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Abstract
BACKGROUND 
Traditional methods of developing predictive models in inflammatory bowel 
diseases (IBD) rely on using statistical regression approaches to deriving clinical 
scores such as the Crohn's disease (CD) activity index. However, traditional 
approaches are unable to take advantage of more complex data structures such as 
repeated measurements. Deep learning methods have the potential ability to 
automatically find and learn complex, hidden relationships between predictive 
markers and outcomes, but their application to clinical prediction in CD and IBD 
has not been explored previously.

AIM 
To determine and compare the utility of deep learning with conventional 
algorithms in predicting response to anti-tumor necrosis factor (anti-TNF) therapy 
in CD.

METHODS 
This was a retrospective single-center cohort study of all CD patients who 
commenced anti-TNF therapy (either adalimumab or infliximab) from January 1, 
2010 to December 31, 2015. Remission was defined as a C-reactive protein (CRP) < 
5 mg/L at 12 mo after anti-TNF commencement. Three supervised learning 
algorithms were compared: (1) A conventional statistical learning algorithm using 
multivariable logistic regression on baseline data only; (2) A deep learning 
algorithm using a feed-forward artificial neural network on baseline data only; 
and (3) A deep learning algorithm using a recurrent neural network on repeated 
data. Predictive performance was assessed using area under the receiver operator 
characteristic curve (AUC) after 10× repeated 5-fold cross-validation.
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RESULTS 
A total of 146 patients were included (median age 36 years, 48% male). 
Concomitant therapy at anti-TNF commencement included thiopurines (68%), 
methotrexate (18%), corticosteroids (44%) and aminosalicylates (33%). After 12 
mo, 64% had CRP < 5 mg/L. The conventional learning algorithm selected the 
following baseline variables for the predictive model: Complex disease behavior, 
albumin, monocytes, lymphocytes, mean corpuscular hemoglobin concentration 
and gamma-glutamyl transferase, and had a cross-validated AUC of 0.659, 95% 
confidence interval (CI): 0.562-0.756. A feed-forward artificial neural network 
using only baseline data demonstrated an AUC of 0.710 (95%CI: 0.622-0.799; P = 
0.25 vs conventional). A recurrent neural network using repeated biomarker 
measurements demonstrated significantly higher AUC compared to the conven-
tional algorithm (0.754, 95%CI: 0.674-0.834; P = 0.036).

CONCLUSION 
Deep learning methods are feasible and have the potential for stronger predictive 
performance compared to conventional model building methods when applied to 
predicting remission after anti-TNF therapy in CD.

Key Words: Machine learning; Artificial intelligence; Precision medicine; Personalized 
medicine; Deep learning

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Deep learning has vast potential, but its clinical utility in predicting outcomes 
in Crohn’s disease (CD) has not been explored. This study showed that deep learning 
algorithms (a recurrent neural network) using a more complex information structure 
including repeated biomarker measurements had a better predictive performance 
compared to a conventional statistical algorithm using only baseline data. This proof-
of-concept study therefore paves the way for further research in the use of deep 
learning methods in clinical prediction in CD.

Citation: Con D, van Langenberg DR, Vasudevan A. Deep learning vs conventional learning 
algorithms for clinical prediction in Crohn's disease: A proof-of-concept study. World J 
Gastroenterol 2021; 27(38): 6476-6488
URL: https://www.wjgnet.com/1007-9327/full/v27/i38/6476.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i38.6476

INTRODUCTION
Crohn's disease (CD) is a heterogeneous chronic inflammatory bowel disease (IBD) 
that is characterized by intermittent flares, medication changes, the potential need for 
surgery and substantial psychological morbidity[1,2]. As with many chronic 
conditions, predicting disease trajectory, outcomes and response to therapies in CD are 
key components of clinical practice where management is tailored to the individual
[3]. Precision medicine has been in part driven by the vast expansion of available 
electronic health data, genomic data and novel disease biomarkers[3]. However, 
deciphering the complex relationships between large amounts of information and 
multiple data types presents new analytical challenges.

