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Abstract
Protein kinase Cδ (PKCδ) is a member of the PKC family, and its implications 
have been reported in various biological and cancerous processes, including cell 
proliferation, cell death, tumor suppression, and tumor progression. In liver 
cancer cells, accumulating reports show the bi-functional regulation of PKCδ in 
cell death and survival. PKCδ function is defined by various factors, such as 
phosphorylation, catalytic domain cleavage, and subcellular localization. PKCδ 
has multiple intracellular distribution patterns, ranging from the cytosol to the 
nucleus. We recently found a unique extracellular localization of PKCδ in liver 
cancer and its growth factor-like function in liver cancer cells. In this review, we 
first discuss the structural features of PKCδ and then focus on the functional 
diversity of PKCδ based on its subcellular localization, such as the nucleus, cell 
surface, and extracellular space. These findings improve our knowledge of PKCδ 
involvement in the progression of liver cancer.

Key Words: Protein kinase Cδ; Liver cancer; Subcellular localization; Tumor suppression; 
Tumor progression
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Core Tip: Protein kinase Cδ (PKCδ) plays multifunctional roles in various cancers, 
including liver cancer. PKCδ has been shown to exert pleiotropic functions through 
various stimuli responsiveness, post-translational modifications, and subcellular 
localization. Recently, we found that PKCδ is secreted extracellularly and resides on 
the cell surface of liver cancer cells, which contributes to tumorigenesis. In this review, 
we focus on the localization of PKCδ to discuss its characteristic localization patterns 
and functions in liver cancer, and outline the involvement of PKCδ localized intra- and 
extracellularly with distinct functions in the progression of liver cancer.
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INTRODUCTION
The protein kinase C (PKC) family of serine/threonine kinase proteins in mammals, 
comprising the classical PKC (cPKC), novel PKC (nPKC), and atypical PKC (aPKC) 
subfamilies, is one of the defining families of AGC kinases[1,2]. To date, 10 isoforms of 
PKC have been identified in humans, including four cPKCs (PKCα, -βI, -βII, and -γ), 
four nPKCs (PKCδ, -ε, -η, and -θ), and two aPKCs (PKCζ and -λ/ι)[2,3]. PKC activation 
depends on the conformational activation of certain intracellular factors. Notably, PCK 
activation is regulated not only by binding to lipid factors, such as diacylglycerol 
(DAG) and phorbol esters, but also by protein phosphorylation[4]. PKCδ is often 
phosphorylated at several Tyr residues by various types of stimulations, including 
DNA-damaging reagents and oxidative stress[5,6]. Kinases that phosphorylate PKCδ 
at Tyr include the Src family of tyrosine kinases (e.g., Src, Fyn, Lyn, and Lck) and c-Abl
[6].

Among PKC families, PKCδ is a unique non-signal peptide-containing intracellular 
protein that has been reported to translocate to a diverse range of distributions, 
including the cytosol, nucleus, endoplasmic reticulum, Golgi, mitochondria, and 
plasma membrane, in response to different stimuli and cell types[8]. For example, a 
nuclear localization signal (NLS) was identified in the catalytic domain of PKCδ, 
which is necessary for the transport of PKCδ across the nuclear pore. Nuclear 
localization of PKCδ is associated with pro-apoptotic functions. Phosphorylation also 
affects the subcellular localization of PKCδ and its activation. Our recent study 
revealed that cytosolic PKCδ translocates to the extracellular space and acts as a 
growth factor for liver cancer cells or tumors[9]. In this review, we summarize studies 
reported to date regarding the intracellular function of PKCδ in cancerous phenotypes 
of liver cancer. We then focus on and discuss the relationship with subcellular localiz-
ations, which exist in extracellular and intracellular locations, and the functions of 
PKCδ. Increased knowledge on where PKCδ protein is localized and how it functions 
in living cells allows a more profound understanding of the functional diversity of 
PKCδ.

