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Abstract
The transforming growth factor (TGF)-β signaling pathway controls many cellular 
processes, including proliferation, differentiation, and apoptosis. Abnormalities in 
the TGF-β signaling pathway and its components are closely related to the 
occurrence of many human diseases, including cancer. Mothers against deca-
pentaplegic homolog 4 (Smad4), also known as deleted in pancreatic cancer locus 
4, is a typical tumor suppressor candidate gene locating at q21.1 of human 
chromosome 18 and the common mediator of the TGF-β/Smad and bone morpho-
genetic protein/Smad signaling pathways. It is believed that Smad4 inactivation 
correlates with the development of tumors and stem cell fate decisions. Smad4 
also interacts with cytokines, miRNAs, and other signaling pathways, jointly 
regulating cell behavior. However, the regulatory function of Smad4 in tumori-
genesis, stem cells, and drug resistance is currently controversial. In addition, 
Smad4 represents an attractive therapeutic target for cancer. Elucidating the 
specific role of Smad4 is important for understanding the mechanism of tumori-
genesis and cancer treatment. Here, we review the identification and character-
ization of Smad4, the canonical TGF-β/Smad pathway, as well as the multiple 
roles of Smad4 in tumorigenesis, stem cells, and drug resistance. Furthermore, we 
provide novel insights into the prospects of Smad4-targeted cancer therapy and 
the challenges that it will face in the future.
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Core Tip: Mothers against decapentaplegic homolog 4 (Smad4) is regarded as a tumor 
suppressor. Recent studies have shown that Smad4 plays a tumor-promoting role in 
specific types of cancer, rather than a tumor-suppressing role. Smad4 also correlates 
with the stem cells fate and drug resistance of cancer cells. Elucidating the specific role 
of Smad4 is of positive guiding significance for understanding the mechanism of 
tumorigenesis and cancer treatment. In this review, we focus on the multiple roles of 
Smad4 in tumorigenesis, stem cells, and drug resistance, and provide novel insights 
into the prospect of Smad4 in combination therapy.

Citation: Dai CJ, Cao YT, Huang F, Wang YG. Multiple roles of mothers against 
decapentaplegic homolog 4 in tumorigenesis, stem cells, drug resistance, and cancer therapy. 
World J Stem Cells 2022; 14(1): 41-53
URL: https://www.wjgnet.com/1948-0210/full/v14/i1/41.htm
DOI: https://dx.doi.org/10.4252/wjsc.v14.i1.41

INTRODUCTION
The transforming growth factor (TGF)-β signaling pathway controls several cell 
behaviors, including proliferation, inflammation, differentiation, and apoptosis[1,2]. 
Abnormalities of the TGF-β signaling pathway and its components are related to many 
human diseases such as fibrosis[3], immune diseases[4], and cancer[5]. Although TGF-
β signals are mainly transmitted to the nucleus through the TGF-β/mothers against 
decapentaplegic homolog (Smad) signaling pathway[6], TGF-β superfamily ligands 
often interact with other signaling pathways, including JNK/p38, PI3K/AKT, 
ERK/MAPK, and integrin signaling pathways, regulating various cellular responses in 
a non-Smad-dependent manner[7-9]. The function of TGF-β in tumorigenesis is 
frequently described as a double-edged sword, but the precise mechanism for this 
phenomenon is still unclear[5,10,11]. In addition, TGF-β plays a role in the deve-
lopment of cardiac[12] and kidney[3] fibrosis and interacts with integrins to mediate 
asthmatic remodeling of the airway[13]. Moreover, TGF-β exerts an immuno-
suppressive function[14]. In recent years, studies on TGF-β have been focused on 
elucidating the regulation and effects of its upstream and downstream components on 
various diseases, as well as the interaction between different factors and TGF-β[10,15,
16]. Understanding of these processes may improve the diagnosis and treatment of 
these diseases in the future.