Traditional approaches to constructing prediction models rely on multivariable 
regression approaches, typically logistic regression for classification or proportional 
hazards regression for longitudinal prediction[4]. The resulting predictive models are 
thus typically only linear combinations of the included predictors and may have 
limited ability to learn more complex relationships within the data. The advantage of 
machine learning and artificial intelligence over traditional predictive tools is the 
potential ability for computational algorithms to automatically find and learn complex, 
hidden relationships between predictive markers and outcomes[5,6]. This is especially 
true for deep learning or artificial neural network (ANN) methods, although their 
'black box' approach has been criticized for an inability to produce a causal 
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explanation between predictors and outcomes[6].
Despite some limitations, there is much interest in developing and testing machine 

learning and deep learning tools to aid decision making[5,7]. In luminal gastroen-
terology, machine learning is gaining traction but its use has been relatively limited to 
automatic image recognition in endoscopy[8-11] as well as feature selection in genomic 
and microbiomics data[12,13]. Although there has been great interest in predicting 
clinical outcomes in CD such as response to therapeutics including biologics[14-18] 
and immunomodulators[19,20], studies investigating the utility of machine learning 
models for such predictive tasks have been more limited[21-23]. In particular, the 
utility of deep learning or ANNs specifically in clinical prediction of CD remains 
unknown[7].

We aimed to evaluate the utility of deep learning algorithms compared with 
conventional statistical learning algorithms for clinical prediction in this proof-of-
concept study. In particular, we aimed to compare these algorithms as methods of 
learning and prediction in a general sense, rather than to develop any specific 
predictive model or score.

MATERIALS AND METHODS
Study design
This proof-of-concept study utilized a retrospective longitudinal cohort at a tertiary 
health network comprising three acute hospitals in Melbourne, Australia. The focus of 
the study was to compare the ability of two supervised learning algorithms (conven-
tional statistical learning vs deep learning) to predict remission after 12 mo of 
treatment using clinical variables and biomarkers available at baseline. The 
performance of each algorithm was evaluated using cross-validation. The emphasis of 
the study was to compare the predictive performance of the two methods of learning 
rather than any specific model itself. This study was approved by the Eastern Health 
Office of Research & Ethics (approval number: LR 61/2015).

Study cohort
All adult patients > 18 years with confirmed CD according to standard criteria[24] 
were included if they were commenced on treatment with an anti-tumor necrosis 
factor (anti-TNF) agent (adalimumab or infliximab) for luminal CD and received at 
least one dose of the drug between January 2010 and December 2015. Patients 
receiving anti-TNF for perianal disease without luminal disease were excluded. 
Patients were followed up for 12 mo to determine rates of biochemical remission.

Outcomes
Response to anti-TNF was defined as having achieved biochemical remission as per 
serum C-reactive protein (CRP) < 5 mg/L at 12 mo. This endpoint was chosen because 
CRP is an accepted biomarker to reflect disease activity and predict outcomes in CD
[25,26]. Additionally, normalization of CRP predicts better outcomes in CD patients in 
remission[27,28]. The first CRP measurement after 12 mo and before 18 mo was used. 
Patients who did not have a CRP measurement in this time period were excluded.

Data collection and pre-processing
Baseline characteristics were collected via hospital and clinic records, including 
Montreal classification, concomitant baseline therapies, prior anti-TNF exposure and 
prior surgeries. Biomarker data were collected at two time points: (1) A baseline 
measurement defined as the most proximate measurement prior to commencing anti-
TNF, up to 3 mo before commencement; and (2) A prior measurement defined as the 
second most proximate measurement, up to 12 mo before commencement. Only 
patients with complete baseline data were included, while missing prior values were 
imputed with the respective baseline value. The following variables were log-
transformed to correct skewness: serum bilirubin, alanine aminotransferase, alkaline 
phosphatase and gamma-glutamyl transferase (GGT). The data underlying this article 
cannot be shared publicly due to privacy and ethical concerns. The data will be shared 
upon reasonable request to the corresponding author.

