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Abstract
AIM: To investigate hepcidin expression, interleukin-6 
(IL-6) production and iron levels in the rat colon in 
the presence of trinitrobenzene sulfonic acid (TNBS)-
induced colitis.

METHODS: In rats, we evaluated the severity of colitis 
induced by repeated TNBS administration using mac-
roscopic and microscopic scoring systems and myelo-
peroxidase activity measurements. The colonic levels of 
hepcidin, tumor necrosis factor alpha (TNF-α), IL-10 and 
IL-6 were measured by Enzyme-Linked Immunosorbent 
Assay, and hepcidin-25 expression and iron deposition 
were analyzed by immunohistochemistry and the Prus-

sian blue reaction, respectively. Stat-3 phosphorylation 
was assessed by Western blot analysis. Hematological 
parameters, iron and transferrin levels, and transferrin 
saturation were also measured. Additionally, the ability 
of iron, pathogen-derived molecules and IL-6 to induce 
hepcidin  expression in HT-29 cells was evaluated.

RESULTS: Repeated TNBS administration to rats re-
sulted in macroscopically and microscopically detect-
able colon lesions and elevated colonic myeloperoxi-
dase activity. Hepcidin-25 protein levels were increased 
in colonic surface epithelia in colitic rats (10.2 ± 4.0 
pg/mg protein vs  71.0 ± 8.4 pg/mg protein, P  < 0.01). 
Elevated IL-6 levels (8.2 ± 1.7 pg/mg protein vs  14.7 ± 
0.7 pg/mg protein, P  < 0.05), TNF-α levels (1.8 ± 1.2 
pg/mg protein vs  7.4 ± 2.1 pg/mg protein, P  < 0.05) 
and Stat-3 phosphorylation were also observed. Sys-
temic alterations in iron homeostasis, hepcidin levels 
and anemia were not detected in colitic rats. Iron de-
position in the colon was only observed during colitis. 
Hepcidin gene expression was increased in HT-29 cells 
after IL-6 and lipopolysaccharide [a toll-like receptor 4 
(TLR-4) ligand] treatment. Deferoxamine, ferric citrate 
and peptidoglycan (a TLR-2 ligand) were unable to al-
ter the in vitro  expression of hepcidin in HT-29 cells.

CONCLUSION: Colitis increased local hepcidin-25 ex-
pression, which was associated with the IL-6/Stat-3 sig-
naling pathway. An increase in local iron sequestration 
was also observed, but additional studies are needed to 
determine whether this sequestration is a defensive or 
pathological response to intestinal inflammation.
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Core tip: Hepcidin is an endogenous peptide with weak 
antimicrobial properties that regulates changes in iron 
metabolism during inflammation. However, infection-
associated cytokines, pathogen-derived molecules or 
whole pathogens can induce hepcidin synthesis as part 
of the host response to infection. This is the first study 
to describe that colitis induces hepcidin expression in 
colons associated with the interleukin-6/Stat-3 signal-
ing pathways and local iron sequestration. This finding 
suggests a host response to infection because reducing 
the iron available to pathogens is an important anti-
microbial mechanism. However, we could not exclude 
the possibility that hepcidin expression contributes to 
increased local inflammation by stimulating pro-inflam-
matory macrophages.
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INTRODUCTION
In addition to intestinal inflammation, Crohn’s disease 
(CD) and ulcerative colitis (UC) patients present with 
several extraintestinal symptoms, including systemic iron 
deficiency. Iron deficiency is the main cause of  anemia 
in inflammatory bowel disease (IBD) patients, which oc-
curs as result of  several factors, such as intestinal blood 
loss, absorptive deficiencies and/or undertreatment of  
anemia[1]. Anemia of  chronic disease (ACD), also known 
as anemia of  inflammation, is the second most common 
cause of  anemia in IBD patients; it frequently occurs 
with iron deficiency[2,3]. ACD is normally associated with 
low serum iron levels and low transferrin saturation. 
However, in this case, hypoferremia is a consequence of  
macrophage iron sequestration; therefore, the total body 
iron content may be increased[4].

