SUPPLEMENTARY DATA

CM potentials	References
Neurogenesis	[14] [78] [52] [86] [92] [72] [87] [36] [76] [44] [54] [88] [57] [75] [83] [77] [94] [107] [15] [35] [119] [115] [117]
Neuroprotection	[17] [78] [52] [86] [39] [79] [24] [88] [15]
Angiogenesis	[29] [30] [38] [41] [48] [61] [70] [73] [74] [75] [77] [79] [87] [88] [92] [95] [104] [103] [114]
Osteogenesis	[27] [28] [66] [107] [96] [99] [120]
Anti-apoptosis	[16] [19] [37] [54] [49] [74] [60] [85] [72] [71] [75] [77] [93] [96] [102] [97]
Cytoprotection	[92] [62] [76] [13] [46] [59] [102] [118]
Cell proliferation	[60] [20] [48] [37] [88] [89] [71] [75] [93] [58] [113] [58] [61] [50] [96] [119]
Cell migration	[49] [55] [74] [60] [36] [76] [95] [48] [29] [37] [54] [46] [88] [89] [75] [77] [107] [58] [65] [58] [50] [104] [114]
Dentinogenesis	[73] [53] [107] [56] [105] [69] [113] [125] [124] [122] [126] [123] [50]
Parodontogenesis	[64] [101] [30] [110] [111] [112] [128] [127]
Immunomodulation	[49] [76] [54] [43] [75] [83] [84] [94] [67] [26] [80] [87] [79] [18] [24] [19] [23] [22] [109] [25] [21] [64] [101] [116]

Supplementary Table S1: Summary of CM potentials in studies using DMSC secretome for tissue regeneration.

References	DMSC	Stem cell	Teeth]	Donors	
	type	characterization		Species	Number	Age	Gender	Notes
Kumar 2017 [33]	DPSC	+		Human	5	$6 \rightarrow 25 \text{ years}$		
Kumar 2018 [34]	DPSC	+		Human	>= 3	$6 \rightarrow 26$ years		Healthy non-decayed teeth
Kumar 2017 [35]	DPSC	+		Human		$12 \rightarrow 25$ years		
Gervois 2017 [36]	DPSC	+		Human		$14 \rightarrow 19$ years	Both	
Horibe 2014 [37]	DPSC	+		Human	12	19-30/44-7		
						0 years		
Zhou 2020 [38]	DPSC	+		Human	5	$24 \rightarrow 41 \text{ years}$	3 F, 2 M	5 periodontally healthy
								teeth / 6 periodontitis teeth form
								healthy donors
Venugopal 2018 [39]	DPSC	+		Human				Healthy donors
Caseiro 2019 [40]	DPSC	+		Human				
Shen 2015 [41]	DPSC	+		Human				
Mead 2014 [42]	DPSC	+		Human	3			
Wada 2009 [43]	DPSC	+	Premolars	Human				Healthy teeth
Kolar 2017 [44]	DPSC	+	Maxillary second	Human	2	12 and 18	F	Similar tooth developmental
			premolar and			years		stage, approximately 70% of root-
			mandibular third molars					formation completed
Bronckaers 2013 [45]	DPSC	+	Third molars	Human		$15 \rightarrow 20$ years		
Paschalidis 2014 [46]	DPSC	+	Third molars	Human	= or > 3	$16 \rightarrow 18 \text{ years}$		Healthy donors
Piva 2017 ^[47]	DPSC	+	Third molars	Human		$18 \rightarrow 22 \text{ years}$		

