS Cox model: Concordance 0.746; Longitudinal Cox model: 
Concordance 0.764; CS boosting model: Concordance 0.758; 
Longitudinal-boosting model: Concordance 0.774

[20]

10 Forecasting 
response to IFN 
plus RIB treatment 
in HCV patients 

ANN 300 patients 
(serological data)

The diagnostic accuracy rose from 52% (ANN 2) to 70% 
(ANN 6)

[21]

ANN: Artificial neural network; ARIMA: Autoregressive integrated moving average; CDC: Centers for Disease Control; RMSE: Root-mean-square error; 
MAE: Mean absolute error; GM: Grey model, BP-ANN: Back propagation artificial neural networks; SVM: Supporter vector machine; LSTM: Long-short 
time memory neural network; ADHB-ML-MFIS: Automated diagnosis of hepatitis B using multilayer Mamdani fuzzy inference; HBV: Hepatitis B virus; 
RBF: Gaussian radial basic function; CHC: Chronic hepatitis C virus; VHA: National Veterans Health Administration; IFN: Interferon; RIB: Ribavirin, HCV: 
Hepatitis C virus.

ensemble, and random forest. All these models mined data from demographics, risk 
factors, symptoms, treatments, and procedures relevant to HCV from the patient’s 
medical history. At different recall levels, the models had different diagnostic 
performances. For example, the stacked ensemble had a specificity of 0.99 and 
precision of 0.97 at a recall level of 0.50.

Forecasting progression of hepatitis 
Liver biopsy is the gold standard for the evaluation of liver fibrosis and cirrhosis. 
However, liver biopsy is an invasive examination and carries the risk of causing liver 
bleeding. In clinical practice, aspartate aminotransferase-to-platelet ratio index (APRI) 
and radiology are often used to forecast hepatic fibrosis and cirrhosis. In Konerman et 
al[20]’s study, aiming to predict HCV progression among veterans, they developed the 
cross-sectional (CS) Cox model, longitudinal Cox model, CS boosting model, and 
longitudinal-boosting model with 72683 chronic hepatitis C (CHC) individuals and 
matched control data searched from National Veterans Health Administration 
between 2000 and 2016. The calculated value of APRI > 2 after time zero for two 
consecutive times indicated the progression of liver cirrhosis. The predictive 
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concordance of the above-mentioned four models is given in Table 1.

Predicting response to antiviral drugs in CHC patients 
The combined administration of interferon-alpha (IFN) and ribavirin (RIB) is the first-
line recommended treatment regimen for patients with CHC. However, the cure rate is 
still low and the incidence of side effects is high. Therefore, there is an urgent need for 
doctors in the hepatology or infection departments to evaluate the response of patients 
with CHC to the combinative administration of IFN and RIB. Hence, Maiellaro et al[21] 
retrospectively analyzed 300 patients treated with IFN plus RIB through an ANN, 
intending to predict the response to the treatment. The range of positive predictive 
value and negative predictive value of the ANN model for predicting the treatment 
response of patients with CHC to the combined administration of IFN and RIB was 
57%-75% and 52%-71%, respectively.

HEPATITIS EVALUATION BASED ON RADIOLOGY
Radiology plays an important role in evaluating a range of hepatic diseases, such as 
hepatitis, hepatic fibrosis, HCC, vascular invasion of liver cancer, and even HE. With 
the rapid development of computer technology and AI, radiomics and deep learning 
have become hot topics in the field of medical imaging. Compared with traditional AI, 
deep learning is a more advanced and intelligent learning algorithm, which was based 
on a neural network structure inspired by the human brain[22,23]. Radiomics has also 
been developed recently. It can adopt a variety of methods to extract numerous 
quantitative features from ultrasound, computed tomography (CT), and magnetic 
resonance imaging (MRI) images, then select the quantitative features related to the 
task, finally providing clinicians with a model based on radiomics to evaluate 
diagnostic and prognostic information[24,25].