Statistical learning algorithm (conventional approach)
The conventional approach to developing a predictive clinical model is to run 
univariable and multivariable regression analysis to find useful and preferably 
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independent predictors of the outcome of interest (see Figure 1). Criteria for variable 
selection usually involves significance testing (P values) or likelihood-based 
information criterion (such as the Akaike information criterion). In this study, logistic 
regression was used given the dichotomous nature of the outcome (CRP < 5 mg/L vs 
CRP ≥ 5 mg/L). The conventional approach typically only uses data from a single 
time-point, therefore we used baseline data only (the most proximate measurement for 
all biomarkers). For this conventional approach, we employed the following modelling 
algorithm: (1) Perform univariable logistic regression on each variable and retain all 
variables with P < 0.5; (2) Run backwards stepwise selection on all retained variables 
with removal criterion P > 0.2; and (3) Use the regression coefficients in the remaining 
multivariable model to derive the predictive score.

Deep learning algorithms (experimental approach)
A basic deep learning algorithm is a feed-forward ANN[6]. An ANN is composed of 
layers: an input layer (consisting of all the input predictor variables), an output layer 
(the prediction), and a number of 'hidden' layers (see Figure 1). Nodes within a hidden 
layer are called 'neurons'. The hidden layers allow an ANN to learn complex, non-
linear relationships between input variables and the outcome of interest. The influence 
of nodes in a layer on other nodes in subsequent layers is ‘trained’ or fitted using a 
mathematical function and ultimately determines how information is propagated 
through the ANN — this is analogous to fitting a regression line on data in conven-
tional statistics. An ANN with only an input and output layer, without hidden layers, 
can be analogous to simple logistic regression, although they are not equivalent.

However, like the conventional statistical algorithm, a basic feed-forward ANN is 
still only able to model relationships between predictors at a single time-point. A 
recurrent neural network (RNN) is a more advanced deep learning algorithm that is 
able to model repeated measurements over time. Like a feed-forward ANN, 
information is propagated from the input layer to the output layer. However, instead 
of only allowing the information to pass through once, information is fed to the RNN 
sequentially, or 'recurrently' — that is, each set of repeated measurements is inputted 
once at a time allowing the RNN to update its knowledge of the relationship between 
the predictors and the outcome. Therefore, the algorithm is additionally able to learn 
and utilize the dynamics of biomarkers over time, in a way that cannot be achieved by 
conventional statistical learning methods.

We tested the feed-forward ANN and the RNN in three separate experiments: (1) 
Using all baseline clinical data in a feed-forward ANN; (2) Using only baseline 
biomarker data in a feed-forward ANN; and (3) Using repeated biomarker data in an 
RNN. In this study after hyper-parameter tuning, we used a feed-forward ANN 
architecture of 3 hidden layers, each with 64 neurons, and an RNN architecture of 1 
hidden layer with 64 neurons.

Comparison of algorithms
The predictive performances of the conventional statistical algorithm and the experi-
mental deep learning algorithm (ANN) was defined as their ability to correctly classify 
12-mo CRP < 5 mg/L measured using the area under the receiver operator charac-
teristic curve (AUC). Because the learning ability of an ANN can be arbitrarily 
increased, an overly powerful ANN that is trained such that it has near-perfect 
prediction on the original training cohort, would suffer from poor predictive ability in 
an external cohort (this is called ‘over-fitting’, a well-known phenomenon). Similarly, 
the same conventional statistical learning algorithm might result in models with 
different variables when applied to different cohorts. Therefore, it is important to 
evaluate the ability of a learning algorithm to predict outcomes in patients that are not 
included in the original training cohort (external validity).