Cancer has become a major threat to human health worldwide. In 2020 alone, 19.3 
million new cases were diagnosed, and nearly 10 million people died of cancer[17]. 
Unfortunately, our current understanding of the mechanism of tumorigenesis is not 
enough to completely overcome cancer[18]. Smad4, a key component of the canonical 
TGF-β signaling pathway, exhibits varying degrees of inactivation among cancers[19], 
and its expression is significantly correlated with tumor development and prognosis in 
cancer patients[20,21]. Therefore, Smad4 is potently regarded as a tumor suppressor. 
Moreover, considering the critical role of Smad4 in tumor progression, Smad4 can be 
an attractive target for cancer treatment[22]. Additional novel options for cancer 
therapy were revealed by demonstrating that many RNAs directly/indirectly 
targeting Smad4, including miRNAs, circular (circ) RNAs, and long noncoding (lnc) 
RNAs, are dysregulated during cancer progression[23-25]. In the past decade, it has 
been found that Smad4 seems to play a tumor-promoting role in certain types of 
cancer, such as hepatocellular carcinoma[26,27]. In addition, an increasing number of 
studies demonstrated a close association of Smad4 with stem cell fate[28] and drug 
resistance of cancer cells[29]. Elucidating the specific role of Smad4 is important for 
understanding the mechanism of tumorigenesis and cancer treatment. Here, we 
review the identification and characteristics of Smad4, and the canonical TGF-β 
signaling pathway, and summarize the multiple regulatory functions of Smad4 in 
tumorigenesis, stem cell fate, and drug resistance. In addition, we provide new 
insights into the prospects of Smad4-targeting cancer therapy and its challenges in the 
future.

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
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IDENTIFICATION AND CHARACTERISTICS OF SMAD4
Smad4, also known as deleted in pancreatic cancer locus 4 (DPC4), was initially found 
as a tumor suppressor candidate gene in human pancreatic carcinoma in 1996[30]. The 
term “Smad” was a combination of the sma gene of Caenorhabditis elegans and the mad 
gene of Drosophila melanogaster[31]. Subsequently, Smad4 mutations were found in 
additional types of tumors, such as gastrointestinal carcinoid[32], prostate cancer[33], 
squamous cell carcinoma[34], and lung cancer[35]. The gene coding for Smad4 is 
located at human chromosome locus 18q21.1 (Figure 1A) and is composed of 12 exons 
and 10 introns[36]. The 12th exon was named exon 0 because it was discovered after the 
identification of 11 exons and is located upstream of exon 1[32].

Smad4 protein consists of 552 amino acids and has a molecular weight of 60 kDa
[36]. It is composed of the N-terminal mad homology domain 1 (MH1), the middle 
linker region including nuclear export signal and Smad activation domain (SAD), as 
well as the C-terminal MH2[37]. The MH1 domain of Smad4 is involved in DNA 
binding by recognizing the Smad-binding site of DNA. The SAD of the linker region 
and MH2 domain are responsible for transcriptional activity. Additionally, the MH2 
domain interacts with the MH1 domain of other Smads, enabling the transduction of 
various signaling pathways, including the TGF-β signaling (Figure 1B).

TGF-β/SMAD AND BMP/SMAD SIGNALING PATHWAYS
The canonical TGF-β signaling pathway is an uncomplicated linear cascade, which 
involves TGF-β superfamily ligands, receptors, and signal transducers (Figure 2)[38]. 
At present, there are 33 known TGF-β ligands encoded by mammalian genomes, 
including activin, nodal, TGF-βs, bone morphogenetic proteins (BMPs), and growth 
differentiation factors (GDFs)[39,40]. According to the difference in structure and 
function, these polypeptides can be subdivided into two families: TGF-βs (TGF-β, 
GDF, nodal, and activin) and BMPs (BMP2, BMP4, and BMP7). The TGF-β type I and 
type II receptors (TβRI and TβRII) are composed of several pairs of serine/threonine 
protein kinases[41,42].