Predicting clinical severity in alcohol-associated hepatitis patients
Tana et al[26] included 34 patients with alcohol-associated hepatitis (AAH) and 35 
control subjects in their study to extract texture features from computed tomography 
images based on random forest and deep learning convolutional neural network 
algorithms, which evaluated the diagnostic value of CT texture analysis for clinical 
severity (most notably aspartate aminotransferase) in AAH patients. Recursive feature 
elimination using random forest identified 23 top features for AAH categorizing, and 
the accuracy of deep learning for diagnosing AAH was 70% in the validation set.

Diagnosing or grading liver fibrosis
According to the METAVIR scoring system[27], hepatic fibrosis can be divided into 
five categories: F0, no fibrosis; F1, portal fibrosis without septa; F2, portal fibrosis and 
few septa; F3, numerous septa without cirrhosis; F4, cirrhosis. Significant fibrosis is 
defined as ≥ F2. Based on radiomics or deep learning algorithms, multifarious imaging 
modalities have been applied to diagnose or stage liver fibrosis, such as ultrasound, 
contrast or non-contrast CT, CT texture, MRI, or gadoxetic acid–enhanced hepato-
biliary phase MR.

A study including 144 HBV infected patients, evaluated the performance of 
multiparametric ultrasomics for the diagnosis of significant hepatic fibrosis[9]. 
Conventional ultrasomics, original radiofrequency, and contrast-enhanced micro-flow 
features comprise the multiparametric ultrasomics for clinicians to diagnose diseases 
and monitor treatment regimens. Multiparametric ultrasomics used Adaboost, random 
forest, and SVM algorithms for predicting significant liver fibrosis, with results 
summarized in Table 2. With 466 patients (401 with chronic hepatitis B, 65 without 
fibrosis) undergoing partial hepatectomy used as the data of the training group and 
test group of transfer learning (TL) radiomics, Xue et al[28] discussed the diagnostic 
value of transfer learning radiomics based on multimodal ultrasound in the grading of 
liver fibrosis. As the name suggests, TL moves a network trained on a large data set on 
to other related tasks, thus avoiding the over fitting problem caused by insufficient 
training data in conventional deep learning. Results showed that the area under the 
curve (AUC) of TL was statistically higher than that of non-TL, and the AUC of 
multimodal ultrasound imaging was larger than that of single modality ultrasound 
imaging. Hence, multimodal ultrasound imaging based on TL could usefully be 
applied to the staging of liver fibrosis.
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Table 2 Hepatitis or hepatitis associated lesion detection based on radiology

No. Task Algorithms (model) Sample size (type) Evaluation index Ref.

1 Predicting clinical severity in 
AAH patients

Random forest; 
Convolutional neural 
network

69 cases (CT texture 
features)

Accuracy: 82.4% of RFE-RF in the 
test set; Accuracy: 70% of CNN in 
the test set

[26]

2 Assessing significant liver 
fibrosis by multiparametric 
ultrasomics data

Adaboost; Random forest; 
SVM (multiparametric 
ultrasomics)

144 HBV infected patients 
(multiparametric 
ultrasomics)

AUROC: 0.85 ± 0.01 of Adaboost, 
random forest, SVM in 
multiparametric ultrasomics 
including conventional 
ultrasomics, ORF and CEMF

[9]

3 Grading liver fibrosis Inception-V3 network 
(transfer learning) 

466 patients (multimodal 
ultrasound)

AUCs of TL in GM + EM reached 
0.950, 0.932, and 0.930, 
respectively, for grading S4, ≥ S3, 
and ≥ S2an

[28]

4 Predicting cirrhosis LASSO (radiomics 
nomogram)

144 cases of HBV patients 
(CT features and clinical 
factors)

AUROC: 0.915 in the training 
cohort, 0.872 in the validation 
cohort, overall correctly classified 
rate of 82.0%

[29]

5 Differentiating hepatic 
fibrosis’ grade

RFC (CTTA-based models); 
SVM (CTTA-based models)

30 fibrosis patients (CT 
texture features)

Train AUC 0.95 in RFC (model 1); 
Test AUC 0.90 in RFC (model 1); 
Train AUC 0.88 in SVM (model 2); 
Test AUC 0.76 in SVM (model 2)

[30]

6 Assessing liver fibrosis 
severity

A prototype convolutional 
neural network

558 cases (CT images) AUCs were 0.82, 0.85, and 0.88 of 
VolL/VolS in diagnosing advanced 
fibrosis, cirrhosis, and 
decompensated cirrhosis in the 
whole study population