Gharaei 2018 [48]	DPSC	+	Third molars	Human		$18 \rightarrow 25 \text{ years}$		Healthy donors
Murakami 2013 [49]	DPSC	+	Third molars	Human	12	$18 \rightarrow 29 \text{ years}$		
Li 2019 [50]	DPSC	+	Third molars	Human	12	$19 \rightarrow 28 \text{ years}$		Impacted healthy teeth
Yamamoto 2014 [51]	DPSC	+	Third molars	Human		$18 \rightarrow 30 \text{ years}$		
Sakai 2012 [52]	DPSC	+	Third molars	Human		$19 \rightarrow 30 \text{ years}$		
Hu 2019 [53]	DPSC	+	Third molars	Human	10	$22 \rightarrow 36 \text{ years}$	5 F, 5 M	Fully erupted healthy teeth
Wang 2019 [17]	DPSC	+	Third molars	Human				
Nakayama 2017 [54]	DPSC	-	Third molars	Human	4	14 →19 years		Immature teeth
Merckx 2020 [55]	DPSC	-	Third molars	Human	13	$14 \rightarrow 23 \text{ years}$	Both	Healthy donors
Swanson 2020 [56]	DPSC	-	Third molars	Human	4	>24		
Gervois 2019 [57]	DPSC	-	Third molars	Human	7	14 →26 years	Both	
Ivica 2020 [58]	DPSC	-	Third molars	Human	3	$16 \rightarrow 25 \text{ years}$		Healthy teeth
Zhang 2020 [59]	DPSC	-	Third molars	Human	3	$18 \rightarrow 25 \text{ years}$	2F, 1M	Free of caries and/or periodontitis
Yamamoto 2016 [60]	DPSC	-	Third molars	Human		$18 \rightarrow 29 \text{ years}$		
Ahmed 2016 [13]	DPSC	-	Third molars	Human		$20 \rightarrow 28 \text{ years}$		
Xian 2018 [61]	DPSC	-	Third molars and	Human		$18 \rightarrow 25 \text{ years}$		
			premolars					
Song 2015 [62]	DPSC	-	Permanent teeth	Human	10	$14 \rightarrow 22 \text{ years}$	6 F, 4 M	clinically healthy
Joo 2018 ^[63]	DPSC	-	Immature teeth,	Human	7	$12 \rightarrow 20$ years	4F, 3M	
			supernumerary teeth, or					
			premolars or third					
			molars having an					
			immature root apex					

Shen 2020 [64]	DPSC	-	Exfoliated teeth	Human				Healthy donors
Akazawa 2015 [65]	DPSC	-	Deciduous teeth	Human	3	$6 \rightarrow 8 \text{ years}$		Healthy teeth
De rosa 2011 [66]	DPSC	-		Human		$21 \rightarrow 45 \text{ years}$		
Ji 2019 ^[67]	DPSC	-		Human	8	$25 \rightarrow 35 \text{ years}$		Caries free teeth, healthy donors
Aranha 2010 [68], Huang 2016 [69]	DPSC	-		Human				
Lambricht 2017 [70]	DPSC			Human				
Iohara 2008 ^[71]	DPSC	+	Tooth germ	Porcine				
Ishizaka 2013 ^[72]	DPSC	+	Premolars	Porcine				
Kawamura 2016 [73]	DPSC	-	Premolars	Porcine				
Hayashi 2015 [74]	DPSC	-		Porcine	4			
Iohara 2014 ^[75]	DPSC	+	Upper canine		4	$5 \rightarrow 6$ years		
Iohara 2014 ^[75]	DPSC	+	Upper canine	Dogs	4	$8 \rightarrow 10 \text{ months}$		
Iohara 2013 ^[76]	DPSC	+	Upper canine	Dogs		$8 \rightarrow 10 \text{ months}$		
Murakami 2015 [77]	DPSC	+	Upper canine	Dogs	5	$8 \rightarrow 10 \text{ months}$	F	
Omi 2017 [78]	DPSC	+	Incisors	Rats		6 weeks	M	
Makino 2019 [79]	DPSC	-	Incisors	Rats		6 weeks	M	
Omi 2016 [80]	DPSC	+		Rats		6 weeks		
Chen 2019 [81]	DPSC	+		Rats			M	
Li 2017 ^[82]	SHED	+	Deciduous teeth	Human		$6 \rightarrow 8 \text{ years}$		Clinically healthy teeth
Pivoraite 2015 [25], Jarmalaviciute	SHED	+	Deciduous teeth	Human	1	6 years		
2015 [16]								
Kano 2017 [83], Matsubara 2015	SHED	+	Deciduous teeth	Human	3			
^[84] , Matsushita 2017 ^[21]						$6 \rightarrow 12 \text{ years}$		