In the absence of external testing cohorts to assess external validity, cross-validation 
is an internal validation procedure that is suited to this purpose[4]. During cross-
validation, the cohort is randomly divided into k equally sized sub-cohorts, known as 
‘folds’ (where k is often 5 or 10 by convention). Then, one fold is set aside to be used to 
test the algorithm, after the algorithm is first trained on the remaining k-1 folds (see 
Figure 2). This allows the algorithms to be tested on patients that were not used during 
training. The process is then repeated for each fold (where each fold takes turns in 
being the test fold). The average AUC after repeating k times gives the cross-validated 
AUC. However, this procedure is not free from error, because the partitioning process 
may have randomly resulted in a better (or worse) than usual performance. Thus it is 
important to repeat the whole process a number of times, to reduce this error[29].
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Figure 1 Comparison of the predictive modelling process using two supervised learning algorithms. A: Conventional statistical learning; B: Deep 
learning.

Figure 2 Schematic diagram of k-fold cross validation procedure for k = 5. This method is considered more reliable than a random train-test split, 
which would be analogous to training only one model, instead of the average of k models. AUC: Area under the receiver operator characteristic curve.

For this study, we used 5-fold cross-validation repeated 10 times to estimate the 
generalizability of each algorithm on unseen data. Statistical comparison of the cross-
validated AUCs of each learning algorithm was made using the variance-corrected 
repeated k-fold t test instead of a conventional paired t test because of the 
independency violation from repeated partitioning of the same dataset[29]. For 
comparison, the naïve or apparent AUC of each model after training and testing on the 
same entire cohort was given, however this is non-informative. Sample size 
calculations were conducted only as a guide given the exploratory nature of the study 
and without prior similar studies on which to base AUC assumptions. The target 
sample size to detect a 10% difference in AUC with 80% power and 95% significance 
assuming an AUC variance of 10% was n = 157[30]. To instead detect a 15% difference 
in AUC under the same conditions, a sample size of n = 70 was required. The Python 
3.8.4 programming language with the open-source module PyTorch was used to create 
the deep learning algorithm. Stata/IC 16 (Texas, United States, 2020) was used to 
create the statistical learning algorithm.



Con D et al. Artificial intelligence learning in Crohn's disease

WJG https://www.wjgnet.com 6481 October 14, 2021 Volume 27 Issue 38

RESULTS
Baseline characteristics
A total of 146 CD patients were included (see Table 1). Their median age was 36 years 
[inter-quartile range (IQR) 25-50], 48% were male and median disease duration since 
diagnosis was 5 years (IQR 1-12). The anti-TNF commenced was infliximab in 58% and 
adalimumab in 42%. Concomitant therapy at anti-TNF commencement included 
thiopurines (68%), methotrexate (18%), corticosteroids (44%) and aminosalicylates 
(33%). Over a quarter of patients (28%) had prior intestinal surgery, while 15% had 
prior exposure to anti-TNF. After 12 mo, 94 (64%) patients were in biochemical 
remission (CRP < 5 mg/L).

Statistical learning algorithm
Univariable analysis: Baseline factors associated with biochemical remission at 12 mo 
on univariable testing included non-complex disease behavior (B1), higher albumin 
and mean corpuscular hemoglobin concentration (MCHC), and lower platelets, 
lymphocytes and monocytes (each P < 0.05; see Table 2), while lower neutrophil count 
was nearly significant (P = 0.06). There was no significant association with age, sex, 
disease location or baseline medical therapies (see Table 2).

Multivariable analysis: After backward stepwise selection, the following variables 
remained in the final multivariable model: Complex disease, baseline albumin, 
monocytes, lymphocytes, MCHC and GGT (see Table 2). The resulting prediction 
model was given by the following equation (coefficients correct to two significant 
figures): Score = 0.079 × (albumin, g/L) + 0.050 × (MCHC, mg/L) - 1.1 × (monocytes, 
109/L) - 0.43 × (lymphocytes, 109/L) - 1.0 × (complex disease, y=1|n=0) - 0.69 × loge

(GGT, IU/L).