STRUCTURAL FEATURES OF PKCδ
PKCδ comprises an N-terminal regulatory domain and a C-terminal kinase core 
domain[5]. The C-terminal catalytic domain of PKC is conserved between isoforms 
and includes ATP- and substrate-binding sites and a kinase core[10,11]. The N-
terminal regulatory domain is much less conserved and contains specific motifs for 
each isoform that are activated in response to unique signals. The regulatory modules 
in this N-terminal domain include the pseudosubstrate motif and C1 and C2 domains, 
which bind to Ca2+ and DAG. The affinity of the C1 and C2 domains for Ca2+ and DAG 
determines the cofactor requirements for the activation of specific PKC isoforms. 
cPKCs have functional C1 and C2 domains that bind to both Ca2+ and DAG[12-14], 
whereas nPKCs have a functional C1 domain that binds to DAG alone and a non-
functional C2 domain, rendering these kinases independent of Ca2+ for activation[15].

Generally, upon PKC activation, growth factors and G protein-coupled receptors 
trigger the hydrolysis of membrane lipids by recruiting phospholipase C[16,17]. 
Phospholipase C generates DAG and inositol-1,4,5-triphosphate through the 
hydrolysis of membrane phosphoinositol. In response to DAG, PKC is translocated to 
the lipid membrane via the C1 domain, enabling interaction with its substrates and the 
phosphorylation response[18].

PKCδ confers distinct allosteric regulation via protein binding to the C1, C2, and V5 
domains, tyrosine phosphorylation, and the removal of the regulatory domain by 
caspase cleavage (Figure 1). In particular, various reports have identified that a variety 
of tyrosine phosphorylation sites affect cellular functions. For example, many studies 
have demonstrated that tyrosine phosphorylation of PKCδ plays a critical role in cell 
death in response to apoptotic stimuli. Tyrosine residues important in the context of 
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Figure 1 Schematic representation of protein kinase Cδ domains. The N-terminal regulatory domain is composed of 1 to 329 amino acids, non-
functional C2, pseudosubstrate, and lipid binding C1 (a and b) domains. The C-terminal catalytic domain is composed of 330 to 676 amino acids, ATP-binding C3, 
and kinase C4 domains. The 329 amino acids at the V3 region allow the cleavage site by caspase-3 to be constitutively active. The V5 region includes nuclear 
localization signal necessary for the nuclear transport of protein kinase Cδ. NLS: Nuclear localization signal.

apoptosis include Tyr64, Tyr155, Tyr187, Tyr311, Tyr332, and Tyr512[18-20]. Furt-
hermore, tyrosine phosphorylation of Tyr64 (C2 domain) and Tyr155 (C1a domain) is 
crucial for the exposure of PKCδ to NLS by disrupting the association between C2 and 
catalytic domains to enable nuclear transport.

FUNCTIONAL FEATURES OF INTRACELLULAR PKCδ IN LIVER CANCER
Tumor suppressive function
Studies on PKCδ-/- mice have confirmed the pro-apoptotic role of this molecule in 
response to several stimuli, such as DNA damage. Although these mice developed 
normally and were fertile, increased B cell proliferation was observed[21]. Smooth 
muscle cells derived from PKCδ-/- mouse aortas were also shown to be resistant to cell 
death in response to several stimuli. Hence, these studies with PKCδ-/- mice dem-
onstrated that PKCδ is not required for cell proliferation during development.

PKC also binds to and is activated by tumor-promoting phorbol esters[4]. Therefore, 
PKC is considered a tumor-promoting protein. However, it has been reported that 
persistent treatment with phorbol esters causes degradation or downregulation of PKC
[3,22-24]. In particular, PKCδ has been reported to enhance ubiquitin proteasomal 
degradation upon activation of PKCδ by lipids. Furthermore, accumulating evidence 
on PKCδ in cancer has shown that downregulation, rather than activation, of PKCδ is 
associated with tumor progression. Therefore, PKCδ is believed to act as a tumor 
suppressor because its downregulation facilitates tumor promotion and causes cell 
cycle arrest or induces apoptosis in response to various stimuli, such as H2O2, 
ceramide, tumor necrosis factor-α (TNF-α), ultraviolet radiation, cisplatin, and 
etoposide[22,25-27]. In fact, the PKCδ gene is deleted in many cancers[28]. Ectopic 
expression of PKCδ has been shown to decrease the anchorage-independent growth of 
NIH3T3 cells and reverse the transformation of rat fibroblasts and colonic epithelial 
cells by Src. Low levels of PKCδ have been reported in colon cancer, and overex-
pression of PKCδ suppresses the neoplastic phenotype of colon cancer cells[25]. A 
recent report suggested that PKCδ is lost in human squamous cell carcinoma due to 
transcriptional repression[29]. PKCδ has also been reported to decrease cell migration 
in breast cancer cells, whereas knockout of the PKCδ gene increases cell migration in 
mouse embryonic fibroblasts. These studies strongly support the role of PKCδ in 
tumor suppression.