Omori 2015 [27]	SHED	+	Deciduous teeth	Human		$6 \rightarrow 12 \text{ years}$		Healthy donors
Yamagata 2013 [85], Fujii 2015 [86],	SHED	+	Deciduous teeth	Human		$6 \rightarrow 12 \text{ years}$		
Tsuruta 2018 [87], Shimojima 2016								
^[24] , Yamaguchi 2015 ^[19] ,								
Sugimura-Wakayama 2015 [88],								
Han 2020 ^[89] , Sakai 2012 ^[52] ,								
Yamamoto 2014 [51]								
Chen 2020 [15]	SHED	+	Deciduous teeth	Human	3	$7 \rightarrow 9 \text{ years}$	M	
Mussano 2018 [90]	SHED	+	Deciduous teeth	Human	10	9.2 ± 2.2 years		
Gunawardena 2019 [31], De cara	SHED	+	Deciduous teeth	Human				
2019 [29]								
Wang 2020 [91]	SHED	+	Deciduous teeth	Human				Non-carious teeth
Hiraki 2020 ^[28]	SHED	+	Upper right primary	Human		11 years	M	Clinically healthy patients
			canine					
Miura-Yura 2020 [92], Ishikawa	SHED	-	Deciduous teeth	Human		$6 \rightarrow 12 \text{ years}$		
2016 ^[26] , Wakayama 2015 ^[23] ,								
Izumoto-Akita 2015 [20],								
Ogasawara 2020 ^[93] , Sakai 2020								
[94]								
Hirata 2016 [22]	SHED	-	Deciduous teeth	Human		$7 \rightarrow 12 \text{ years}$		
Asadi-Golshan 2018 [14]	SHED	-	Deciduous teeth	Human				
Mita 2015 [18]	SHED	-	Deciduous teeth	Human				Clinically healthy teeth
Inoue 2013 [95]	SHED	-	Deciduous teeth	Human	8			Clinically healthy teeth

Wei 2020 ^[96]	SHED		Deciduous teeth	Human				
Li 2019 [97]	SHED		Deciduous teeth	Human				
Kang 2018 [98]	PDLSC	+		Human				
Diomede 2018 [99]	PDLSC	+		Human	5			
Aghamohamadi 2020 [100]	PDLSC	+	Premolars	Human		Young		Healthy periodontal ligament
						individuals		tissue and teeth
Kolar 2017 [44]	PDLSC	+	Maxillary second	Human	2	12 and 18	F	Similar tooth developmental
			premolar and			years		stage, approximately 70% of root-
			mandibular third molars					formation completed
Nagata 2017 [101]	PDLSC	+	Premolars or third	Human	11	$12 \rightarrow 29 \text{ years}$		Healthy donors
			molars					
Cianci 2016 [102]	PDLSC	+		Human		$20 \rightarrow 35 \text{ years}$		Healthy donors
Wada 2009 [43]	PDLSC	+	Premolars	Human				Healthy teeth
Qiu 2020 [30]	PDLSC	-	Premolars and impacted	Human	15	$19 \rightarrow 29 \text{ years}$		
			third molars					
Zhang 2020 [103]	PDLSC	-	Impacted premolars	Human				
Kolar 2017 [44]	SCAP	+	Maxillary second	Human	2	12 and 18	F	Similar tooth developmental
			premolar and			years		stage, approximately 70% of root-
			mandibular third molars					formation completed
Kumar 2017 [35]	SCAP	+		Human		$12 \rightarrow 25 \text{ years}$		
Kumar 2017 [33]	SCAP	+		Human	5	$6 \rightarrow 25 \text{ years}$		
Kumar 2018 [34]	SCAP	+		Human	>= 3	$6 \rightarrow 26 \text{ years}$		Healthy non-decayed teeth
Bakopoulou 2015 [104]	SCAP	+	Third molars	Human	3	15, 17, and 19		Healthy donors