Outcome prediction: After 10× 5-fold cross validation, the average AUC of the 
statistical learning algorithm was 0.659 [95% confidence interval (CI): 0.562-0.756]. This 
suggests the statistical learning algorithm is expected to accurately classify 65.9% of 
patients in external cohorts who have similar characteristics to the study cohort (see 
Table 3). The algorithm performed better than chance (AUC > 0.5) 94% of the time and 
had an AUC > 0.7 in 38% of occasions (see Figure 3). The apparent naïve AUC (when 
trained and tested on the same data) of the model was 0.771.

Deep learning algorithms
Feed-forward ANN with complete baseline data: The feed-forward ANN with 
complete baseline data had a cross-validated AUC of 0.710 (95%CI: 0.622-0.799) (see 
Figure 3 and Table 3). This difference was not statistically significant using the 
variance corrected t test (P = 0.25). The algorithm performed better than chance 100% 
of the time and had good performance (AUC > 0.7) 54% of the time (see Figure 3). For 
comparison, the naïve AUC of the model was 0.857.

Feed-forward ANN with baseline biomarker data only: The same feed-forward ANN 
using only baseline biomarker data had a similar cross-validated AUC of 0.706 (95%CI: 
0.621-0.791), which was again not significantly different compared to the conventional 
algorithm (P = 0.33) (see Table 3). The algorithm performed better than chance 100% of 
the time and had good performance (AUC > 0.7) 58% of the time (see Figure 3). The 
naïve AUC of the model was 0.776.

RNN with repeated biomarker data: The same feed-forward ANN using only baseline 
biomarker data had a similar cross-validated AUC of 0.754 (95%CI: 0.674-0.834), which 
was significantly higher than the AUC of the conventional algorithm (P = 0.036) (see 
Table 3). This suggests the RNN is expected to accurately classify 75.4% of patients in 
external cohorts who have similar characteristics to the study cohort. The RNN 
algorithm performed better than chance 100% of the time and had good performance 
(AUC > 0.7) 72% of the time (see Figure 3). For comparison, the naïve AUC of the 
model was 0.892.

DISCUSSION
The rapid expansion of available health data has motivated the development of 
machine learning and deep learning tools to predict useful outcomes in clinical 
medicine[5,6]. The advent of machine learning and data science techniques is 
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Table 1 Baseline characteristics of study cohort (n = 146)

Characteristic n (%)

Age, years, median (IQR) 36 (25-50)

Sex

Female 76 (52)

Male 70 (48)

Smoker (active) 33 (23)

CD behavior

B1: Non-stricturing, non-penetrating 75 (51)

B2: Stricturing 56 (38)

B3: Penetrating/fistulizing 15 (10)

CD location

L1: Ileal 41 (28)

L2: Colonic 43 (29)

L3: Ileocolonic 62 (42)

L4: Isolated UGI 0 (0)

Perianal involvement 20 (21)

Initial anti-TNF commenced

Infliximab 84 (58)

Adalimumab 62 (42)

Baseline thiopurine 99 (68)

Baseline methotrexate 27 (18)

Baseline corticosteroids 64 (44)

Baseline aminosalicylates 48 (33)

Prior anti-TNF 22 (15)

Prior intestinal surgery 41 (28)

Disease duration, yr, median (IQR) 5 (1-12)

Baseline investigations

CRP, mg/L, median (IQR) 3 (2-8)

Albumin, g/L, median (IQR) 37 (36-41)

IQR: Inter-quartile range; CD: Crohn's disease; CRP: C-reactive protein; TNF: Tumor necrosis factor; UGI: Upper gastrointestinal.

especially applicable to IBD due to the heterogeneity and chronic nature of such 
conditions and the repeated measures of disease activity over time which provides 
data that may be more suitable for complex modelling techniques. For instance, those 
with CD typically present with a wide array of disparate disease phenotypes and 
underlying pathogeneses, and their response to treatment and the trajectory of their 
disease course varies substantially and changes based on their response[31]. This 
study has exhibited the potential of deep learning algorithms in predicting response to 
anti-TNF therapy in patients with CD. The ability to predict the likelihood of response 
to a given treatment is crucial for risk-benefit assessment, which in turn is crucial to 
facilitate shared decision making between clinicians and patients[32]. Further, 
although biologic therapies have revolutionized management in IBD[31], medical 
therapy is now the principal driver of healthcare costs[33,34] and health economic 
considerations will inevitably affect treatment choice. Ideally, patients should receive 
therapies that are both likely to work and cost-effective. Therefore, there can be no 
‘one-size-fits-all’ strategy to management, and precision and personalized medicine 
are key objectives.
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Table 2 Estimated odds ratios with 95% confidence intervals on univariable and multivariable logistic regression analysis