Inflammatory cytokines produced during inflam-
mation, most notably interleukin-6 (IL-6), have been 
hypothesized to contribute to systemic iron deficiency 
through their effects on hepcidin synthesis[5]. Hepcidin 
is a 25-amino acid cysteine-rich peptide with weak an-
timicrobial properties that is regulated by a number of  
factors such as liver iron levels, inflammation, hypoxia 
and anemia. Hepcidin is mainly expressed and released by 
the liver in response to increased circulating iron levels, 
but hepcidin synthesis also occurs to a lesser degree in 
adipose tissue, the heart, placenta and kidneys. However, 
the functions of  hepcidin in these tissues are currently 
unknown[6]. Furthermore, hepcidin decreases intestinal 
iron absorption and blocks macrophage iron efflux, thus 
protecting the body against excessive iron levels[7].

Infection-associated cytokines, pathogen-derived mol-

ecules and whole pathogens can also induce hepcidin syn-
thesis as part of  the host response to infection because 
reducing available iron is an important antimicrobial 
mechanism[8]. Hepcidin has been proposed to be directly 
involved in IBD pathogenesis because in Hfe knockout 
mice, which have low hepcidin expression, the severity of  
lipopolysaccharide (LPS)- and Salmonella-induced entero-
colitis is attenuated[9]. On the other hand, antimicrobial 
peptides, such as hepcidin, are induced in response to gut 
microbe invasion during colonic inflammation and affect 
colitis progression[10,11]. Furthermore, hepcidin has been 
found to be expressed in human gastric parietal cells and 
colorectal cancer tissue[12,13], but no data are currently 
available regarding the expression of  hepcidin in the co-
lon during IBD.

Therefore, we investigated rat colonic hepcidin ex-
pression in trinitrobenzene sulfonic acid (TNBS)-induced 
colitis[14] and correlated hepcidin expression with local 
IL-6 production and iron levels. This experimental model 
included periods of  relapse and remission that resembled 
the colonic inflammation present in human IBD[14]. The 
ability of  HT-29 cells[15] to express hepcidin was also as-
sessed.

MATERIALS AND METHODS
Animals
Specific pathogen-free male Wistar rats (200-250 g, 6-8 
wk old) were obtained from CEMIB (State University of  
Campinas, Campinas, SP, Brazil). All experiments were 
performed in accordance with the principles outlined 
by the Brazilian College for Animal Experimentation 
and received approval from the Ethics Committee of  
São Francisco University, Bragança Paulista, SP, Brazil 
(Protocol 002.09.09). Rats were maintained in a room 
with controlled humidity and temperature in collective 
cages and were exposed to 12 h light-dark cycles. Twelve 
hours prior to experimental procedures, the animals were 
deprived of  food (standard chow) but not water. Each 
study used 5-7 rats per group.

TNBS-induced colitis
Animals were anesthetized with ketamine/xylazine (1:1, 
v/v), and colitis was induced by the intracolonic admin-
istration of  3 mg TNBS dissolved in 0.3 mL of  50% 
ethanol (Sigma, St. Louis, MO, United States). The solu-
tion was injected into the colon 8 cm proximal to the 
anus using a catheter. TNBS administration lasted only 
a few seconds, and the rats were maintained in a vertical 
position until they recovered from anesthesia. The same 
procedure was repeated 14 and 28 d after the first TNBS 
administration, and the rats were sacrificed on 35th day. 
Control rats received saline through the same route. An 
additional colitis induction protocol was performed, and 
the rats were evaluated 24 h after the first TNBS admin-
istration.

Serum and hematological parameters
Blood samples were collected from the rat vena cava un-
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der anesthesia (1:1, v/v of  xylazine 2%-ketamine 10%). 
Blood/ethylenediamine tetraacetic acid (EDTA) was used 
to analyze the hematological parameters (ABX Pentra 
120, Horiba Instruments Brazil, Jundiai, SP, Brazil), and 
serum samples were obtained from collected blood lack-
ing anticoagulant solution for the enzymatic assay (EIA) 
quantification of  transferrin (GenWay, San Diego, CA, 
United States) and hepcidin (USCN Life Science, Wuhan, 
China) levels. Iron levels and the iron binding capacity 
were also measured in serum samples using colorimetric 
commercial kits (Bioclin, Belo Horizonte, MG, Brazil).