						years	
Zhuang 2020 [105]	SCAP	+	Impacted third molars	Human		$12 \rightarrow 25 \text{ years}$	Healthy donors
			with immature roots				
Yu 2016 [106]	SCAP	+	Impacted third molars	Human	5	$16 \rightarrow 24 \text{ years}$	Healthy donors
			with immature roots				
Yu 2020 [107]	SCAP	+	Impacted third molars	Human	5	$16 \rightarrow 30 \text{ years}$	Healthy donors
			with immature roots				
Yu 2020 [108]	SCAP	-	Impacted third molars	Human		$16 \rightarrow 30 \text{ years}$	Healthy donors
			with immature roots				
Kumar 2017 [35]	DFSCs	+		Human		$12 \rightarrow 25 \text{ years}$	
Kumar 2017 [33]	DFSCs	+		Human	5	$6 \rightarrow 25 \text{ years}$	
Kumar 2018 [34]	DFSCs	+		Human	>= 3	$6 \rightarrow 26$ years	Healthy non-decayed teeth
Chen 2018 [109]	DFSCs	+		Rats		7 days	
Wen 2015 [110]	DFSCs	+	First molars	Rats		6 days	
Wen 2011 [111]	DFSCs	-	First molars	Rats		6 days	
Liu 2014 [112]	DFSCs	-	First molars	Rats			
Wu 2013 [113]	DFSCs	-	Impacted third molars	Human	8	$13 \rightarrow 18 \text{ years}$	Teeth at root-developing stage
Wang 2011 [122]	TGPC	-	Tooth germs	Pigs /		3 months/ 6	
				human		months of	
				fetuses		gestational age	
Huo 2010 [123]	TGPC	-		Rats		14-day	
			Mandibular first molar			embryonic	

			germ			and 1-day	
						postnatal	
Ye 2015 [124]	TGPC	-	Mandibular first molar	Rats			
			germ			2 days	
Yu 2006 [125]	TGPC	-	Lower incisor	Rats	20		
Shan 2015 [126]	TGPC	-	1	Mice			
Yang 2009 [127]	TGPC	-	Mandibular first molar	Rats	20	8 days	
			germ				
Yang 2009 [128]	TGPC	-	Mandibular first molar	Rats		8 days	
			germ				
Jin 2020 [114]	GMSC	+		Human	6		
Qiu 2020 [30]	GMSC	+		Human	3	$18 \rightarrow 25 \text{ years}$	
Mao 2019 [115]	GMSC	+		Human	5	$20 \rightarrow 24 \text{ years}$	Healthy human subjects
Wang 2020 [116]	GMSC	+		Human		$19 \rightarrow 26 \text{ years}$	Healthy human subjects
Zhang 2019 [117]	GMSC	+		Human			Healthy human subjects
Rajan 2017 [118]	GMSC	+		Human			Donors without any systemic and
							oral diseases
Rao 2019 [119]	GMSC	+		Human			healthy patients without a history
							of periodontal disease
Diomede 2018 [120]	GMSC	+		Human		Adults	Healthy volunteers with no
Silvestro 2020 [121]	GMSC	-		Human	6	Adults	gingival
							inflammation

Supplementary Table S2: Summary of DMSC sources and donor characteristics in studies using DMSC-CM for tissue regeneration. F: female, M: male, +: characterized, -: not characterized, empty cells mean that data were not provided, DPSC: Dental Pulp Stem Cells, SHED: Stem Cells from Human Exfoliated Deciduous Teeth, PDLSC: Periodontal Ligament Stem Cells, SCAP: Stem Cells from the Apical Papilla, DFPC: Dental Follicle Progenitor Cells, TGPC: Tooth Germ Progenitor Cells, GMSC: Gingival Mesenchymal Stem Cells.