Univariable Multivariable
Predictor

OR (95%CI) P value Adj. OR (95%CI) P value

Age, per year 0.98 (0.96-1.00) 0.10 - -

Male (vs female) 1.42 (0.72-2.82) 0.31 - -

CD behavior

B1 1.0 Not included

B2 0.45 (0.22-0.94) 0.034 Not included

B3 0.42 (0.13-1.29) 0.13 Not included

CD location

L1: ileal 1.0 Not included

L2: colonic 1.33 (0.54-3.31) 0.54 Not included

L3: ileocolonic 0.91 (0.40-2.06) 0.83 Not included

Ileal location (L1) 0.94 (0.45-2.00) 0.88 Not included

Complex disease (B2/B3) 0.44 (0.22-0.89) 0.021 0.36 (0.16-0.80) 0.012

Active smoker 0.76 (0.40-1.47) 0.42 - -

Perianal involvement 1.14 (0.49-2.65) 0.77 Not included

Anti-TNF type: infliximab (vs 
adalimumab)

1.12 (0.56-2.22) 0.75 Not included

Baseline immunomodulator 1.24 (0.47-3.27) 0.66 Not included

Baseline corticosteroids 1.10 (0.56-2.18) 0.78 Not included

Baseline aminosalicylates 1.16 (0.56-2.40) 0.69 Not included

Prior anti-TNF 0.96 (0.37-2.47) 0.94 Not included

Prior intestinal surgery 0.71 (0.34-1.48) 0.36 - -

Disease duration, per loge year 0.83 (0.65-1.06) 0.14 - -

Albumin, per g/L 1.12 (1.03-1.22) 0.006 1.08 (0.98-1.20) 0.12

Hemoglobin, per g/L 1.01 (0.99-1.04) 0.32 - -

HCT, per % 0.91 (0.71-1.16) 0.44 - -

RCC, per 109/L 1.07 (0.84-1.36) 0.60 Not included

MCV, per fL 1.01 (0.96-1.07) 0.64 Not included

MCH, per pg/cell 1.15 (0.99-1.32) 0.06 - -

MCHC, per mg/L 1.05 (1.02-1.08) 0.002 1.05 (1.02-1.09) 0.004

Platelets, per 100 × 109/L 0.63 (0.43-0.93) 0.020 - -

Neutrophils, per 109/L 0.91 (0.82-1.00) 0.06 - -

Lymphocytes, per 109/L 0.66 (0.46-0.93) 0.019 0.65 (0.41-1.02) 0.06

Monocytes, per 109/L 0.23 (0.08-0.63) 0.004 0.34 (0.10-1.16) 0.09

Eosinophils, per 109/L 0.61 (0.08-4.77) 0.64 Not included

Basophils, per 0.01 × 109/L 0.92 (0.80-1.06) 0.24 - -

Bilirubin, per loge µmol/L 1.38 (0.70-2.72) 0.36 - -

ALT, per loge IU/L 1.04 (0.60-1.80) 0.90 Not included

ALP, per loge IU/L 0.55 (0.18-1.64) 0.28 - -

GGT, per loge IU/L 0.71 (0.46-1.09) 0.12 0.69 (0.43-1.11) 0.13
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Variables excluded after univariable regression are in grey; variables excluded after stepwise selection are marked with a dash. CI: Confidence interval; 
OR: Odds ratio; CD: Crohn's disease; TNF: tumor necrosis factor; HCT: Hematocrit; RCC: Red cell count; MCV: Mean corpuscular volume; MCH: Mean 
corpuscular hemoglobin; MCHC: Mean corpuscular hemoglobin concentration; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; GGT: 
Gamma-glutamyl transferase.

