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Abstract
The worldwide interest in the gut microbiome and its 
impact on the upstream liver highlight a critical upside 
to breath research: it can uniquely measure otherwise 
unmeasurable biology. Bacteria make gases [volatile or-
ganic compounds (VOCs)] that are directly relevant to 
pathophysiology of the fatty liver and associated condi-
tions, including obesity. Measurement of these VOCs 
and their metabolites in the exhaled breath, therefore, 
present an opportunity to safely and easily evaluate, 
on both a personal and a population level, some of our 
most pressing public health threats. This is an oppor-
tunity that must be pursued. To date, however, breath 
analysis remains a slowly evolving field which only oc-
casionally impacts clinical research or patient care. One 
major obstacle to progress is that breath analysis is 
inherently and emphatically mutli-disciplinary: it con-
nects engineering, chemistry, breath mechanics, biol-
ogy and medicine. Unbalanced or incomplete teams 
may produce inconsistent and often unsatisfactory re-
sults. A second impediment is the lack of a well-known 
stepwise structure for the development of non-invasive 
diagnostics. As a result, the breath research landscape 
is replete with orphaned single-center pilot studies. Of-
ten, important hypotheses and key observations have 
not been pursued to maturation. This paper reviews 
the rationale and requirements for breath VOC research 
applied to the gut-fatty liver axis and offers some sug-
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gestions for future development.
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Core tip: The biology of the gut-liver axis has always 
been fascinating and exceedingly difficult to study. With 
the rapidly expanding interest in the gut microbiome, 
however, finding better measurement techniques to 
evaluate this biology has never been more relevant. 
Breath volatile organic compounds (VOCs) measure-
ment presents the unmatched potential to address this 
critical unmet need. Breath measurement can be chal-
lenging, however, and requires coherent teams includ-
ing engineers, breath chemists, and clinical research-
ers. It also requires long term vision and strategy. This 
paper describes the rationale for breath VOCs, critically 
reviews the history of breath VOC development, and 
offers suggestions for progress.

Solga SF. Breath volatile organic compounds for the gut-fatty 
liver axis: promise, peril, and path forward. World J Gastroenter-
ol 2014; 20(27): 9017-9025  Available from: URL: http://www.
wjgnet.com/1007-9327/full/v20/i27/9017.htm  DOI: http://dx.doi.
org/10.3748/wjg.v20.i27.9017

INTRODUCTION
The gut flora microbiome and the gut-liver axis are 
exceptionally difficult to evaluate. However, the now 
universal appreciation of  the microbiome’s impact on up-
stream fatty liver and associated disorders such as obesity 
compels an even greater interest in improved measure-
ment techniques.

Breath researchers have measured gut flora activity in 
exhaled breath for decades. However, there has been little 



sustained success. This paper critically reviews the experi-
ence to date and offers suggestions for future progress.

Breath analysis still holds the unique and possibly un-
matched potential to better measure this challenging and 
highly significant physiology.

Promise: Unprecedented 
Opportunity for Breath Volatile 
Organic Compounds
The role of  gut flora in fatty liver pathogenesis has been 
studied for decades. Alcohol fatty liver research, for ex-
ample, demonstrated that gut flora were necessary but 
not sufficient for liver disease, and explored the use of  
gut flora therapy (poorly absorbed antibiotics) using ani-
mal models[1,2]. Various lines of  evidence also pointed to 
a key role in the pathogenesis of  non-alcoholic fatty liver 
disease (NAFLD)[3-5]. Gut flora, via various mechanisms 
such as altered small bowel motility and impaired muco-
sal barrier function, have also been long appreciated to 
affect the clinical course of  cirrhosis, regardless of  liver 
disease etiology[6].

Research connecting the gut flora to the liver has 
been particularly challenging and fascinating because gut 
bacterial biology and liver disease are distinct disciplines 
connected anatomically via a nearly inaccessible portal ve-
nous system. And although there is a history of  gut flora 
therapies (i.e., prebiotics, probiotics, dietary interventions) 
for liver disease[7,8], progress has been slow because the 
science, especially the details of  the gut flora, is underde-
veloped. Nevertheless, the potential impact was evident: 
non-alcohol fatty liver, alcohol fatty liver, and cirrhosis 
affect many people.