The eight known Smads are divided into three categories, including a common 
Smad (Co-Smad, Smad4), two inhibitory Smads (I-Smads, Smad6, and Smad7), and 
receptor-regulated Smads (R-Smads, Smad2/3 transducing TGF-β signaling, and 
Smad1/5/8 transducing BMP signaling). Co-Smad and Smad4/DPC4 bind to R-
Smads, forming two different complexes, Smad4/Smad2/3 and Smad4/Smad1/5/8. 
Subsequently, the heteromeric complexes are translocated into the nucleus, where they 
interact with transcriptional factors and bind to regulatory elements of target genes, 
affecting their expression[43]. Smad6 and Smad7 can both inhibit the transcriptional 
activity of target genes, thus blocking TGF-β signal transmission. It must be empha-
sized that Smad6 acts in a manner that is not always consistent with that of Smad7[44,
45].

MULTIPLE ROLES OF SMAD4 IN TUMORIGENESIS
Due to the multiple interactions of environmental chemicals, genes, and endogenous 
signals, the process of carcinogenesis is extremely complex[46]. As a tumor suppressor 
gene, Smad4 exerts its inhibitory effect on tumor cells primarily via the canonical TGF-β 
signaling pathway[47,48]. The mechanism of this inhibition, which prevents carcino-
genesis, involves the role of Smad4 in inhibiting the tumor-promoting activity of 
proinflammatory cytokines, inducing the cell cycle arrest, and promoting apoptosis 
through activating the TGF-β/BMP/Smad4 axis. However, once the Smad4 gene is 
mutated, TGF-β cannot induce G1 or G2 cell cycle arrest and switch from tumor 
suppressor to tumor promoter, leading to tumor growth and metastasis[10,49]. In 
addition, Smad4 is indispensable for the tumor suppressor function of TGF-β[50]. So 
far, there are many contradictory results and conclusions about the role of Smad4 in 
tumorigenesis. Here, we focus on pancreatic cancer and hepatocellular carcinoma 
(HCC) to discuss the role of Smad4 in cancer progression (Figure 3).

It is recognized that Smad4 acts as a tumor suppressor in pancreatic cancer. Smad4 
mutation or deletion is found in > 50% of pancreatic cancer and is associated with the 
proliferation and metastasis of tumor cells[51,52]. The alterations in the Smad4 gene 
mainly include deletion, frameshift mutation, point mutation, amplification, and 
translocation[19,22]. Furthermore, Smad4 gene mutation is associated with stages of 
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Figure 1 Structure and features of mothers against decapentaplegic homolog 4. A: Location of the mothers against decapentaplegic homolog 4 (
Smad4) gene. Smad4 is located at q21.1 of human chromosome 18; B: Structural diagram of Smad4 protein. Smad4 protein consists of three domains: Mad 
homology domain 1 (MH1) at the N-terminal, MH2 at the C-terminal, and the linker region connecting MH1 and MH2. Functionally, MH1 is responsible for binding to 
the Smad-binding site, and MH2 is indispensable for transforming growth factor-β transcriptional activity. The middle linker is rich in regulatory sites controlling various 
signaling pathways and kinases and is essential for the regulation of transcriptional activity. MH1: Mad homology domain 1; MH2: Mad homology domain 2; NES: 
Nuclear export signal; SAD: Smad activation domain; Smad4: Mothers against decapentaplegic homolog 4.