Multiple reports suggest that PKCδ is responsible for apoptotic signaling in liver 
cancer cells (Table 1). In sorafenib-resistant hepatocellular carcinoma (HCC) cells, 
PKCδ activation was shown to induce cellular apoptosis via p38 activation[30]. 
Annexin A3 (ANXA3) interacts with PKCδ and thereafter suppresses PKCδ/p38-
associated apoptosis and activates autophagy for cell survival. Thus, inhibition of 
ANXA3 by a monoclonal antibody is likely to impair cell survival and tumor growth. 
Although FTY720, a synthetic sphingosine immunosuppressor, has been known to 
have antitumor effects on HCC cells, PKCδ activation occurs in FYT720-treated HCC 
cells. FTY720 is thought to activate PKCδ via the generation of reactive oxygen species 
(ROS) and subsequent caspase 3-dependent cleavage to induce apoptosis. The 
relationship between intracellular activation of PKCδ and apoptosis in HCC cells has 
also been reported in the antitumor mechanism of an antagonist of FZD7, which is a 
membrane receptor overexpressed in HCC[31]. These lines of evidence suggest that 
PKCδ activation is not favorable for malignant transformation in liver cancer and may 
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Table 1 The relationship between subcellular localizations and functions of protein kinase Cδ in liver cancer

Response Localization Function Mechanisms Ref.

ANXA3 
expression

Cytosol/plasma membrane Interacts with PKCδ and inhibits 
apoptosis

p38MAPK activation [30]

ROS Nucleus Activates PKCδ and induces apoptosis Activates caspase 3 and induces cleavage of PKCδ [31]

Claudin-1 Cytosol/plasma membrane Enhances the ability of cell 
migration/invasion

Induces c-Abl-PKCδ signaling [33]

mtROS Plasma membrane Induces gene expression for cell 
migration 

Triggers oxidation of HSP60 and then induces 
MAPK activation

[34]

HIF-2α expression Cytosol/plasma membrane Induces cell migration Phosphorylates PKCδ at Tyr311 [35]

HSP27 expression Cytosol/plasma membrane Inversely correlates with tumor 
malignancy

p38MAPK activation by PKCδ induces 
phosphorylation of HSP27

[36]

No response Extracellular space/cell 
surface

Enhances cell proliferation Activates MAPK signaling [9]

mtROS: Mitochondrial reactive oxygen species; ANXA3: Annexin A3; PKCδ: Protein kinase Cδ; MAPK: Mitogen-activated protein kinase; HIF: Hypoxia-
inducible factor; HSP: Heat shock protein.

be inactivated in these cells.

Tumor promotive function
Many studies have shown that PKCδ promotes the survival of multiple types of 
cancers, including non-small cell lung cancer, breast cancer, pancreatic cancer, chronic 
lymphocytic leukemia, and liver cancer.

PKCδ has been reported to induce signal survival. In fact, PKCδ promotes cell 
survival via several well-known pro-survival pathways, including NF-κB, Akt, and 
extracellular signal-regulated kinase (ERK). It has been reported that PKCδ inhibits 
apoptosis by inhibiting apoptosis protein-2 and FLICE-like inhibitory protein via NF-
κB[32].

Numerous publications have reported that PKCδ is actively involved in the 
promotion of liver cancer, including cell migration, invasion, and tumor stage 
(Table 1). For example, claudin-1, a member of the tetraspanin family, plays a critical 
role in the acquisition of invasive capacity in human liver cells, and c-Abl-PKCδ 
signaling is important for malignant progression induced by claudin-1[33]. This c-Abl-
PKCδ signaling pathway was shown to activate MMP-2, a key factor in cell migration 
and invasion. The cross talk between PKC and ROS may induce mitogen-activated 
protein kinase (MAPK) activation for cell migration and progression. Mandal et al[34] 
found that activation of PKCδ generated mitochondrial ROS triggers the oxidation of 
heat shock protein 60 (HSP60), a chaperone protein in the mitochondria, which 
induces the activation of ERK and c-Jun N-terminal kinase (JNK) in the cytosol, 
resulting in gene expression leading to migration in liver cancer. PKCδ and hypoxia 
have also been reported to be associated with cell migration in liver cancer. Hypoxia-
inducible factor-2α expression regulates CUB domain-containing protein 1, which 
stimulates the phosphorylation of PKCδ at Tyr311 to induce malignant migration in 
various cancer cells, such as liver cancer cells[35]. Furthermore, the levels of HSP27 are 
inversely correlated with tumor stage, as per the tumor, node and metastasis classi-
fication, in patients with HCC. Takai et al[36] showed that PKCδ activation regulates 
the phosphorylation of HSP27 via p38 MAPK.