[31]

7 Staging liver fibrosis Convolutional neural 
network 

634 fibrosis patients (MR 
images and MR/virus)

AUCs were 0.84, 0.84, and 0.85 of 
the model full for diagnosing F4, ≥ 
F3, and ≥ F2 in the test set, 
respectively

[34]

8 Assessing liver fibrosis in 
chronic hepatitis B

Convolution neural network 
(DLRE)

398 HBV patients (shear 
wave elastography)

AUCs of DLRE 1.00, 0.99, and 0.99 
for classifying F4, ≥ F3, and ≥ F2 in 
the training set and 0.97, 0.98, and 
0.85 in the validation set

[35]

9 Diagnosing FNH from HCC 
in the non-cirrhotic liver

LASSO (radiomics 
nomogram)

156 patients (CT images 
and clinical factors)

Accuracy: 92.4% in the training set, 
89.2% in the validation set

[38]

10 Diagnosing HCC LASSO (radiomics signature) 211 patients (MR images) AUROC: 0.861 in the training set, 
0.810 in the validation set

[39]

11 Preoperative prediction of 
HCC grade

LASSO (combined model 
with clinical factors and 
radiomics signature)

170 HCC patients (MR 
images and clinical factors)

AUROC: 0.742, 0.786, and 0.800 
based on T1WI images, T2WI 
images, and combined T1WI and 
T2WI images in the combined 
model

[41]

12 Predicting MVI risk in HBV-
related HCC preoperatively

LASSO (radiomics 
nomogram)

304 HCC patients (CT 
images and AFP)

AUROC: 0.846 in the training set, 
0.844 in the validation set

[43]

13 Preoperative prediction of 
MVI in HCC patients 

LASSO (combined model) 157 HCC patients (CT 
images and clinical factors)

AUROC: 0.835 in the training 
dataset, 0.801 in the validation 
dataset

[44]

14 Predicting risk of HE 
complicated by hepatitis B 
related cirrhosis

LASSO (integrated model of 
radiomics and clinical 
features)

304 cirrhosis patients (CT 
images and clinical factors)

Accuracy: 0.93 in the training 
cohort, 0.83 in the testing cohort

[45]

15 Predicting liver failure in 
cirrhotic patients with HCC 
after major hepatectomy

LASSO (integrated 
radiomics-based mode)

101 HCC patients (MR 
images and clinical factors)

Accuracy: 0.802 in radiomics-based 
model

[47]

AAH: Alcohol-associated hepatitis; CT: Computed tomography; RFE-RF: Recursive feature elimination using random forest; CNN: Convolutional neural 
network; SVM: Supporter vector machine; HBV: Hepatitis B virus; AUROC: Area under the receiver operating curve; ORF: Original radiofrequency; 
CEMF: Contrast-enhanced micro-flow; AUC: Area under curve; TL: Transfer learning; GM: Gray scale modality; EM: Elastogram modality; LASSO: Least 
absolute shrinkage and selection operator; RFC: Random forest classifier; CTTA: Computed tomography texture analysis; VolL: Liver volume; VolS: Spleen 
volume; MR: Magnetic resonance; DLRE: Deep learning radiomics of shear wave elastography; FNH: Focal nodular hyperplasia; HCC: Hepatocellular 
carcinoma; MVI: Microvascular invasion; AFP: Alpha-fetoprotein; HE: Hepatic encephalopathy.