Colitis characterization by macroscopic damage and 
myeloperoxidase activity 
Colons were immediately removed from the animals, 
opened lengthwise and evaluated for macroscopically vis-
ible damage by two observers who were blinded to the 
experimental groups. The criteria for macroscopic colonic 
damage were as follows: no damage (0 points), hyperemia 
without ulcers (1 point), linear ulcer with no significant 
inflammation (2 points), linear ulcer with inflammation 
at one site (3 points), two or more sites of  ulceration/in-
flammation (4 points), and two or more major sites of  
ulceration and inflammation or one site of  ulceration/in-
flammation extending 1 cm along the length of  the colon 
(5 points). If  the damage extended at least a 2 cm length 
of  colon tissue, the score was increased by 1 point for 
each additional centimeter of  involvement (6-10 points).

Lengthwise colon samples obtained from a site of  
macroscopically detectable inflammation (or a cor-
responding tissue site with no macroscopically detect-
able inflammation) were homogenized in 0.5% (w/v) 
hexadecyltrimethylammonium bromide in 50 mmol/L 
potassium phosphate buffer, pH 6.0. For the myeloper-
oxidase  assay, 50 µL of  each sample was added to 200 
µL of  o-dianisidine solution (0.167 mg/mL o-dianisidine 
dihydrochloride and 0.0005% hydrogen peroxide in 50 
mmol/L phosphate buffer, pH 6.0) immediately prior to 
measuring the absorbance at 460 nm over a 5-min period 
using a microplate reader (Multiscan MS, Labsystems).

Cytokine measurements and Western blot analysis
To measure cytokine concentrations by EIA, colon tissue 
samples were collected as described above, excised and 
immediately homogenized in solubilization buffer at 4 ℃ 
(1% Triton X-100, 100 mmol/L Tris-HCl, 100 mmol/L 
sodium pyrophosphate, 100 mmol/L sodium fluoride, 
10 mmol/L EDTA, 10 mmol/L sodium orthovanadate, 
2.0 mmol/L phenylmethylsulfonyl fluoride, and 0.1 mg/
mL aprotinin). The insoluble fraction was removed by 
centrifugation at 9000 g for 20 min at 4 ℃. The protein 
supernatant concentrations were determined using the 
Biuret method. Hepcidin, tumor necrosis factor alpha 
(TNF-α), IL-10 and IL-6 levels were quantified using 
commercial kits (hepcidin, USCN Life Science; TNF-α 
and IL-10, GE Healthcare, United Kingdom; and IL-6, R 
and D Systems, Minneapolis, MN, United States). Liver 
biopsies were also used for hepcidin quantification as de-

scribed above for colon samples.
For protein analysis by Western blot (WB) assay, 

supernatant aliquots were treated with Laemmli sample 
buffer containing 100 mmol/L dithiothreitol, and the 
samples were then heated in a boiling water bath for 5 
min. The samples were subjected to sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
in a Bio-Rad miniature slab gel apparatus (Mini-Protean). 
For WB experiments, 0.15 mg of  protein extracted from 
tissue samples was separated by SDS-PAGE, transferred 
to nitrocellulose membranes and blocked for 2 h with 5% 
blocking agent (GE Healthcare, United Kingdom) in Tris 
buffer solution. The membranes were then incubated 
overnight with anti-Stat-3 and anti-phospho-Stat-3 anti-
bodies (1:1000; Santa Cruz Biotechnology, CA, United 
States) and developed using a commercial chemilumines-
cent kit (GE Healthcare, United Kingdom). The band 
intensities were quantified by optical densitometry (Scion 
Image software, ScionCorp, Frederick, MD) from the de-
veloped autoradiography.

