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Abstract
The classical cancer stem cell (CSCs) theory proposed the existence of a rare but 
constant subpopulation of CSCs. In this model cancer cells are organized hierarch-
ically and are responsible for tumor resistance and tumor relapse. Thus, 
eliminating CSCs will eventually lead to cure of cancer. This simplistic model has 
been challenged by experimental data. In 2010 we proposed a novel and contro-
versial alternative model of CSC biology (the Stemness Phenotype Model, SPM). 
The SPM proposed a non-hierarchical model of cancer biology in which there is 
no specific subpopulation of CSCs in tumors. Instead, cancer cells are highly 
plastic in term of stemness and CSCs and non-CSCs can interconvert into each 
other depending on the microenvironment. This model predicts the existence of 
cancer cells ranging from a pure CSC phenotype to pure non-CSC phenotype and 
that survival of a single cell can originate a new tumor. During the past 10 years, a 
plethora of experimental evidence in a variety of cancer types has shown that 
cancer cells are indeed extremely plastic and able to interconvert into cells with 
different stemness phenotype. In this review we will (1) briefly describe the 
cumulative evidence from our laboratory and others supporting the SPM; (2) the 
implications of the SPM in translational oncology; and (3) discuss potential 
strategies to develop more effective therapeutic regimens for cancer treatment.

Key Words: Cancer; Stem cells; Stemness; Plasticity; Chemotherapy; Interconversion
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Core Tip: The classical cancer stem cell theory proposed the existence of a rare but 
constant subpopulation of cancer stem cells. This review article briefly describes the 
cumulative evidence supporting alternative models of cancer stem cells, their implic-
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ations in translational oncology and, discuss the potential strategies to develop more 
effective and less toxic sequential multistep-based therapeutic regimens for cancer 
treatment.
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INTRODUCTION
The biological properties of cancer cells have profound implications for all areas of 
oncology research ranging from preclinical studies to advanced clinical trials. It is not 
a surprise that numerous conceptual models of cancer cell biology have been proposed 
with the ultimate goal to develop effective therapies that not only extend survival but 
lead to a definitive cure. In the past decades the discovery of the potential abilities in 
self-renewal and differentiation of normal stem cells has opened a new horizon in 
medicine and important concepts were extrapolated to neoplastic cells. Although the 
concept of cancer stem cell (CSC) is not new since the general idea of tumors driven by 
a subset of cells endowed with stem-like properties was postulated by Rudolf Virchow 
in 1855[1] it has gained tremendous momentum after the isolation of putative cancer 
stem-like cells (CS-LCs) in a variety of cancer types including brain tumors[2-5], breast 
cancer[6-9], colon[10], hepatic[11], pancreatic[12], thyroid[13,14], bladder[15,16], 
cervical[17-20], ovarian[21-24], urothelial[25-28], renal[29-31] and chordoma[32,33]. In 
general, putative CS-LCs were isolated from every type of fresh tumor specimens and 
cancer cell lines. These discoveries quickly led to a new paradigm, the so called 
“Cancer Stem Cell Theory” (CSCT), that is fundamentally not completely different 
from the original models proposed by Virchow and his contemporaries[1]. In this 
model there is a hierarchical organization where a subset of CSCs can irreversibly 
differentiate into all types of non-CSCs. Prior to the modern CSCT, that started with 
the first isolation of putative CS-LCs in 1997[34] the clonal stochastic model (cSM) 
postulated in 1976[35] was popular among oncologists. The cSM proposed that all 
transformed cells in the tumor have carcinogenic potential and are able to proliferate 
and produce the same cells. The cSM is a non-hierachical model. From the clinical 
point of view, according to the cSM, to cure cancer all cancer cells should be 
eliminated since any cancer cell is potentially tumorigenic. On the contrary, according 
to the modern CSCT, to cure cancer or at least to obtain a significant outcome, it 
should be enough to eliminate only the rare subpopulation of CSCs. The idea of a rare 
subpopulation of CSCs as driving element in cancer development, evolution and 
heterogeneity, has overridden the previous cSM model[7] and catapulted research of 
therapeutic strategies based on CSCs targeting, such as the targeting of CSC niche, 
CSC signaling pathways, and CSC mitochondria and, metabolism[7,36-38].

Although the modern CSCT was an attractive concept it was found soon to be 
insufficient to reconcile experimental findings with a hierarchical rigid model. As a 
consequence several alternative plasticity models of CSCs such as “Stemness 
Phenotype Model”[39], the “complex system model”[40], the “Dynamic CSC model”
[41], and the “Dedifferentiation model”[42] were proposed as early as 2010. These 
models share some similarities, but a detailed comparison is beyond the scope of this 
article. For review see Cruz et al[43]. The aim of this short review is to update and 
highlight key predictions of the Stemness Phenotype Model (SPM).