In another study, Wang et al[29] included 144 HBV patients with hepatic fibrosis 
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confirmed by liver biopsy who underwent unenhanced CT examinations in their study 
and successfully extracted 25 cirrhosis-related CT features to construct a radiomics 
signature using the SVM algorithm. In addition to the CT features that were closely 
related to liver cirrhosis, the specific clinical factors (alanine transaminase, aspartate 
aminotransferase, globulin, and international normalized ratio) were also closely 
related to liver cirrhosis. Combining the radiomics signature and clinical factors, a 
radiomics-based nomogram was established, and the results demonstrated that the 
area under the receiver operating curve (AUROC) of the radiomics nomogram was 
0.915 and 0.872 in the training and validation cohorts, respectively. CT texture analysis 
(CTTA) revealed the biological and pathological features of diverse liver diseases by 
analyzing the characteristics and distribution of pixels in medical images, and 
extracted texture features that were difficult to recognize by the naked eye. To explore 
the diagnostic value of CTTA in low- and high-grade hepatic fibrosis, Budai et al[30] 
included 30 patients with liver fibrosis in the study. They extracted 354 CT texture 
features and constructed a CTTA-based model using a random forest classifier (RFC) 
algorithm and SVM algorithm, respectively. The AUROC of the CTTA-based model 
based on the RFC algorithm in predicting fibrosis grade was 0.90 in both the first and 
second analyses. The AUC of the CTTA-based model using the SVM algorithm in 
predicting liver fibrosis in analysis I was 0.76, and 0.91 in analysis II that was the 
highest prediction rate. Son et al[31] also evaluated liver fibrosis severity using splenic 
volume (measured on portal venous phase CT images). They proposed a convolution 
neural network (CNN) based on a three-dimensional U-net, with 513 chronic liver 
disease patients and 45 healthy liver subjects taken as modeled data, dividing the liver 
and spleen into many segments. By using the calculus method, the volume of hepatic 
and splenic segments in each thin slice was first calculated, then the volume of the 
liver and spleen in each thin slice was calculated, and finally, the volume of the liver 
and spleen amounted to the volume of the liver and spleen in each thin slice 
multiplied by the thickness of each thin slice. Then, they evaluated the correlation 
between liver and spleen volume indexes [VolS (spleen volume), VolL (liver volume), 
and VolS/VolL] and liver fibrosis severity and their diagnostic value in liver fibrosis 
severity. The results demonstrated that the AUCs were 0.82, 0.85, and 0.88 of VolL/VolS 
for the diagnosis of advanced fibrosis, cirrhosis, and decompensated cirrhosis in the 
entire study population, which outperformed the VolL.

A variety of methods have been used to detect the stage of liver fibrosis, such as 
serological markers and elasticity scores based on ultrasound[32,33]. Yasaka et al[34] 
specifically included 534 patients with hepatic fibrosis into training datasets and 100 
fibrosis patients into test sets, analyzing the diagnostic value of deep CNN using 
gadoxetic acid-enhanced hepatobiliary phase MR images and MR/virus model for 
liver fibrosis. The results showed that AUCs were 0.84, 0.84, and 0.85 of the model full 
(combined MR images and MR/virus model) for diagnosing F4, ≥ F3, and ≥ F2 in test 
sets, respectively, while 0.81, 0.84, and 0.83 of MR/virus model for diagnosing F4, ≥ F3, 
and ≥ F2 in test sets.

Previous studies have been limited to single-center studies to explore the diagnostic 
value of ultrasound, CT, or MRI images-based radiomics or deep learning model for 
liver fibrosis. Wang et al[35] subsequently carried out a prospective multicenter study 
based on deep learning radiomics of shear wave elastography (DLRE) to assess the 
diagnostic performance for evaluating liver fibrosis in chronic hepatitis B, and 
compare it with 2D-SWE (shear wave elastography) and serological biomarkers [APRI 
and fibrosis index based on four factors (FIB-4)]. A total of 398 patients from 12 
hospitals in China with 1990 2D-SWE images were included in the study, and a DLRE 
model was established using the CNN algorithm. The results showed that the AUCs of 
DLRE were 0.97, 0.98, 0.85 for classifying F4, ≥ F3, and ≥ F2 in the validation set, which 
statistically outperformed 2D-SWE and serological biomarkers (APRI and FIB-4) 
except 2D-SWE in ≥ F2. Simplified structural flowchart of convolutional neural 
network architecture for staging liver fibrosis can be seen in Figure 1.