There is supportive evidence that PKCδ acts as a tumor promoter in many types of 
cancers. For example, the mRNA levels of PKCδ were higher in estrogen receptor 
(ER)-positive tumors than in ER-negative tumors, and an increase in PKCδ mRNA was 
associated with reduced overall survival[37]. PKCδ knockdown decreased the survival 
of MCF-7 and MDA-MB-231 breast cancer cells[38]. Overexpression of PKCδ was also 
observed in human ductal pancreatic carcinomas compared to its normal counterparts. 
PKCδ has been reported to be associated with melanoma cell metastasis[39]. A recent 
study demonstrated that integrin αvβ3-mediated invasion of melanoma cells is 
mediated via PKCα and PKCδ.
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SUBCELLULAR LOCALIZATIONS AND FUNCTIONS OF PKCδ
Cytosol and plasma membrane
PKCδ is translated on the ribosome in the cytosol and generates its inactive cytosolic 
form. Similar to other PKC families, in response to DAG, PKCδ is also translocated to 
the plasma membrane via the C1 domain, which exerts a subsequent phosphorylation 
response. PKCδ activation is also required for Akt activation by Ras[40] (1-98). 
Activating mutations with Ras or PI3K increases PKCδ levels and induces Akt 
activation. PKCδ also induces ERK1/2 activation[41,42]. Akt and ERK1/2 activation 
have been implicated in the PKCδ-mediated increase in anchorage-independent 
growth and resistance of pancreatic ductal cancer cells to apoptotic stimuli[43]. 
Conversely, cytosolic PKCδ reportedly triggers apoptosis by activating p38 MAPK to 
inhibit Akt[8], indicating that PKCδ activation can behave as both a prosurvival and 
pro-apoptotic factor. Liver damage has been reported to induce inflammation and 
PKCδ translocation to the plasma membrane[44,45]. PKCδ activation has been 
observed in the tissues of patients with non-alcoholic steatohepatitis and non-alcoholic 
fatty liver disease and in a mouse model of hepatic cirrhosis[46-49].

Nucleus
Importantly, PKCδ is a PKC isoform that has been identified as a substrate for caspase-
3[50]. Cleavage of PKCδ by caspase-3 separates the regulatory domain and catalytic 
fragment to allow constitutive activation of PKCδ even in the absence of any co-factors
[22] and then translocates to the nucleus, where the catalytic fragment of PKCδ 
induces apoptosis[22]. Others and we have shown that full-length or fragmented 
PKCδ is translocated to the nucleus by transiting the nuclear pore[6,51]. Nuclear PKCδ 
interacts with and phosphorylates its substrates such as α-Abl, p53, p73, lamin B, Rad9, 
topoisomerase II, heterogeneous nuclear ribonucleoprotein K (hnRNP-K), and DNA-
dependent protein kinase[22,52-54]. Moreover, nuclear PKCδ regulates the tran-
scription of target genes in response to cellular stresses such as DNA damage, which is 
implicated in pro-apoptotic functions.

Upon oxidative stress, we previously showed that PKCδ associates with and 
activates IKKα in the nucleus[55]. Although IKKα activates NF-κB by phosphorylating 
IκB in the cytoplasm, which leads to prosurvival signaling, PKCδ-mediated IKKα 
activation at the nucleus causes phosphorylation of p53 at Ser20; however, it does not 
affect NF-κB activation.

The tumor suppressor p53 is a master regulator of cellular processes, such as cell 
cycle arrest, DNA repair, or apoptosis[56,57]. Several studies have suggested that p53 
is located downstream of PKCδ. In response to genotoxic stress, PKCδ phosphorylates 
p53 at Ser46 to trigger p53-mediated apoptosis.