Immunohistochemistry, Prussian blue reaction and 
Microscopic damage assessments in the colon
Hydrated, 5.0 µm sections of  paraformaldehyde-fixed, 
paraffin-embedded colon tissue were used for immuno-
histochemistry (IHC) and the Prussian blue reaction. Sec-
tions stained with hematoxylin and eosin (HE) were used 
to microscopically score determination. IHC sections 
were probed with an anti-rabbit hepcidin-25 antibody 
(1:100; Abcam, Cambridge, MA, United States) and bio-
tinylated anti-rabbit secondary antibody, and developed 
with DAB (ImmunoCruz ABC Staining System, Santa 
Cruz Biotechnology, Santa Cruz, CA, United States). Ad-
ditionally, hematoxylin staining was used to reveal the 
nuclear morphology. For the Prussian blue reaction, slides 
were incubated with a 5% potassium ferrocyanide aque-
ous solution and a 5% hydrochloric acid aqueous solution. 
After washing in distilled water, sections were counter-
stained with Nuclear Fast Red. Microscopic tissue dam-
age was scored on a scale from 0 to 20 according to the 
criteria previously described by Rodríguez-Cabezas et al[16]. 
Six parameters were scored: neutrophil infiltration into the 
epithelium (0-2), lamina propria (0-2), submucosa (0-2), 
muscularis propria (0-2) and serosa (0-2); fibrin deposition 
into the mucosa (0-1) and submucosa (0-1); submucosa 
neutrophil margination (0-1); submucosal edema (0-2); 
epithelial necrosis (0-2); and epithelial ulceration (0-1).

In vitro hepcidin expression
HT-29 cells (Rio de Janeiro Cell Bank, RJ, Brazil) were 
incubated with 20 µmol/L ferric citrate (Sigma) for 72 
h, 30 mmol/L deferoxamine (Sigma) for 4 h, 40 ng/mL 
IL-6 (Peprotech, Rocky Hill, NJ, United States)[12], 1 
µg/mL of  the toll-like receptor 2 (TLR-2) ligand pep-
tidoglycan [peptidoglycan (PGN); Sigma] or 10 µg/mL 
of  the TLR-4 ligand lipopolysaccharide (LPS; Sigma) 
for 6 h[12]. Then, cells were harvested, and total RNA 
was isolated according to the manufacturer’s instruc-
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Colonic hepcidin and cytokine levels
In colon extracts, hepcidin levels were increased in colitic 
animals compared with control animals (Figure 1G), and 
hepcidin was predominantly expressed in the surface epi-
thelium of  colitic animals (Figure 1).

In the colon, hepcidin levels were correlated with in-
creased levels of  IL-6 and TNF-α and decreased levels of  
IL-10 (Table 1). In an additional group, rats were evaluated 
24 h after the first TNBS administration, and the level of  
IL-6 was significantly higher in the colitic group compared 
with the control group (9.1 ± 0.8 pg/mg protein and 39.8 
± 7.1 pg/mg protein for the control and colitis groups, 
respectively; P < 0.01, n = 5), but the hepcidin levels were 
not significantly different (11.8 ± 4.2 pg/mg protein and 
30.9 ± 11.8 pg/mg protein for the control and colitis 
groups, respectively; P = 0.22, n = 5).

Serum and liver hepcidin, iron and transferrin levels
The serum hepcidin levels were similar between the colitic 
and control rats, and the iron and transferrin levels and 
iron saturation were also unchanged (Table 3). Further-
more, the liver hepcidin levels were not modified by colitis 
(653 ± 27 pg/mg protein and 675 ± 27 pg/mg protein 
for the control and colitis groups, respectively, n = 4).

Colonic Stat-3 phosphorylation and iron levels
In colitic rats, Stat-3 phosphorylation was increased com-
pared to the controls (Figure 2). Iron deposition in the 
colons of  colitic animals was observed using the Prus-
sian blue reaction, and no reaction was evident in control 
colon tissues (Figure 3). In colitic rats, the observed blue 
precipitate was not localized to the surface or crypt epi-
thelium, which suggested that iron might have accumu-
lated in immune cells.

IL-6 and TLR-4 regulate HT-29 hepcidin expression
The human colon adenocarcinoma cell line HT-29 was 
used to model colonic hepcidin expression. Upon stimu-

tions (RNeasy Mini Kit; Qiagen Valencia, CA, United 
States). cDNA was synthesized with a High-capacity 
cDNA archive kit (Applied Biosystems, Foster City, CA, 
United States) according to the manufacturer’s proto-
col. Quantitative polymerase chain reaction and melting 
curve analyses were performed as previously described[17]. 
The primer sequences were as follows: hepcidin sense, 
5’-CAGGGCAGGTAGGTTCTACG-3’; hepcidin an-
tisense, 5’-CACTTCCCCATCTGCATTTT-3’; β-actin 
sense,  5’-ACACTGGCTCGTGTGACAAGG-3’; 
and β-actin antisense, 5’-CGGCTAATACACACTC-
CAAGGCG-3’.