pancreatic cancer. A study by Notta et al[53] showed that the inactivation rate of 
Smad4 in mid-advanced pancreatic cancer was higher than it in early pancreatic 
cancer. Therefore, Smad4 dysfunction may be considered an advanced event in 
pancreatic cancer. Mechanically, the behavior that Smad4 deletion accelerates the 
progression of pancreatic cancer may be related to the increased expression of HNF4G, 
PAR-4, and PGK-1[51,54,55]. Additionally, Smad4 mutation in mice does not directly 
contribute to the formation of pancreatic tumors[56], indicating that a single Smad4 
mutation is not sufficient to initiate pancreatic carcinogenesis. Thus, mutations in 
Smad4 are likely to cooperate with mutations in other genes in promoting pancreatic 
cancer progression. For example, Izeradjene et al[57] revealed that the formation of 
mucinous cystic neoplasms is induced by synergistic effects of Kras-G12D and Smad4 
mutations. The role of Smad4 in other human cancers, such as colorectal cancer (CRC)
[58], gastric cancer[59], ovarian cancer[60] and head and neck squamous cell 
carcinoma (HNSCC)[61], is similar to that in pancreatic cancer. Downregulation of 
Smad4 is considered an early event of HNSCC, which is different from pancreatic 
cancer.

An interesting fact regarding HCC is that the role of Smad4 in HCC differs 
significantly from that in cancers mentioned above. The nuclear level of Smad4 in liver 
cancer tissue is markedly higher than that in the adjacent noncancerous tissue[26]. The 
ability of liver cancer cells to form colonies and migrate was significantly reduced after 
Smad4 gene knockout in mouse models. Yuan et al[62] showed that ubiquitin-specific 
proteases promote HCC cell migration and invasion by deubiquitinating and 
stabilizing Smad4 protein. These findings seem to indicate that Smad4 plays a tumor-
promoting rather than tumor-suppressing role in HCC. However, the underlying 
mechanism of Smad4 in the pathogenesis of HCC remains elusive. We propose that 
this difference may be explained by the fact that the cellular behaviors of the TGF-β
/Smad4 signaling pathway varies with types of cells, their extracellular matrix, TGF-β 
concentration, and tumor microenvironment. These possibilities warrant further 
investigation. It is certain that Smad4 plays multiple regulatory roles in carcinogenesis, 
and whether it has a tumor-promoting or tumor-suppressing function may depend on 
the microenvironment of tumor cells and surrounding stromal cells.

SMAD4 IN STEM CELLS
Besides tumorigenesis, Smad4 is involved in the self-renewal and pluripotency of 
human stem cells. It has been reported that several miRNAs targeting Smad4 
negatively regulate the differentiation of human mesenchymal stem cells (hMSCs)[63,
64], but the underlying mechanisms of stem cell differentiation are poorly understood. 
The Smad4/TAZ axis might be involved in this process. TAZ protein, a transcriptional 
coactivator with PDZ-binding motif, can bind to Smad4 protein and translocate to the 
nucleus, where it enhances the expression of osteogenic genes, promoting the 
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Figure 2 Transforming growth factor-β/mothers against decapentaplegic homolog 4 and bone morphogenetic protein/mothers against 
decapentaplegic homolog signaling pathways. Activated transforming growth factor-β (TGF-β) ligands or bone morphogenetic protein ligands bind to type II 
receptor (TβRII) on the cell membrane and recruit type I receptors (TβRI), forming receptor complexes (TβRI and TβRII). Phosphorylated receptor complexes 
phosphorylate mothers against decapentaplegic homolog (Smad)2/3 and Smad1/5/8 (R-Smads). Smad4 (Co-Smad) binds with R-Smads to form two different 
complexes (Smad4/Smad2/3 and Smad4/Smad1/5/8). The heteromeric complexes are translocated to the nucleus, where they regulate the expression of specific 
genes. Smad6 and Smad7 (I-Smads), which are typically located in the nucleus, can enter the cytoplasm upon activation and regulate the transcriptional activity of 
the TGF-β signaling pathway. Smad6 mainly competes with R-Smads for binding Smad4 to inhibit transcriptional activity, while Smad7 inhibits transcriptional activity 
mostly by preventing the phosphorylation of R-Smads. BMP: Bone morphogenetic protein; TFs: Transcription factors; Smad1-8: Mothers against decapentaplegic 
homolog 1-8; TGF-β: Transforming growth factor-β.

osteogenic differentiation of hMSCs[65]. These findings suggest that Smad4 is essential 
for stem cell differentiation. However, Avery et al[28] demonstrated that human 
embryonic stem cells (hESCs) remain undifferentiated after Smad4 gene knockdown, 
indicating that the single event of Smad4 inactivation does not induce stem cell differ-
entiation. Similarly, Smad4 inactivation does not directly induce self-renewal of stem 
cells. For instance, Smad4 mutation has no effect on hESC self-renewal but is essential 
for their differentiation into cardiac mesodermal precursors[66].