THE SPM
In short, the SPM was originally proposed as a “One compartment model” where 
there is only one cancer cell type. These cells are cells with different stemness 
phenotype due to random biological variation. The stemness depends on the microen-
vironment where the cells grow and can range from a phenotype resembling a non-
CSC to a pure CSC. In other words, the SPM proposed that there are no true different 
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subpopulations of CSCs and non-CSCs but a single cell type that can interconvert into 
each other depending on the microenvironmental conditions. An immediate 
prediction of this model is that there are cells having “intermediate phenotypes” 
between both extreme phenotypes[39]. Other key prediction of the SPM is that the 
survival of a single cell might induce tumor relapse and therefore any effective 
therapy will must be able to eliminate 100% of cancer cells at once in order to prevent 
regrowth[43].

MICROENVIRONMENTALLY-DRIVEN INTERCONVERSION BETWEEN 
CSCS AND NON-CSCS
In the SPM microenvironmentally-driven interconversion between CSCs and non-
CSCs is a key process that explains the characteristic found in tumors such as the 
existence of intratumoral heterogeneity and chemoresistance. Evidence of intratumoral 
heterogeneity due to interconversion between cancer cell phenotypes was likely 
observed long before the first isolation of putative CSCs. For instance, in 1987 it was 
reported that several different cell phenotypes coexist in the human breast cancer cell 
line MCF7[44]. Similarly, it was known by 1998 that the human lung carcinoma cell 
line DLKP contains 3 distinct subpopulations and that two of them can interconvert to 
the third one[45]. At present, the findings of these two examples can easily be 
explained by interconversion but at that time the concept of stemness was not common 
in the literature. Definitive evidence of microenvironmentally-driven interconversion 
between CSCs and non-CSCs phenotypes were already available after the isolation of 
putative CSCs (characterized by stemness markers) when it was found that cells that 
were considered non-CSCs could interconvert into CSCs. For instance, (1) some CD44− 

Du145 prostate cancer cells (100% purity) could give rise to CD44+ cells in culture[46]; 
and (2) non-SP MCF7 breast cancer cells when recultured after being sorted contained 
SP cells indicating that the non-SP fraction gave rise to a new SP subpopulation[47]. A 
direct conversion from a non-CSC phenotype to a CSC phenotype was demonstrated 
in breast and prostate cancer cells when it was observed that exposure to conditioned 
media stimulated non-CSCs to become CSCs and that IL6 was enough to drive this 
conversion[48]. Other examples include the ability of some mature leukemia cells to 
de-differentiate and reacquire clonogenic and leukemogenic properties[49] and the de-
differentiation of glioma cells to glioma stem-like cells by therapeutic stress[50]. 
Additional evidence of non-CSCs conversion into CSCs were found in osteosarcoma
[51], lung[52], pancreatic[53], colon[54] and breast cancers[55]. In vitro data from our 
lab and others demonstrated that phenotypic changes due to changes in culture 
conditions are rapid and reversible[56,57]. For instance, cancer cells can become 
(within three days) highly resistant to conventional anticancer drugs when switched 
from anchorage-dependent (adherent cells) culture conditions into anchorage-
independent (floating cells) culture conditions. Chemosensitivity was quickly restored 
(within three days) when floating cells were cultured back as adherent cells. Under 
these conditions, a reversible change in the expression of proteins from multiple 
pathways was observed demonstrating complex and quick phenotypic adaptations to 
changing environment[56,57].

THE EXISTENCE OF MULTIPLE SUBPOPULATIONS OF CANCER CELLS
The SPM predicts the existence of multiple subpopulations of cancer cells ranging 
from a “pure non-CSC phenotype” to a “pure CSC phenotype”. This prediction was 
confirmed in the non-small cell lung adenocarcinoma (NSCLA) cell lines A549 and 
H441. It was found that NSCLA cells contain multiple, interconvertible, phenotyp-
ically distinct subpopulations (e.g., non-SP, SP, CD133pos and ALDHhigh) that exhibit 
distinct self-renewal and metastatic gene expression patterns[52].