However, with the now-familiar association of  gut 
flora dysbiosis to obesity[9,10] and insulin resistance[11-13] 
interest in gut flora biology and, along with it, the gut-
liver axis, has grown and today would be difficult to over-
state. The gut flora is now regarded as a newly discovered 
metabolic organ. Many essential questions persist and 
have triggered a worldwide effort to better understand 
this new organ[14-16]. Multiple comprehensive reviews have 
addressed the impact of  gut flora on fatty liver and/or 
obesity[17-20].

The major studies which have propelled these ad-
vances have generally used detailed fecal analysis. These 
analyses can include a variety of  techniques including 
DNA sequencing, culture, and metabolic profiling[21]. The 
emerging data indicate several possible mechanisms of  

gut flora influence: fermentation, effects on metabolism, 
inflammatory signaling, or a combination. Notably, it is 
understood the gut microbiome is personal; one’s gut 
flora, as well as their metabolic response to diet, and up-
stream liver effects cannot be predicted a priori[22]. Thus, 
since exogenous ethanol is metabolized to acetaldehyde 
at a variable and unpredictable rate[23], the same should 
follow for endogenous ethanol produced from gut flora. 
Furthermore, it is acknowledged that there remain many 
additional unknowns that exist about the gut-liver axis 
(i.e., motility, mucosal barrier, immune system interac-
tions, molecular mechanisms within the hepatocyte). 
However, despite both these known differences and true 
unknowns, there is a rapidly growing interest in the gut 
flora therapies and dietary interventions premised on 
these mechanisms[24].

Therefore, notwithstanding the usefulness of  fecal 
analysis to date, is not clear that it will prove as successful 
for wide scale clinical research[25]. Fecal analysis, by virtu-
ally any method, has a number of  drawbacks: samples are 
collected infrequently and episodically, are expensive to 
run, and result in large amount data that nevertheless re-
mains challenging to interpret in the setting of  multiple, 
interrelated physiologic variables: i.e., gut flora modulate 
mucosal integrity and immune function with differential 
impact on the liver, and vice-versa[26,27]. Fecal analysis 
cannot readily account for a number of  factors in the 
gastrointestinal tract, including transit time, presence or 
absence of  mucosal disease, and the possible differential 
impact bacterial subpopulations (e.g., distal small bowel vs 
colonic, and so on).

Breath volatile organic compound (VOC) measure-
ment, therefore, may serve to complement fecal analy-
sis[28]. Individual VOCs can be measured for specific 
hypothesis driven goals tailored to match the present un-
derstanding of  the role of  gut flora in the gut-liver axis.

Since the pathogenesis of  fatty liver (Table 1) is mul-
tifactorial and there are many variables which impact the 
gut-liver axis, the most successful research will likely si-
multaneously measure multiple VOCs.

It is presumed that some of  these metabolites (e.g., 
ethanol) are produced only by gut flora, whereas others 
(e.g., acetaldehyde) are produced by both gut flora and 
human metabolism. Notably, some of  these VOCs may 
potentiate others. For example, ethanol and acetaldehyde 
can increase the growth of  gram negative bacteria and 
intestinal permeability, respectively, and thereby may pro-
mote uptake of  inflammatory mediators[37]. Hydrogen 
sulfide may reduce gastrointestinal motility and thereby 
lead to bacterial stasis and overgrowth[38]. Other VOCs 
have multiple affects that overlap multiple categories. For 
example, some gut flora metabolize choline efficiently 
and their over-abundance can lead both to choline defi-
ciency and an overproduction of  the toxic metabolites 
dimethylamine and trimethylamine[39]. Both mechanisms 
have been implicated in the pathogenesis of  fatty liver 
and non-alcoholic steatohepatitis[40,41]. Each of  these 
VOCs have been measured in exhaled breath, though 
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Table 1  "Fatty liver" volatile organic compounds candidates

Property Examples

Fermentation 
activity[29-31]

Alcohols and their aldehydes

Metabolism[32,33] Acetone and isoprene
Inflammation[34-36] Dimethylamine, trimethylamine, hydrogen 

sulfide, ethane, methylsulfide, methylmercaptan



usually separately. However, much like the standard 
twelve lead electrocardiogram or lipid panels, it is likely 
that the most meaningful VOC breath data would come 
from the simultaneous measurement and interpretation 
of  multiple VOCs and/or profiles.