BMP signaling is also indispensable for regulation of the proliferation of stem cells 
and maintenance of metabolic homeostasis[67]. BMP binds with leukemia inhibitory 
factor to maintain the self-renewal of ESCs[68]. Subsequent studies have documented 
that stem cell fate decisions induced by BMP may be related to Smad4. The 
BMP/Smad axis regulates the proliferation and differentiation of alveolar stem cells. 
BMP suppresses proliferation of alveolar type 2 epithelial cells (AT2s), while ant-
agonists promoted the self-renewal of AT2s at the expense of differentiation[67]. BMP 
restricts the self-renewal of intestinal Lgr5+ stem cells by Smad4-mediated transcrip-
tional repression and thus prevents excessive proliferation of epithelial cells[69]. 
Therefore, the inactivation of Smad4 may counteract the inhibitory effect of BMP on 
stem cell proliferation, contributing in this manner to the occurrence of cancer cells.

Cancer stem cells (CSCs) have many characteristics similar to stem cells. However, 
in contrast to stem cells, they exhibit tumorigenicity and invasiveness[70]. The gradual 
accumulation of genetic mutations in stem cells during the life of the organism is 
associated with the development of cancer[71], and results in tumor heterogeneity[72]. 
Therefore, elucidating the relationship between Smad4 and CSC fate may provide a 
clinical diagnostic index or potential therapeutic target for cancer. Xia et al[73] found 
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Figure 3 Different roles of mothers against decapentaplegic homolog 4 in the development of hepatocellular carcinoma and pancreatic 
cancer. A: The role of Smad4 in liver carcinogenesis. During the development of hepatocellular carcinoma, the transcriptional activity of mothers against 
decapentaplegic homolog 4 (Smad4) is abnormally increased, and in combination with gene mutations, alcohol, pathogen infection, as well as other carcinogenic 
factors, contributes to the loss of cell cycle control, suppression of DNA damage repair, increased proliferation, and decreased apoptosis. These factors result in a 
higher metastatic ability of cancer cells and poor patient prognosis; B: The role of Smad4 in pancreatic carcinogenesis. During pancreatic cancer progression, the 
deletion or mutation of Smad4 leads to loss of Smad4 activity. The absence of Smad4 function, together with other carcinogenic factors such as gene mutations and 
pancreatic tissue injury, results in the loss of cell cycle control, suppression of DNA damage repair, increased proliferation, and decreased apoptosis. These factors 
result in a higher metastatic ability of cancer cells and poor patient prognosis. Smad4: Mothers against decapentaplegic homolog 4.

that cyclin D1 interacts with Smad2/3 and Smad4, activating the cyclin D1/Smad 
pathway and upregulating the expression of stemness genes in liver CSCs. This result 
implies that the use of Smad inhibitors may be an effective strategy for targeting liver 
CSCs. Wen et al[74] showed that blocking the TGF-β/Smad/EMT pathway inhibited 
the self-renewal and metastasis of ovarian CSCs. In another study[75], Smad4 muta-
tion was introduced into organoids derived from intestinal epithelium through the 
CRISPR-Cas9 system. Upon injection of these organoids into the spleen of mice, they 
formed micrometastases containing invading tumor cells, but they could not colonize 
the liver, suggesting that Smad4 mutation must be combined with additional factors to 
promote tumor invasion.