These findings clearly demonstrated that cancer cells are actually extremely plastic 
and that microenvironmental conditions can influence and drive the bidirectional 
interconversion between CSCs and non-CSCs phenotypes. Recently several theoretical 
multi-phenotypic models that include, interconversion and cellular plasticity has been 
useful in predicting and validating this new paradigm[58-60].
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THE ABILITY OF A SINGLE CANCER CELL TO REPOPULATE A TUMOR
The ability of any given cancer cell regardless of its phenotype to reconstitute in vivo 
the complex intratumoral heterogeneity of any cancer is the ultimate prediction of the 
SPM. In vivo evidence suggesting that any cancer cell is potentially tumorigenic were 
available long before any alternative model of CSCs were published. Perhaps the most 
convincing data was published in 2007 demonstrating that each of the 67 single C6 
glioma (Including CD133-) cells plated per miniwell was able to generate a clone and 
subclones, which subsequently gave rise to a xenograft glioma in the BALB/C-nude 
mouse[61]. Recently, it has been reported that all 16 subpopulations of highly hetero-
geneous GBM cultures carry stem cell properties in vitro. These cells undergo 
stochastic state transitions, they showed reversible phenotypic adaptation in vivo and 
they all formed tumors. More importantly, the authors showed that the phenotypic 
heterogeneity could also be recreated by single cells of different phenotypic profiles
[62].

CLINICAL IMPLICATIONS
Mathematical models of cancer biology are providing insight of strategies for cancer 
elimination. Simple mathematical models considering two populations of cells: CSCs, 
which can divide indefinitely, and differentiated cancer cells, which do not divide and 
have a limited lifespan predict that neither inhibition of CSCs proliferation alone nor 
stimulation of CSCs differentiation is sufficient for cancer cure[63].

Mathematic modelling of in vitro growth of heterogeneous cell cultures in the 
presence of interconversion from differentiated cancer cells to CSCs also demonstrated 
that by targeting only the CSCs subpopulation will not be enough to eradicate cancer 
and that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer 
cells will be effective only if it targets all cancer cell types[64]. From the clinical point 
of view, the SPM seems to bring back the field of cancer treatment research to the early 
days of the cSM. The overall clinical implications of both the SPM and the cSM are 
essentially the same: they both predict that to cure cancer all cancer cells should be 
eliminated. However, these two models are conceptually very different and, it can be 
predicted that to achieve complete elimination of all cancer cells (if we ever achieve 
that goal) it will require a different approach. It is likely then that a successful 
chemotherapy regime will require numerous anticancer therapies, each of them 
targeting a “spectrum” of cancer cell subpopulations that in turn can create serious 
toxicity issues. The next big challenge in the oncotherapy field will be to develop a safe 
(low or non-toxic) therapeutic regime that can be administered simultaneously to 
deplete all cancer cells at once.

REDUCING SYSTEMIC TOXICITY BY SEQUENTIAL CHEMOTHERAPY
In complex, highly heterogeneous tumors the eradication of all cancer cells at once will 
likely require high doses of anticancer agents +/- radiation/immunotherapy that will 
severely limit its practical application due to toxicity issues. One alternative to 
circumvent this problem is to administer them sequentially. Sequential cancer 
treatment with chemotherapy followed by radiotherapy + high dose chemotherapy 
followed by autologous peripheral blood stem cell transplantation (APBSCT) has been 
employed with relatively good outcomes in several cancers such as mantle cell 
lymphoma[65] and relapsed/refractory acute myeloid leukemia[66]. Sequential 
multimodalities regimes are being increasingly utilized to treat patients carrying 
different types of cancers such as gastric cancer[67], pancreatic cancer[68], leukemia
[69], non-small cell lung cancer[70] and, breast cancer[71]. Sequential anthracycline- 
and taxane-based neoadjuvant chemotherapy represents the standard therapeutic 
approach for the majority of patients with early-stage triple negative breast cancer[72]. 
Novel sequential treatment are also currently investigated at the preclinical level[73]. 
We have demonstrated that a first step treatment with Hydroxyurea left few 
DBTRG.05MG glioma cells arrested in a senescent-like state. In the second step, 
salinomycin at low concentration eliminated 100% of these senescent-like cells[74]. 
These cells can grow in suspension as neurospheres, in which the Hedgehog pathway 
is activated[75]. This in vitro example of sequential chemotherapy suggests that it 
would be possible to eliminate all cancer cells at once with lower, and therefore less, 
toxic concentrations.
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Figure 1 Clonal stochastic model and effect of treatment with sequential chemotherapy cycles (or steps) on tumor progression. According 
to the clonal stochastic model a complex heterogeneous tumor may contain at a certain time, different subpopulations growing in different microenviroments. Clonal 
proliferation of single primordial cancer cell originates the original subpopulation (S1). During tumor grow random mutations (represented by red lightning bolts) 
originates all different subpopulations (S1-S6). M1-M6 represent different microenvironments. Since this model is unidirectional repeated cycles of chemotherapy with 
no gap can gradually deplete specific cell subpopulations, reducing the tumor size and eventually, if all cancer cells are eliminated, lead to a cure.