In contrast to fecal analysis, exhaled breath VOC 
analysis can measure the global activity of  the entire gut-
liver axis. Because breath measurement is non-invasive, 
safe, and potentially inexpensive, it easily enables studies 
with repeated measures. For example, it is simple and 
highly relevant to envision evaluating the immediate dif-
ferential effect of  various oral challenges (e.g., high/low 
fiber, high/low fructose) in various subjects (e.g., lean/
obesity, fatty liver/cirrhosis) using timed VOC measure-
ments over several hours, days, or longer.

The gut liver axis (Table 2) includes many important, 
highly variable factors that are difficult to measure physi-
ologically. While fecal analysis is inherently limited, breath 
VOC measurement may evaluate the global activity of  
the entire system.

In summary, the microbiome and gut-liver axis are a 
major research emphasis world-wide, and studies employ-
ing fecal analysis are appropriately credited with many ad-
vances. However, even if  fecal analysis was fully validat-
ed, free, easy to perform, and always yielded interpretable 
results, it still cannot measure many “upstream” factors 
germane to both fatty liver and the metabolic syndrome 
and the marked heterogeneity between subjects. Stud-
ies using breath VOC analysis, in contrast, can uniquely 
evaluate the entire organism in real time. The simple ca-
pability of  repeated measures greatly expands options in 
clinical research.

PERIL: A HISTORY OF UNMET 
EXPECTATIONS IN BREATH ANALYSIS
Breath analysis is appealing because it enables the potential 
for non-invasive, real time, easy to use, point of  care mea-
surement of  metabolites that are, in some cases, difficult 
or impossible to measure by blood assays or other means. 
Previous attempts to apply breath analysis to gut physiol-
ogy, however, have not been met with great success. Two 
examples, hydrogen and ammonia, are illustrative.

Hydrogen
Breath hydrogen testing has been available for decades[42]. 
The monitors are relatively inexpensive, portable, and 
simple to operate. Aside from the addition of  methane (to 

capture preferential methane producers) and carbon diox-
ide (for quality control), the instrumentation and breath 
collection process have not significantly changed in many 
years. Hydrogen measurement is technically easy: it is rela-
tively inert; its measurement is not affected by background 
ambient air; and it is present at high concentrations (parts 
per million)[43]. Breath hydrogen testing has been incorpo-
rated into hundreds of  published research studies.

The most widely accepted clinical use is in the evalu-
ation of  small intestine bacterial overgrowth (SIBO) and 
carbohydrate mal-absorption. Regarding the former, 
SIBO has emerged as a possible important and modifi-
able factor in the pathogenesis of  irritable bowel syn-
drome (IBS) for some patients[44]. As a result, the use of  
hydrogen breath testing has surged over the last decade 
to evaluate SIBO in IBS, including responsiveness to pu-
tative gut flora therapy (i.e., rifaximin, a poorly absorbed 
antibiotic)[45,46]. Because SIBO or “gut dysbiosis” is chal-
lenging to measure by other means, breath hydrogen test-
ing had the potential to fulfill an important unmet need.

However, there remain serious concerns about its 
validity. An excellent recent review noted many problems, 
including lack of  standardized instructions regarding test-
ing substrates, doses and time intervals, as well as varying 
definitions of  positive vs negative tests persist[47]. Thus, 
notwithstanding a surging scientific and public interest 
in the possible role of  gut flora in IBS, the American 
College of  Gastroenterology does not endorse routine 
breath testing[48].

The results of  a recent meeting of  the United States 
Food and Drug Administration (FDA) Gastrointestinal 
Drugs Advisory Committee (GIDAC) provide additional 
insight[49]. The meeting’s purpose was the design of  clini-
cal trials to evaluate the safety, efficacy, and durability 
of  response of  repeat cycles of  Xifaxan (rifaximin). To 
the author’s knowledge, this was the first time a breath 
test was seriously considered in the drug evaluation and 
approval process for a gut disease. But despite its long 
history, lack of  technical issues, and the unmet need, 
GIDAC and the sponsor (Salix) easily agreed that breath 
hydrogen testing fails to meet criteria as a valid biomarker 
for any purpose and should not utilized[50]. Future devel-
opments seem unlikely.