In the nucleus, PKCδ also regulates p53 expression by increasing p53 transcription. 
We previously reported that PKCδ interacts with the death-promoting transcription 
factor Btf to induce Btf-mediated p53 gene transcription and apoptosis[58]. In addition, 
TNF-α treatment induces translocation of PKCδ into the nucleus[59]. PKCδ can bind to 
the NF-κB RelA subunit and subsequently induce the transactivation of p65/RelA[59]. 
These findings demonstrate that NF-κB is involved in PKCδ-mediated TNF/TNF-
related apoptosis-inducing ligand (TRAIL) resistance. PKCδ inhibition or knockdown 
decreased NF-κB expression and sensitized MCF7 cells to TNF/TRAIL-induced cell 
death[60].

Mitochondria
Bax and Bak are pro-apoptotic factors, and the Bcl-2 family regulates mitochondrial 
membrane permeability to induce apoptosis[61]. Upon exposure to ionizing radiation, 
Bax and Bak are activated via the c-Abl-PKCδ-p38 pathway to trigger mitochondrial 
cell death[30,62]. Mcl-1, an anti-apoptotic Bcl-2 family member, is a direct target of 
PKCδ. The catalytic fragment of PKCδ phosphorylates Mcl-1 and degrades it, leading 
to cell death. During the early stages of hypoxic stress, PKCδ induces autophagy via 
JNK-mediated phosphorylation of Bcl-2 to dissociate the Bcl-2/beclin-1 complex, and 
prolonged hypoxic stress induces PKCδ cleavage[63].

Cell surface
We recently showed that PKCδ is localized at the cell surface of liver cancer cell lines 
(Figure 2). Cell surface PKCδ was found to be anchored by other cell surface proteins, 
such as heparan sulfate proteoglycans (HSPGs). Some growth factors, such as 
fibroblast growth factors, vascular endothelial growth factor, and hepatocyte growth 
factor[64,65] have cationic amino acid clusters that can interact with heparan sulfate, 
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Figure 2 Extracellular protein kinase Cδ shows oncogenic property in liver cancer. Model of the proliferative regulation of extracellular protein kinase 
Cδ (PKCδ) in liver cancer cells. PKCδ is secreted from living cells and resides at the plasma membrane through its association with glypican 3, leading to an increase 
in insulin-like growth factor 1 receptor activation and enhancement of subsequent proliferative signaling to increase cell growth. PKCδ: Protein kinase Cδ; GPC3: 
Glypican 3; ERK: Extracellular signal-regulated kinase; IGF1R: Insulin-like growth factor 1 receptor.

which is composed of one or more unbranched anionic polysaccharide(s) known as 
glycosaminoglycans[65-67]. The cationic amino acid clusters closely resemble the NLS 
of intracellular proteins[68]. In fact, extracellular NLS-containing proteins, such as 
importin α1, huRNP-K, and PKCδ are detected at the cell surface of human cells[9,69,
70]. These extracellular NLS-containing proteins are more likely to be located at the 
cell surface by binding to HSPGs.

Furthermore, glypican3, a liver cancer-specific HSPG, was identified as a receptor 
for cell surface PKCδ[71]. Both Cheng et al[72,73] and we showed that GPC3 regulates 
the activation of insulin-like growth factor 1 receptor (IGF1R)[9]. In fact, we found that 
extracellular PKCδ induces activation of IGF1R via association with GPC3 and its 
downstream signaling molecules, such as ERK1/2 and STAT3. Thus, these lines of 
evidence strongly suggest that cell surface PKCδ acts as a growth factor. In addition, 
we showed that anti-PKCδ monoclonal antibody (mAb) inhibits the proliferation and 
tumorigenesis of liver cancer cells, but not PKCδ-CRISPR knockout cells. Thus, cell 
surface PKCδ may be a potential therapeutic target for liver cancer.

Extracellular space
We also found that PKCδ is secreted into the extracellular space in liver cancer[9]. 
Extracellular accumulation of PKCδ was detected in different liver cancer cell lines but 
not in hepatocytes, suggesting that PKCδ secretion may be specific to liver cancer cells. 
Interestingly, our proteomics study showed that PKC, rather than PKCδ, was not 
detected in the culture medium of liver cancer cell lines. This means that PKCδ is a 
unique isoform of the PKC superfamily that is secreted extracellularly. Furthermore, 
higher levels of PKCδ were detected in the serum of patients with liver cancer, but not 
in patients with chronic hepatitis, hepatic cirrhosis, or healthy donors. This increase in 
serum PKCδ levels was also noted in a limited number of AFP- and PIVKA-II-negative 
liver cancer patients. Based on these clinical data, we propose that serum PKCδ may 
be a novel biomarker for liver cancer.