Table 3 Comparison of learning algorithms during cross-validation experiments

AUC (%)
Algorithm Dataset1

Mean SD
P value2

Conventional statistics Baseline clinical + biomarker data 65.9 9.5 -

Feed-forward ANN Baseline clinical + biomarker data 71.0 8.7 0.25

Feed-forward ANN Baseline biomarker data only 70.6 8.3 0.33

Recurrent neural network Baseline and prior biomarker data 75.4 7.8 0.036

1Clinical data refers to non-biochemical data such as age, sex, disease characteristics and concurrent treatments. Biomarker data refers to complete blood 
count, liver function tests and albumin.
2P value for comparison against conventional statistical algorithm, using the variance-corrected repeated k-fold t test. AUC: Area under the receiver 
operator characteristic curve; ANN: Artificial neural network.

Figure 3 Distribution of area under the receiver operator characteristic curve after 10 × 5 fold cross validation. A: Conventional statistical 
learning algorithm (mean 0.659, SD 0.095); B: Recurrent neural network (mean 0.754, SD 0.078); C: Head-to-head comparison, matched at each fold and repetition 
(mean difference, + 0.095, P = 0.036). AUC: Area under the receiver operator characteristic curve.

Conventional statistical learning algorithms have generated many useful clinical 
scores, including the CD activity index[35], the simple endoscopic score for CD[36], 
scores to predict response to biologic therapies[16], and scores to differentiate CD from 
intestinal tuberculosis[37]. The advantage of conventional scores is often their 
simplicity and interpretability. A simple score can be memorized and calculated at the 
bed side and are intuitive as they utilize important risk factors of the outcome of 
interest. Yet clinical scores can only apply to a rather generic subgroup of patients and 
are never specific to any individual, as they utilize relatively few variables. Further, 
conventional methods are not readily able to model more complex, non-linear or time-
dependent health states. With new genomic and microbiomic profiling, as well as the 
rapid uptake of comprehensive electronic medical records with mass data linkage, the 
ability of conventional learning algorithms to select useful predictive factors may 
become redundant[38].

Although the advantages of deep learning for the analysis of non-numerical data 
types is obvious, such as image data in endoscopy[39-41] and text or speech data in 
natural language processing[42], the utility of deep learning for the analysis of 
numerical data is less clear but remains promising. A recent study has demonstrated 
the utility of machine learning in predicting anti-TNF response in rheumatoid arthritis, 
but relied on genetic markers in addition to clinical data[43]. Another recent study 
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used machine learning to predict whether patients with ankylosing spondylitis 
required anti-TNF therapy, but did not evaluate whether response to therapy could be 
predicted[44]. It is anticipated that new data science and machine learning techniques 
are required to handle large amounts of data for use in clinical practice, although the 
optimal algorithms for this task remain unknown. Nevertheless, with the provision of 
comprehensive training data, machine learning tools have the potential to aid in 
individualized risk prediction, although no such model exists in IBD currently. In our 
cohort, the RNN deep learning algorithm was able to outperform the conventional 
algorithm after incorporating repeated biomarker measurements and thus additionally 
learn the non-linear temporal dynamics of the respective biomarkers — a feat that is 
not possible with conventional prediction models. It is expected that with enough 
training data, deep learning methods such as the RNN will be able to incorporate the 
time series data from multiple repeated health states of an individual patient over 
time. The clear trade-off with deep learning methods is the need for more data 
coordination and software to execute. However, the continued uptake of automated 
medical records in routine clinical practice may mitigate this limitation in future. 
Further, with the ever increasing breadth and volume of information from sources 
including comprehensive previous medical history, serum and fecal biomarkers, 
imaging and endoscopic data as well as genetics, the role of machine learning in 
prediction in chronic diseases including IBD is likely to expand.