Ammonia
In contrast to hydrogen, ammonia is highly volatile and 
difficult to measure by any method[51,52]. Due to its rel-
evance to gut flora and various disease states[53], breath 
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Table 2  Exhaled breath uniquely captures the entire output of the gut liver axis in the context of a person

Gut flora Lumen factors Hepatic factors Host

Bacterial diversity and function Barrier integrity Enzyme heterogeneity (e.g., alcohol 
dehydrogenase)

Diet

Mucosal or lumen associated Immune defense Liver disease Medications
Location Mucosal disease (e.g., celiac, crohns) Cirrhosis and porto-systemic 

shunting
Co-morbid conditions (e.g., diabetes)

(e.g., small bowel, right colon)
Transit time Age, gender, body mass index
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research offices and facilities.  For example, it must be 
proven that a subject’s breath ethanol at 200 ppb would 
be measured the same in low (e.g., 50 ppb) and high (e.g., 
5000 ppb) ambient air environments. Once established, 
then other important influences should evaluated, includ-
ing time of  day, mode of  breathing, mouth rinses, food 
intake including composition and timing, and so on.

It must be acknowledged that such studies are often 
tedious, have poor publication value and short term re-
turn on investment. However, they are essential. Histori-
ans note that when the United States Food and Drug Ad-
ministration (FDA) first promoted the basic drug safety 
expectations that evolved into present day preclinical 
and phase Ⅰ studies (i.e., the Food, Drug, and Cosmetic 
Act of  1938), most pharmaceutical companies simply 
folded[63]. The survivors, e.g., Merck, not only responded 
by drastically increasing their research enterprise, their 
leadership specifically assigned only their best scientists 
to these early stage efforts in acknowledgement of  both 
their critical importance and tedium.

Breath research has to date failed to uniformly meet 
these requirements. Breath research papers often detail 
monitor mechanics and the ability of  the monitor to re-
producibly measure a targeted VOC against a known labo-
ratory reference gas standard. Without further evaluation, 
small cross-sectional human studies are then performed 
purportedly to evaluate a disease state. Unfortunately, this 
pattern ultimately results in an unconvincing and inher-
ently limited literature, as illustrated above for both breath 
hydrogen and ammonia. Breath VOC researchers have, 
therefore, earned skepticism from the broader research 
community.

Fecal VOC analysis should also meet these standards. 
For example, a recently published study evaluated fecal 
VOCs in NAFLD[64]. Using home stool kits, subjects pro-
duced samples once, froze them, and later transported 
them to the lab. Fecal VOCs were then measured and 
compared to DNA analysis. Given the large number of  
VOCs measured (two hundred twenty), small sample size 
(thirty cases and controls) and observational case-control 
study design, the strength of  the study’s conclusions is 
largely determined by the confidence in the measurement 

researchers have aspired to measure it for greater than 
thirty years[54]. A progression of  highly sophisticated 
measurement platforms (e.g., GC/MS, quantum cascade 
lasers[55]) have been used in the hopes that ever faster and 
more precise equipment modifications will finally yield 
accurate and reproducible results usable for clinical re-
search and patient care. Many technical factors must be 
considered (e.g., temperature, humidity, flow, and mode of  
breathing) alongside complex biologic concerns (e.g., con-
tamination from oral bacteria)[56,57]. Despite these major 
challenges, many small studies were published purporting 
to demonstrate the utility of  breath ammonia measure-
ment for a specific disease or condition (e.g., hepatic 
encephalopathy, renal dialysis, exercise[58-60]). However, it 
now appears from work published by highly experienced 
groups, that exhaled breath may not reflect systemic 
levels, at least not be by the methods described to date. 
Aspirations repeatedly exceeded reality. Not surprisingly, 
therefore, the current ammonia literature has nearly com-
pletely ignored breath research[53,61,62].

In summary, breath hydrogen is easy to measure and 
has an established role in clinical research and patient 
care. However, it is not a valid biomarker and its impact 
has not grown with in parallel with the rise in interest in 
gut flora. Breath ammonia is difficult to measure and, 
notwithstanding intense efforts by multiple breath re-
search groups, has had little influence on clinical ammo-
nia research. Thus, both the easy and difficult extremes 
of  the breath metabolite spectrum reveal that, at times, 
the breath enterprise exists as only a tangential contribu-
tor to overall human research. The literature is replete 
with orphaned pilot studies. While hydrogen and ammo-
nia serve as prototypical examples, this pattern has been 
duplicated with many metabolites (Table 3).

Notably, most of  the candidate “fatty liver” VOCs are 
also quite difficult to measure (Figure 1).