SMAD4 IN DRUG RESISTANCE
Drug resistance is the main cause of chemotherapy failure and tumor recurrence in 
cancer patients[76]. Drug resistance has been shown to be related to the activation of 
autophagy[77], a highly conserved catabolic process in which large cellular structures 
are degraded. Autophagy contributes to cell survival by recycling constituents of 
cellular structures[78]. Activation of autophagy not only mediates the resistance to 
chemotherapy but also induces autophagy-mediated cell death, which helps to 
eliminate tumor cells[52,79]. For instance, autophagy protects breast cancer cells from 
epirubicin-induced apoptosis and promotes the development of epirubicin resistance
[80]. Peptidylarginine deiminase IV, a protein involved in many pathological 
processes, induces the resistance of HCC to chemotherapy by activating autophagy
[81]. Autophagy may promote the development of multidrug resistance. Fortunately, 
inducing autophagy-mediated cell death can help overcome the resistance to 
chemotherapy, and there are many clinically available drugs that can regulate 
autophagy, such as chloroquine or hydroxychloroquine[82]. These autophagy regu-
lators inhibit autophagy mainly by reducing autolysosome fusion[83]. In addition, 
TGF-β activates autophagy activation by both Smad and non-Smad pathways, 
promoting the survival of cancer cells[84,85]. Thus, Smad4 plays an indispensable role 
in TGF-β-induced autophagy and drug resistance (Figure 4).
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Figure 4 Role of mothers against decapentaplegic homolog 4 in autophagy and drug resistance induced by transforming growth factor-β. 
In cancer cells with decreased or absent expression of mothers against decapentaplegic homolog 4 (Smad4) (Smad4-negative cancer cells), Smad4 mutation 
combined with other autophagy inducing factors (autophagy inducers) activates autophagy via the transforming growth factor-β signaling pathway, so that cancer 
cells can obtain nutrition through autophagy, develop resistance to chemotherapy, and show enhanced proliferation, metastasis, and stemness. Smad4: Mothers 
against decapentaplegic homolog 4; TGF-β: Transforming growth factor-β.

Smad4 inactivation not only involves the development of drug resistance in cancer 
but also contributes to the crosstalk between TGF-β and other signaling pathways, 
accelerating this process. Zhang et al[86] demonstrated that Smad4 deletion induces 
the resistance of colon cancer cells to 5-fluorouracil (5-FU)-based therapy by activating 
the AKT pathway. Moreover, Smad4 deficiency inhibits 5-FU-mediated apoptosis[87]. 
Besides, the inactivation of Smad4 makes tumors resistant to other chemotherapeutic 
drugs. Smad4 mutation contributes to platinum resistance in non-small cell lung 
carcinoma[35] and to cetuximab resistance in HNSCC[29]. Targeting the rapamycin-
insensitive companion of mTOR, a component of mammalian target of rapamycin 
complex 2, increases the sensitivity of Smad4-negative colon cancer to irinotecan[88]. 
Recent studies have demonstrated that Smad4 deficiency correlates with the 
development of resistance to chemotherapy and radiotherapy[89]. Therefore, Smad4 
modifications may be a critical marker predicting the resistance of tumor cells to 
chemoradiation therapy[90]. In our view, elucidating the specific role of Smad4 in 
resistance of tumors to drugs and developing rational therapeutic applications of 
autophagy will help to improve the outcomes of treatment of drug-resistant tumors.

SMAD4 IN CANCER THERAPY
Given the key role of Smad4 in tumorigenesis, Smad4 is expected to be an attractive 
therapeutic target for tumors resistant to radiotherapy and chemotherapy. Many 
miRNAs, such as miR-224[91], miR-34a[92], and miR-205[93], are essential regulators 
of TGF-β-induced tumor suppression by affecting the TGF-β/Smad signaling pathway. 
Therefore, Smad4-targeting miRNAs may become novel therapeutic agents for cancer 
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treatment. Other RNAs, including circRNAs[94] and lncRNAs[95], regulate the level of 
Smad4 protein by targeting Smad4-targeting miRNAs directly or indirectly. Proteins, 
such as ALK[96] and tripartite motif 47[97] that promote, respectively, Smad4 
phosphorylation and ubiquitination, diminish the tumor suppressor effect of Smad4, 
indicating that suppressor molecules or enzymes that inhibit Smad4 activity may be a 
new option for the treatment of Smad4-negative cancers.