Diagnosing HCC
Typical focal nodular hyperplasia (FNH) has central cicatricial foci, which is enhanced 
in the arterial phase (AP), and the enhancement degree gradually decreases to low 
density in the portal venous phase (PVP). Atypical FNH has no central cicatricial foci 
and shows low perfusion, even hemorrhage, necrosis, and calcification on enhanced 
CT, which makes it difficult to differentiate atypical FNH from HCC[36,37]. Hence, 
Nie et al[38] aimed to establish a radiomics nomogram model based on CT for differen-
tiating FNH from HCC. A total of 156 patients with FNH and HCC were divided into 
a training group and test group of the above-mentioned radiomics nomogram model. 
Initially, 4227 radiomics features were extracted from the regions of interest (ROIs) on 
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Figure 1 Simplified structural flowchart of convolutional neural network architecture for staging liver fibrosis. After repeatedly convoluting and 
pooling the input layer images, the extracted high-dimensional manageable features are fed into the fully connected layer and the classification task is performed by 
expressing the class probabilities through the output layer.

hepatic CT scan. After selection for inter- and intra-class correlation coefficients (ICCs) 
> 0.75 and statistical difference between the two groups, 764 radiomics features were 
entered into least absolute shrinkage and selection operator (LASSO) regression, and 
finally, ten features were used for the construction of a radiomics signature. After 
multivariate logistic regression calculation, old age, HBV infection, and early 
enhancement (with a washout pattern) were used to establish the clinical factors 
model. Three models were then established: Radiomics signature model, clinical 
factors model, and radiomics nomogram model (clinical factors and radiomics 
signature combined). The predictive performance of the radiomics nomogram model 
was superior to those of the other constructed models. The accuracy of the radiomics 
nomogram model for diagnosing HCC was 92.4% and 89.2% in the training and 
validation datasets, respectively.

To confirm the value of the AI model for predicting HCC, Jiang et al[39] imple-
mented a prospective study to compare the diagnostic differences of the 2018 
European Association for the Study of the Liver (EASL) criteria, Liver Imaging 
Reporting and Data System (LI-RADS) criteria, and a radiomics signature model for 
diagnosing HCC. They included 211 patients with surgically confirmed focal liver 
lesions (165 HCC patients, 30 non-HCC malignancies patients, and 16 non-HCC 
benign lesions patients) who were randomly divided into a training cohort (n = 133) 
and a validation cohort (n = 78). The results demonstrated that the AUROCs of HCC 
risk in all nodules calculated by EASL v2018 criteria, LR5/LR5V in LI-RADS v2018 
criteria, and radiomics signature model were 0.811, 0.841, and 0.810, respectively. The 
benignity and malignancy of liver tumors are usually based on Edmondson grade. 
Generally speaking, low-grade liver tumors conform to Edmondson I/II, while high-
grade liver tumors conform to Edmondson III/IV[40]. Wu et al[41] included 125 HCC 
patients in the training group and 45 HCC patients in the validation group to predict 
the grade of HCC patients based on unenhanced MRI radiomics. The MRI image was 
uploaded to ITK-SNAP software, and the ROI was depicted along the edge of the 
tumor on each TIWI and T2WI segment with radiomics features extracted from ROI. A 
total of 656 radiomics features were extracted. After LASSO regression selection, 14, 
18, and 20 features were selected based on T1WI, T2WI, and combined T1WI and 
T2WI, respectively. Finally, the combined model was established with results 
summarized in Table 2.

Predicting microvascular invasion of HCC
The occurrence of microvascular invasion (MVI) often reduces the 5-year survival rate 
of HCC patients, which is closely related to the poor prognosis of HCC patients[42]. 
Peng et al[43] randomly assigned 304 cases of eligible HCC patients to the training 
group and validation group. IBEX software was used to extract radiomics features 
from the ROI of enhanced CT images in each of the HCC patients. In this study, 980 
candidate radiomics features were generated from each patient, and after screening by 
LASSO with λ chosen smallest cross-validation error, eight radiomics features were 
selected to establish the radiomics signature. Radiomics signature, together with 
radiologic features (non-smooth tumor margin, internal arteries, and hypoattenuating 
halos) and alpha-fetoprotein > 20 ng/mL, was used to construct the radiomics 
nomogram, whose AUROC values for predicting MVI status were 0.846 and 0.844 in 
the training and validation sets, respectively. Ma et al[44] also discussed the value of 
preoperative radiomics nomogram for diagnosing MVI in HCC patients based on 
enhanced CT; 110 HCC patients were randomly assigned to the training cohort (MVI+ 
group 37 cases, MVI-group 73 cases), and 47 HCC patients to the validation cohort 
(MVI+ group 18 cases, MVI-group 29 cases). The ROI was drawn by an experienced 
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radiologist using ITK-SNAP software in AP, PVP, and delayed phase (DP) images on 
CT along the visible borders of the lesion. Initially, in the AP, PVP, and DP images, 647 
radiomics features were extracted. After screening by ICC and concordance correlation 
coefficient ≥ 0.75 and LASSO method, finally, five AP features, seven PVP features, 
and nine DP features were selected. In predicting HCC invasion of MVI, PVP and 
radiomics signature outperformed AP and DP, hence, the PVP radiomics signature 
with the effective clinical factors constituted the combined model, whose AUCs were 
0.835 and 0.801 in the training and validation groups, respectively for diagnosing MVI 
status in HCC.