Recently, we and other groups have reported the extracellular localization of 
proteins with no signal peptide-containing proteins, such as FGF1, FGF2, HMGB1, 
hnRNP-K, importin α1, and IL-1β[69,70,74-77]. Secretion of these proteins is referred to 
as unconventional secretion[74,78]. Since the PKCδ gene does not encode a signal 
peptide, the extracellular secretion of PKCδ is also categorized as unconventional 
secretion. PKCδ has been shown to be full-length in the extracellular space and 
continues to be released from growing cells[9]. Many studies have reported that IL-1β 
secretion often occurs in immune cells after induction of inflammatory stimulation[77,
79,80]. There are some differences in the secretion modes between immune and cancer 
cells. Unlike immune cells (IL-1β), liver cancer cells constitutively secrete importin α1 
and PKCδ even under physiological culture conditions (using 10% FBS medium)[9,
69]. Conversely, some features were common between immune and liver cells, 
including the induction of unconventional secretion by ATP treatment[81] and 
independent of brefeldin A, an inhibitor in the “conventional” secretion pathway of 
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Figure 3 Multi-localization and functional diversity of protein kinase Cδ. Protein kinase Cδ (PKCδ) resides at various locations, including the cytosol, 
nucleus, estrogen receptor (ER), mitochondria, Golgi, extracellular space, and plasma membrane (inside and outside the cell). At each location, PKCδ acts as an 
apoptotic or survival factor in response to various stimuli, such as genotoxic stresses, phorbol ester, DNA damage, ER stress, tumor necrosis factor (TNF)-α, and 
TNF-related apoptosis-inducing ligand. PKCδ: Protein kinase Cδ; ER: Estrogen receptor; PM: Plasma membrane.

signal peptide-containing proteins[82].
We found that PKCδ secretion was initiated in the cytosol. Phorbol ester treatment 

inhibited PKCδ secretion, and the NLS active mutant was not secreted into the 
extracellular space. In fact, secreted PKCδ showed a lower level of phosphorylation 
(Tyr311 and Thr505). These lines of evidence support the possibility that cytosolic 
PKCδ, as a starting point for extracellular localization, could contribute to tumor 
progression in liver cancer.

Other organelles
A previous study has shown that PKCδ is translocated to the ER in response to ER 
stress and interacts with ER-bound c-Abl[83]. This PKCδ-c-Abl complex consequently 
moves to the mitochondria to trigger apoptosis[83]. It has been reported that tyrosine 
phosphorylation of PKCδ is associated with this interaction with c-Abl[84]. The 
chemical inhibitor rottlerin blocks the translocation of the PKCδ-c-Abl complex from 
the ER to the mitochondria, which confers protection against apoptosis[83]. Another 
ER protein, p23 (Tmp21), interacts with PKCδ, which enables the retention of PKCδ in 
the ER[85]. Translocation of PKCδ to the ER has also been reported in cells with 
Sindbis virus and in glioma cells treated with TRAIL, where PKCδ exerts an anti-
apoptotic effect. Furthermore, a small amount of PKCδ has been observed in the Golgi 
apparatus. Ceramide or IFN-γ stimulation has been shown to translocate PKCδ to the 
Golgi apparatus, which is associated with ceramide-induced apoptosis in HeLa cells.

CONCLUSION
The apoptotic and survival functions of PKCδ are defined by cell and tissue types and 
their cellular conditions (Figure 3). In response to cellular stresses, PKCδ may be 
translocated to different organelles (including the cytosol and extracellular space), 
where PKCδ executes distinct functions in each location. Among the many types of 
tissues and cells, liver cancer cells have the most patterns of localization of PKCδ, 
including conventional intracellular and extracellular localization. Notably, 
extracellular PKCδ is involved in the tumorigenesis of liver cancer; therefore, it is a 
promising novel diagnostic and therapeutic target for liver cancer. Additional studies 
are required to elucidate further the various roles of PKCδ in liver cancer cells, which 
are dependent on the expression, subcellular distribution, and tumor microenvir-
onment.
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