Many inhibitors targeting the TGF-β signaling pathway are being developed 
clinically[98]. Molecules such as TGF-β antibodies, antisense oligonucleotides, and 
small molecule inhibitors of TGF-β receptor kinase activity show immense clinical 
potential[99]. Although inhibition of the TGF-β signaling pathway is one of the 
strategies for cancer treatment, the clinical outcomes of targeting TGF-β signaling and 
its superfamily members are not satisfactory, suggesting that single target-based 
therapies are not sufficient to inhibit tumors[10].

Combination therapy is an increasingly important part of anticancer therapies, and 
has more advantages than single-drug therapy[100-102]. The combination of Smad4 
targeting and traditional/nontraditional therapies may become a novel choice for 
anticancer treatment. Mariathasan et al[103] showed that the combined application of 
TGF-β inhibitors together with anti-PD-L1 antibodies decreased the TGF-β level and 
promoted the infiltration of T-cells into tumor cells, thereby enhancing antitumor 
immune response and leading to tumor apoptosis. Kassardjian and Wang[104] found 
that Smad4-positive tumors had a better response to neoadjuvant therapy, and the 
lymph node metastasis rate of Smad4-positive tumors was significantly lower, 
suggesting that Smad4 plays an important role in neoadjuvant therapy. In our 
previous research[105], we combined oncolytic virus therapy and targeted gene 
therapy to design a new oncolytic adenovirus CD55-Smad4, which can stably produce 
Smad4 protein in vitro and in vivo. CD55-Smad4 significantly inhibited proliferation, 
metastasis, and stemness of CRC cells. All these show that the combination therapy 
targeting Smad4 has clinical potential. Therefore, we believe that combination of 
Smad4-targeted therapy with traditional therapies of surgery, radiotherapy, and 
chemotherapy, and with emerging treatments such as PD-LI inhibitors, chimeric 
antigen receptor cell therapy, as well as our targeting gene virotherapy will sig-
nificantly improve the outcomes of anticancer therapies.

CONCLUSION
Targeting abnormal signal transduction or abnormal metabolic pathway has always 
been the focus of anticancer research. Smad4 gene mutations and its abnormal 
expression have been confirmed to dysregulate the TGF-β signaling pathway, 
transforming its function from a tumor suppressor to a tumor promoter[106]. This 
signaling disorder accelerates tumor progression, but the precise mechanism by which 
Smad4 affects tumor development remains unclear. An increasing number of studies 
have shown that targeting oncogenic miRNAs, circRNAs, and other RNAs can inhibit 
TGF-β-induced tumorigenesis by directly or indirectly acting on Smad4, increasing 
susceptibility of tumors to chemoradiation and improving the survival rate of cancer 
patients. Although the possibility of regulating tumor progression by these RNAs 
shows clinical potential, the underlying mechanisms are poorly understood.

Fortunately, the vigorous development of genome editing technologies such as 
CRISPR-Cas9 systems and AAV gene vectors has enabled the transformation of 
Smad4-targeted therapies into clinical reality[107,108]. Furthermore, it is asserted that 
the presence of Smad4 protein promotes the cell-to-cell spread of the vaccinia virus, 
which enables combining Smad4 gene therapy with oncolytic virus therapy to 
effectively eliminate tumors[109]. In summary, although the specific mechanisms by 
which Smad4 affects carcinogenesis, metastasis, drug resistance, and other malignant 
features of tumors have not been completely clarified, Smad4-targeted therapies 
coupled with traditional therapies and emerging anticancer treatments have achieved 
good antitumor effects in animal models. Smad4 combination therapy shows potential 
for future clinical applications.
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