Predicting HE secondary to hepatitis B related cirrhosis
Decompensated liver cirrhosis is often accompanied by multiple complications, of 
which HE is the most serious complication. Therefore, it is worthwhile to try to predict 
hepatic fibrosis patients who are susceptible to HE to provide early prevention and 
treatment[45]. A total of 304 cases of first-diagnosed hepatitis B-related cirrhosis were 
included in their study, 212 cases in the training group (HE = 38, non-HE = 174) and 92 
cases in the validation group (HE = 21, non-HE = 71). Initially, 356 radiomics features 
were picked from the ROI of a patient’s liver enhanced CT. After three times selection, 
19 radiomics features were applied to construct a radiomics model. Three clinical 
factors related to HE, including serum albumin, ascites, and collateral circulation, were 
used to establish a clinical factor model. The results showed that, in the training and 
validation cohorts, the model combining radiomics and clinical features had an 
accuracy rate of 0.93 and 0.83 in predicting the risk of HE complicated by hepatitis B 
cirrhosis, respectively, while the corresponding values were 0.89 and 0.84 for 
radiomics model, and 0.83 and 0.77 for the clinical model.

Predicting liver failure in cirrhotic patients with HCC after major hepatectomy
Postoperative hepatic failure is the most serious complication in HCC patients after 
hepatectomy, which not only prolongs the hospitalization time of patients but also 
increases the mortality of patients[46]. Zhu et al[47] included 101 eligible HCC patients 
who had a major liver resection, to use preoperative gadoxetic acid-enhanced MRI for 
predicting liver failure based on the radiomics model. Removing the necessary 
structures, on the hepatobiliary phase image of the above-mentioned patient, 
experienced radiologists drew ROIs of the liver along the edge of the whole hepatic 
parenchyma. Through screening for ICC > 0.75 and LASSO regression, five features 
were employed to establish a radiomics signature. Then, the radiomics signature and 
ICG-R15 (a variable in the clinical factors model) were incorporated to establish a 
radiomics-based model. The results showed that the accuracy of the radiomics-based 
model in predicting postoperative liver failure was 0.802.

CONCLUSION
AI can mine data from patients’ medical records, the Centers for Disease Control and 
Prevention in countries or regions, and serological markers. Raman spectroscopy can 
predict the incidence of hepatitis, classify the different stages of hepatitis, diagnose or 
screen hepatitis, forecast the progression of hepatitis, and predict response to antiviral 
drugs in CHC patients with a high level of diagnostic performance. AI, especially deep 
learning or radiomics, can predict hepatitis, predict liver fibrosis and its grade, differ-
entiate HCC from the benign liver tumor, predict the risk of vascular invasion of HCC, 
predict the risk of HE complicated by hepatitis B related cirrhosis, and predict the risk 
of liver failure after hepatectomy in HCC patients, with good levels of accuracy.

Limitations and future perspectives
At present, all reviewed studies using AI are mostly single-center research, and the 
amount of data in the training sets may be insufficient. In the future, people should 
build an internet database or hospital, and disease-related information from various 
countries or regions could be uploaded to the internet database or hospital so that AI 
researchers can obtain more disease-related information with different demographics, 
geographic areas, etc., to carry out multicenter research, and establish a more robust 
and inclusive AI model for clinical use.
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