In the cSM, tumor heterogeneity appears as consequence of random genetic changes 
concomitant with clonal selection. At some point during its development a tumor may 
have different genetically defined subpopulations growing in specific microenvir-
onments. Due to the irreversible nature of genetic mutations, specific subpopulations 
can be permanently eliminated with specific anticancer treatments. For instance, 
sequential chemotherapy steps with different anticancer drugs can potentially 
eliminate one or few subpopulations per step which will eventually lead to a cure 
when the last subpopulation is eliminated (Figure 1). It is important to point out that, 
due to the high genetic instability of cancer cells, any time gap between steps increases 
the chances of generating new genetic clones (new cancer cell subpopulations) and 
thus increases the chances of tumor relapse. According to the SPM any time gap 
between steps increases the chances of regenerating the cancer cell subpopulation(s) 
eliminated in previous steps by interconversion. We have demonstrated in vitro that 
cancer cells are extremely plastic and they can undergo cycles of phenotypic changes 
within few days[57]. According to the SPM, multistep treatment regimes may only 
work if there is no time gap or just gap between steps or if the interconversion process 
is inhibited (Figure 2).

THE SPM AND BEYOND
The SPM does not exclude the coexistence of other mechanisms contributing to intrat-
umoral heterogeneity. For instance, in addition to microenvironmentally-driven 
interconversion between CSCs and non-CSCs, genetic mutations due to genomic 
instability of cancer cells may create new subpopulations of CSCs in the same tumor
[43]. Key concepts from other models not only expand our knowledge of cancer 
biology but can be useful in designing a curative treatment. For instance, in addition to 
blocking interconversion, it could be helpful to prevent the generation of new clones 
originated by stochastic genetic mutations. One of the hallmark of cancer cells is 
“avoidance of apoptosis” following, for instance, DNA damage[76]. In this context, 
drugs that promote apoptosis induced by DNA-damage such as PARP alone or in 
combination with ATR inhibitors[77,78], can potentially reduce the generation of new 
genetic clones.
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Figure 2 The stemness phenotype model and effect of treatment with sequential chemotherapy cycles (or steps) on tumor progression. 
According to the stemness phenotype model a complex heterogeneous tumor may contain at a certain time, different subpopulations growing in different 
microenvironments. Clonal proliferation of a single primordial cancer cell originates the original subpopulation (S1). During tumor growth the original subpopulation can 
interconvert (represented by red arrows) in other phenotypes originating all different subpopulations (S1-S6). M1-M6 represent different microenvironments. Since this 
model is bidirectional repeated cycles of chemotherapy can gradually deplete specific cell subpopulations, reducing the tumor size and eventually, if all cancer cells 
are eliminated, lead to a cure. This scenario (shown inside the grey box) can only occur if interconversion is prevented (e.g., when there is no gap between 
chemotherapy cycles). Any gap between cycles would allow by interconversion the regeneration of cells sensitive to the previous cycle and eventually, lead to tumor 
relapse.

CONCLUSION
During the last decade the SPM and similar alternative models of cancer biology have 
expanded our understanding of cancer biology and new therapeutic targets and 
biological processes have been identified. For instance, targeting key factors involved 
in the process of interconversion opens the opportunity to block the conversion of a 
non-CSCs phenotype into a CSC phenotype and thus reducing chemoresistance and 
tumor relapse. The SPM, initially proposed for gliomas in a conceptual review article 
in 2010[39] was quickly extrapolated to other types of tumors[43]. During the last ten 
years, extensive experimental evidence was published supporting the notion that 
microenvironmentally-driven interconversion between CSCs and non-CSCs is a key 
process leading to intratumoral heterogeneity, that in turn is responsible for chemores-
istance and tumor relapse. Additionally, key predictions of the SPM – the ability of 
any given cancer cell to reconstitute in vivo the complex intratumoral heterogeneity 
has been demonstrated experimentally in gliomas. The SPM has been demonstrated to 
be a useful working model of cancer biology that should be taken in consideration 
when developing new cancer treatment modalities. In addition, the SPM is a model of 
cancer biology (at the cellular level) that does not necessarily exclude key concepts 
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from other cancer models and therefore has the potential to integrate them into more 
complex tumoral (at the tissue level) models that can be experimentally tested for 
developing novel treatments.
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