Path Forward
Volatility mandates reproducibility. first, test the test
By definition, VOCs are dynamic and changeable. Fur-
thermore, they are present only in trace quantities and are 
subject to multiple confounders, including environmental 
factors. Therefore, studies of  VOCs carry an exceptional 
burden of  validation that requires the demonstration of  
reproducibility. Ideally, this includes at least three kinds 
of  reproducibility: immediate (paired samples back to 
back), day to day, and location to location. The latter is 
needed because of  ambient air influences, especially if  
human breath is collected in proximity to medical or 
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Technically easy Technically difficult

Hydrogen Ammonia
“Fatty liver” VOCs

Figure 1  Most volatile organic compounds are challenging to measure. 
VOCs: Volatile organic compounds.

Table 3  Breath research often failed to meet its potential for 
multiple reasons

Technical/scientific factors
   Monitor/interface/biology Too many interrelated unknowns
   Unique data: uncertain utility Relevance difficult to establish

Relevance may not exist
Non-technical factors
   Inadequate teams Engineers, chemists, doctors, 

statisticians
   Inadequate synergy Single center efforts
   Lack of focus Too many diseases, too little strategy
   Lack of common languages Device development is not drug 

development
   Few models of commercial 
   success

Difficult to envision endgame
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process. However, while the authors and accompanying 
editorial carefully and appropriately discuss multiple other 
important influences and limitations of  the study, neither 
substantively addresses this more basic issue[65]. Even for 
analyses that may be exploratory and descriptive, more 
complete methods discussion is imperative to build a 
confidence foundation for additional studies.

Finally, it is noteworthy that while blood VOC analy-
sis may also have important potential, it has similar 
downsides. For example, Zhu et al[66], recently reported 
that specific gut flora compositions may drive an elevat-
ed endogenous ethanol production in a pediatric popula-
tion with non-alcoholic steatohepatitis. However, blood 
assays for VOCs can also be challenging[67]; for example, 
despite the fact that ammonia has been measured in 
the blood for over one hundred years, the proper blood 
source (venous vs arterial)[68] and state (partial pressure 
NH3 vs NH4

+)[69,70] remain debated. Furthermore, phle-
botomy makes studies requiring multiple repeated mea-
sures difficult.

Biomarker Development: Breath 
Success Requires Exceptional 
Teams and Strategy
In the 1950’s and 1960’s, the United States FDA promul-
gated a three phase strategy to evaluate the safety and 
efficacy of  new drugs[63]. The phases became familiar 
worldwide and created a uniform path for drug devel-
opment. It is relatively easy, therefore, to interpret and 
compare clinical trials as they evolve through the phases. 
This is helpful not only for medical researchers, scientists, 
and regulators, but also for other stakeholders including 
investors and the broader public. Furthermore, drugs are 
developed and approved for a specific disease indication. 
Because this process is slow and highly resource inten-
sive, progression through the phases occurs only after 
careful and continuous consideration of  an unmet need 
and competing alternatives[71]. As a result of  this step-
wise structure, regulatory approval, at least in the United 
States, is a milestone that is almost always associated with 
at least some commercial potential.

Unfortunately for breath research, an analogous path 
does not exist for non-invasive diagnostics or biomarker 
development[72]. While the FDA indeed regulates non-in-
vasive medical devices, the requirements for approval are 
much different, generally lower, and not as well known. 
Furthermore, they are not nearly as meaningful. There-
fore, while biomarkers researchers may have lower ap-
parent initial development costs and greater latitude than 
drug researchers, they risk misunderstanding and misdi-
rection amongst members of  the development team.

It is essential, however, that an overall strategy exists. 
This begins with an extensive and thorough validation of  
a putative biomarker applied to a particular application, 
e.g., risk estimation, screening, diagnosis, monitoring, and 
so on. Moreover, biomarkers should also be characterized 

by purpose, e.g., predictive, prognostic, and so on[73-75]. 
This compass must guide testing. Poorly designed studies 
in the wrong population are destined to yield uninter-
pretable results; this is especially true in breath analysis, 
where experimental monitors are often touted to measure 
experimental metabolites via experimental interface sam-
plers to describe unknown biology.

Successful breath VOC research requires (1) multiple 
disciplinary teams; (2) extensive early stage validation 
studies; and (3) a clear clinical research strategy.