Statistical analysis
All data are expressed as means ± SE. Non-parametric 
data (histological scores) are expressed as the median 
(range) and were analyzed using the Mann-Whitney 
test. Comparisons between groups were performed us-
ing the unpaired Student’s test. Statistical analyses were 
performed using GraphPad InStat (GraphPad Software, 
La Jolla, CA, United States). An associated probability (P 
value) of  less than 0.05 was considered significant.

RESULTS
Colitis and hematological assessments
Repeated intracolonic TNBS administration to Wistar 
rats resulted in macroscopic lesions characterized by 
hyperemia and small ulcers in the colon. In association 
with these observed macroscopic lesions, the colonic my-
eloperoxidase levels, a marker of  neutrophil infiltration, 
were increased (Table 1). Histological assessment of  co-
lon tissues revealed the presence of  ulcers and extensive 
neutrophil infiltration in the mucosa and submucosa. Se-
vere edema and, in some cases, transmural inflammation 
were observed. The median score of  the colitis group 
was elevated compared with the control group (Table 1). 
Additionally, colitis development corresponded with a 
low body weight at the end of  the experimental proto-
col (Table 1). The red blood cell count, hemoglobin and 
hematocrit levels in colitic rats were similar to the levels 
observed in control rats. Leukocytosis was observed in 
colitic rats (Table 2).

Control Colitis

  Damage score 0 (0-1) 5 (4-9)a

  Myeloperoxidase activity (U/g tissue)     2.2 ± 0.6    18.2 ± 4.8b

  Initial body weight (g) 299 ± 8 303 ± 3
  Final body weight (g) 405 ± 9  368 ± 4a

  Microscopic score 2 (0-3) 11 (6-14)a

  TNF-a (pg/mg protein)     1.8 ± 1.2      7.4 ± 2.1a

  IL-6 (pg/mg protein)     8.2 ± 1.7    14.7 ± 0.7a

  IL-10 (pg/mg protein)   23.5 ± 3.4    12.1 ± 1.7b

Table 1  Macroscopic evaluation, myeloperoxidase activity, 
body weight and cytokine production in colon tissues

Control Colitis

  Red blood cells (106/μL)   7.6 ± 0.2   8.1 ± 0.2
  Hemoglobin (g/dL) 15.2 ± 0.2 14.8 ± 0.1
  Hematocrit (%) 44.1 ± 0.3 43.7 ± 0.3
  White blood cells (cells/μL)   5.2 ± 0.7    8.8 ± 0.5b

Table 2  Hematological parameters in the control and colitis 
groups

Control Colitis

  Hepcidin (pg/mL) 241.9 ± 59.5 280.4 ± 65.8
  Transferrin (ng/mL) 18.0 ± 0.4 20.4 ± 1.5
  Iron (μg/dL) 69.0 ± 4.5   72.9 ± 10.0
  Transferrin saturation (%) 26.1 ± 2.4 25.5 ± 1.2

Table 3  Serum parameters in the control and colitis groups

bP < 0.01 compared with the control group (n = 5).

aP < 0.05 and bP < 0.01 compared with the control group (n = 5-7). TNF-a:
Tumor necrosis factor-alpha; IL: Interleukin.
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lation with IL-6 and LPS (a TLR-4 ligand), hepcidin ex-
pression significantly increased (Figure 4). Deferoxamine, 
ferric citrate and PGN (a TLR-2 ligand) were unable to 
modify hepcidin expression in these human colon cells 
(Figure 4).

DISCUSSION
Iron is an important factor in the competition for nutri-
tional resources between microbial pathogens and their 
hosts. In humans, host defense responses to infectious 
agents modulate local and systemic iron availability, inter-
fering with infections such as malaria and tuberculosis[8]. 
Hepcidin is the major regulator of  iron homeostasis in 
humans and other mammals. Increased iron levels and in-
nate immunity (most likely through Toll-like receptor acti-
vation/IL-6 induction) can induce hepcidin expression[8,18], 