This study has also demonstrated the importance of applying model validation 
techniques during model development[29]. ANNs and other powerful algorithms 
have the ability to learn intricate differences in data, yet poorly specified models that 
focus only on learning power have the propensity to learn the random variations or 
artefacts in the data, which are present only due to chance. This is evidenced by the 
RNN in this study achieving excellent AUC during training, but a reduced AUC when 
tested on unseen data (naïve AUC 0.892; cross-validated AUC 0.754). The same 
phenomenon occurred with the statistical learning algorithm but to a somewhat lesser 
extent (naïve AUC 0.771; cross-validated AUC 0.659). Therefore, studies developing 
predictive models should take care to avoid naïvely assessing predictive performance 
and ensure that effective cross-validation or bootstrapping methods are used for 
appropriate interval validation[4]. If available, external validation of predictive models 
in entirely new and different cohorts is the gold standard for model validation[4].

The dataset used in this study was retrospective and from a single center which 
subjects the results to information bias and limits their external validity. The outcome 
used was biochemical remission as this is a readily available as a repeated measure 
which allowed demonstration of more conventional and machine learning models, 
however it is acknowledged that clinical symptoms and/or mucosal healing are more 
clinically relevant end-points. Nevertheless, the goal of this study was to demonstrate 
the feasibility of deep learning methods in clinical prediction in this proof-of-concept 
study, rather than to develop a specific predictive model. Further, in practice, much 
larger cohorts will be required to properly train and calibrate deep learning models to 
maximize their utility in the real world. In future, all studies investigating specific 
predictive models should be subject to prospective controlled validation prior their 
application in clinical practice, specifically having shown that outcomes are improved 
after using predictive models to guide management.

CONCLUSION
In conclusion, we have demonstrated the feasibility of deep learning algorithms for 
clinical prediction in CD, which demonstrated an improved predictive performance 
compared to conventional methods. However, conventional statistical methods retain 
the advantage of simplicity and intuitiveness, allowing their use at the bedside. Yet 
with the rapid expansion of available health data, machine learning models have the 
potential to supersede currently conventional methods and greatly improve the 
development of tools for the clinical prediction of patient outcomes.

ARTICLE HIGHLIGHTS
Research background
Machine learning and artificial intelligence have the potential to revolutionize 
precision care in inflammatory bowel diseases. The greatest area of interest has been 
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the application of deep learning methods in automatic tumor detection during 
endoscopy, yet the application of such techniques in clinical outcome prediction has 
been lacking.

Research motivation
Traditional approaches to clinical prediction rely on conventional statistical algorithms 
such as regression, which are not suitable for more complex data such as repeated 
biomarker measurements.

Research objectives
To determine and compare the utility of deep learning with conventional algorithms in 
predicting response to anti-tumor necrosis factor (anti-TNF) therapy in Crohn's disease 
(CD).

Research methods
A retrospective cohort of CD patients commenced on anti-TNF therapy was used to 
experimentally develop and cross-validate three supervised learning algorithms: (1) 
Statistical learning algorithm; (2) Feed-forward artificial neural network; and (3) 
Recurrent neural network with repeated data. Predictive utility was quantified using 
the area under the receiver operator characteristic curve (AUC).

Research results
Within our cohort of 146 patients, the conventional statistical learning algorithm had 
the weakest performance [AUC 0.659, 95% confidence interval (CI): 0.562-0.756], 
compared to the feed-forward artificial neural network (AUC 0.710, 95%CI: 0.622-
0.799; P = 0.25 vs conventional) and the recurrent neural network using repeated 
biomarker measurements (AUC 0.754, 95%CI: 0.674-0.834; P = 0.036 vs conventional).

Research conclusions
Deep learning methods are feasible and have the potential for stronger predictive 
performance compared to conventional model building methods when applied to 
predicting remission after anti-TNF therapy in CD.

Research perspectives
This has been the first study to investigate the utility of deep neural networks in 
predicting clinical outcomes using repeated clinical data in inflammatory bowel 
disease. Future studies should incorporate additional data types such as genetic, 
imaging and endoscopic factors.
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