Coherent teams require, at a minimum, the ongoing 
participation of  engineers, breath measurement experts, 
clinical researchers with experience in gut biology, gastro-
enterology, hepatology, and statistics. The process should 
begin with a foundation of  knowledge and experience 
with breath VOCs resulting in focused testable hypoth-
eses that can be transformed into monitors with specific 
performance specifications and operational capacities. 
Ideally, multiple monitors are built and are tested clinically 
side by side first at a single site and then at multiple sites 
for accuracy and reproducibility. After these are clearly 
established and normative data are generated, disease 
specific hypothesis can be pursued. Finally, a clear long 
term clinical research strategy grounded in the require-
ments for biomarker development should be articulated. 
Outside of  a few centers of  excellence, (e.g., the Austrian 
Breath Research Institute, ISTM Keele University) such 
a comprehensive approach would be novel for breath re-
search. The recent publication of  comprehensive breath 
research books[76], growing interest in breath research 
conferences, and the development and greater use a spe-
cially designed interface sampler[77] are positive steps.

Breath VOC Metabolites for the 
Gut-Liver Axis: Current Status
The breath VOC metabolites of  interest shown in figure 
1 are nearly as technically challenging as ammonia. Each 
of  them, however, have been measured in breath with 
the generation of  some normative data[33,78]. Many in-
novative and useful small, single center studies have been 
published, as has been recently reviewed[28].

A few studies have specifically focused on the gut liver 
axis and demonstrated some physiologic insights. For 
example, Cope et al[79], evaluated the effect of  an interven-
tion (neomycin, a poorly absorbed antibiotic) on exhaled 
breath ethanol in an obese murine model of  fatty liver 
compared to lean littermates. In addition to utilizing an 
intervention, this convincing study also reported repeated 
measures and thereby accounted for diurnal ethanol varia-
tions. The follow up human studies did not have these 
strengths and were therefore less persuasive[80,81]. At pres-
ent, though, breath VOCs are most developed not for fat-
ty liver but for use in diabetes monitoring, where multiple 
groups have many significant recent advances[82,83].

Finally, it must be acknowledged that liver disease, 
especially fatty liver, is difficult to accurately measure 

9021 July 21, 2014|Volume 20|Issue 27|WJG|www.wjgnet.com

Solga SF. Breath of the gut-fatty liver



by any means, including blood assays, imaging, or bi-
opsy[84,85]. Moreover, the pathophysiology of  fatty liver, 
its relationship to steatohepatitis, cirrhosis, and associated 
conditions like obesity is complex, and there are many 
important mechanisms that do not involve VOCs. Thus, 
even if  a well validated breath VOC panel existed now, 
it would be difficult to definitely tie such a profile to a 
clinical outcome of  interest, and multiple measurement 
modalities are likely needed. As a result, breath research 
groups might aspire to participate in established long 
term fatty liver research programs (e.g., the United States 
based Non-Alcoholic Steatohepatitis Clinical Research 
Network[86]) as ancillary studies.

ENGINEERS REQUIRED
Many of  the pioneers of  breath research have creatively 
adapted existing measurement platforms to breath 
measurement[87]. Even now, specifically designed breath 
monitors are usually built as one-of-a-kind prototypes. 
The obvious legacy has been the small, single center fun-
damentally limited studies described above. For the same 
straightforward reasons, clinical researchers need mul-
tiple identical monitors that are portable and measure 
multiple VOCs simultaneously and accurately. Because 
clinical research is most convincing when multi-center 
studies involve large numbers of  subjects, the need for 
multiple identical monitors is imperative. This is espe-
cially true due to extra reproducibility requirements of  
breath VOC research. While engineers may be under-
standably reluctant to commit the resources to build five 
monitors (especially after the results of  a single proto-
type may have been equivocal), that is the prescription.

Given engineering advances and the right vision, this 
is achievable. Breath measurement experts, “breatholo-
gists,” should be involved at every stage, from design 
through maturation. Like drug development, this process 
will likely require a collaborative effort between academia 
and industry, but could occur at a fraction of  the cost.

CONCLUSION
Breath analysis continues its infancy, and is almost always 
discussed in terms of  its potential. But the rationale for 
breath has never been greater: breath affords the almost 
unique opportunity to quickly, cheaply, and non-invasively 
measure important markers that reflect the global gut-liv-
er axis biology not measurable in other ways. Engineers, 
if  they are willing, are ever more capable of  making fast, 
portable, ultra-sensitive monitors. Comprehensive breath 
research teams should thoroughly address reproducibility 
to build a foundation for specific hypothesis driven goals. 
Those willing to invest in a long term strategy for breath 
VOC development may yet transform and revolutionize 
gut-liver axis research and patient care, with major pay-
offs in diseases such as fatty liver, obesity, and the meta-
bolic syndrome.
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