Conversely, macrophages also produce hepcidin, and this 
autocrine production is related to the downregulation of  
ferroportin expression and iron sequestration in these 
cells[19]. Macrophage iron accumulation correlates with a 
more pro-inflammatory phenotype and consequent in-
creased cytokine release[20]. In this study, we used a well-es-
tablished experimental colitis model, induced by repeated 
TNBS administration, to examine hepcidin expression in 
the infected/inflamed colon. In this experimental model, 
moderate colonic inflammation and alterations in mesen-
teric adipose tissue are observed, simulating some aspects 
of  CD[14]. Although increased hepcidin expression has 
been described in adipose tissue in obese patients[21] and 
in subcutaneous adipose tissue during cardiac surgery[22], 
no alterations in hepcidin expression were observed in the 
mesenteric adipose tissue in our study (data not shown). 
We demonstrated that colonic hepcidin expression was 
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increased in experimental inflammation. Previously, in 
two experimental models of  the acute-phase response, 
increased hepcidin gene expression was observed in both 
the small intestine and colon[23]. Hepcidin immunoreac-
tivity in colorectal tissue and increased urinary hepcidin 
levels have also been described in cancer patients[13]. Here, 
the increased colonic hepcidin expression observed dur-
ing inflammation was associated with elevated levels of  
pro-inflammatory cytokines such as IL-6 and a significant 
increase in Stat-3 phosphorylation. Increased IL-6 levels 
were observed 24 h after the first TNBS administration, in 
the absence of  increased hepcidin levels, suggesting that 

pro-inflammatory cytokines may induce hepcidin expres-
sion. Our in vitro experiments demonstrating that IL-6 
induced hepcidin expression in HT-29 cells support this 
hypothesis. A direct activation of  TLR-4 but not TLR-2 
also induced hepcidin expression, suggesting that PAMPs 
and cytokines could stimulate colonic hepcidin expres-
sion. Several pro-inflammatory cytokines are candidates 
for this effect, but the most well-characterized is IL-6, 
which signals through the Jak/Stat-3 pathway[24]. Colonic 
hepcidin production did not alter serum or liver hepcidin, 
iron or transferrin levels. Additionally, our experimental 
rats were not anemic, suggesting a localized role for hep-
cidin in intestinal inflammation. In an initial report, low 
serum hepcidin-25 levels were found in IBD patients with 
or without iron deficiency anemia[25]. A subsequent report 
demonstrated that serum hepcidin-25 levels are increased 
in UC and CD patients compared with healthy control 
patients, and in UC patients, this increase was related to 
disease activity but not iron deficiency[26]. Furthermore, in 
a recent report, serum hepcidin-25 levels were implicated 
in the differential diagnosis of  IBD-associated anemia, 
but hepcidin-20 levels were independently regulated by 
inflammation[27]. Moreover, increased IL-6 and hepcidin 
serum levels were measured in CD patients with ACD[28], 
but no studies have examined colonic hepcidin expression 
in human IBD.

The main site of  dietary iron absorption in adults 
is the proximal small intestine, whereas the distal small 
intestine and colon are absorb only small amounts of  
iron[29]. Curiously, the Prussian blue reaction in the colons 
of  the control group did not reveal the presence of  iron, 
as observed in inflamed tissue. Hepcidin acts by trigger-
ing ferroportin internalization and degradation through a 
mechanism most likely involving ferroportin ubiquitina-
tion[30]. Ferroportin downregulation results in intracellular 
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iron accumulation and unavailable local or plasma iron. 
As previously discussed, local iron sequestration could 
participate in an antimicrobial response associated with 
intestinal inflammation, but we could not exclude the 
possibility that it contributes to increased local inflamma-
tion by recruiting macrophages with a pro-inflammatory 
phenotype. In the treatment of  iron deficiency anemia 
in patients with IBD, oral iron supplementation induced 
adverse gastrointestinal events that resulted in drug dis-
continuation in 20.8% of  patients[31]. A recent study also 
demonstrated that dietary iron intake was negatively asso-
ciated with quality of  life in mildly active IBD patients[32].

In conclusion, we are the first to demonstrate that co-
lonic inflammation can increase local hepcidin-25 expres-
sion in association with IL-6 production and Stat-3 acti-
vation. Although local iron deposition was also observed, 
additional studies are necessary to understand whether 
this observation constitutes a defensive or pathological 
response to intestinal inflammation.
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