DMSC passage number	References
1	[25] [80] [44] [69] [62] [115]
2	[118] [120] [121] [99] [80] [44] [69] [14] [97] [62] [45] [103] [42] [104] [101] [115] [36] [57]
3	[49] [79] [31] [110] [15] [105] [100] [114] [44] [69] [14] [97] [78] [62] [45] [103] [42] [81] [18] [95] [109] [61] [107] [59] [61] [50] [119] [104] [101]
	[43] [41] [102] [115] [55] [53] [33] [35] [36] [57] [48] [34] [27] [24] [23] [83] [84] [51]
4	[44] [69] [14] [97] [78] [116] [62] [45] [103] [42] [81] [18] [95] [109] [61] [107] [59] [61] [50] [119] [74] [39] [73] [13] [104] [101] [43] [41] [102]
	[115] [55] [53] [33] [35] [96] [36] [57] [48] [34] [46] [27] [24] [23] [83] [84] [51] [22]
5	[45] [103] [42] [81] [18] [95] [109] [61] [107] [59] [61] [50] [119] [74] [39] [73] [13] [104] [101] [43] [41] [102] [37] [115] [55] [53] [33] [35] [96]
	[17] [89] [36] [57] [48] [34] [46] [27] [24] [23] [83] [84] [51] [22] [26]
6	[28] [104] [101] [43] [41] [102] [37] [55] [53] [33] [35] [96] [17] [89] [54] [36] [57] [48] [34] [46] [27] [24] [23] [83] [84] [51] [22] [26]
7	[55] [53] [33] [35] [96] [17] [89] [54] [36] [57] [48] [34] [46] [27] [24] [23] [83] [84] [51] [22] [26]
8	[19] [36] [57] [48] [34] [46] [27] [24] [23] [83] [84] [51] [22] [26]
9	[93] [21] [19] [27] [24] [23] [83] [84] [51] [22] [26]
10	

11	[47]
12	[47]

Supplementary Table S3: Passage number of DMSC used to prepare CM in the literature.

Cell confluency at the beginning of	Conditioning period	References
conditioning		
	2 hours	[90]
50%	24 hours	[73], [74]
60%	24 hours	[49] [13] [37] [77]
70%	24 hours	[78] [109] [39] [60] [96]
80%	24 hours	[31] [89] [40]
90%	24 hours	[106]
Full confluence	24 hours	[113] [56] [69]
	24 hours	[68] [98] [79] [80] [47] [102]
50%	48 hours	[76] [72] [71] [75]
60-70%	48 hours	[33], [34]
60-80%	48 hours	[105]
70-80%	48 hours	[48], [27], [24], [23], [22], [26], [19], [85], [28], [83], [84], [93], [59], [50], [21], [51], [100], [101], [116]
80%	48 hours	[14] [81] [92] [20] [88] [87] [30] [63] [94] [67] [61] [40]
80-90%	48 hours	[97]
Full confluence	48 hours	[58]
	48 hours	[43] [54] [16] [62] [55] [53] [36] [57] [38] [82] [45] [18] [95] [35] [103] [102] [115] [119] [42] [121] [99]
70-80%	72 hours	[107] [104]
80%	72 hours	[17] [15] [41] [64] [114] [140]
Full confluence	72 hours	[29], [127]
	72 hours	[25] [66] [102] [118] [120] [119]
70-80%	96 hours	[46]

Full confluence 96 hours	[125] [128] [122] [126] [123]
--------------------------	-------------------------------

Supplementary Table S4: DMSC confluency and period of medium conditioning in studies using DMSC-CM for tissue regeneration. Empty cells mean that data were not provided.

Medium			
Туре	Serum	Washing before	References
		medium replacement	
DMEM	Serum-free		[49] [79] [78] [18] [95] [74] [73] [13] [62] [37] [76] [88] [87] [72] [85] [60] [27] [77] [94] [67] [61] [96]
DMEM	Serum-free	Once	[14] [23] [22] [19] [21] [51]
DMEM	Serum-free	Twice	[24] [26] [83] [84] [93]
DMEM	Serum-free	Thrice	[92] [20] [59] [41] [101] [97] [114]
DMEM	Serum-free	Three to five times	[48]
DMEM	0.5% FBS	Once	[100]
DMEM	1% FBS		[80]
DMEM	10% FBS		[110] [68] [112] [125] [123]
DMEM	Exosome-free FBS		[82]
DMEM			[75] [111]
Low-glucose DMEM	Serum-free		[17]
Low-glucose DMEM + 2 mM	Serum-free		[55]
glutamine + 1 mM Sodium		Twice	
pyruvate			
Glucose free DMEM	2% FBS		[104]
DMEM/F12	Serum-free	Once	
DMEM/F12	10% FBS		[126]
DMEM/F12	10% exosome-depleted		[64]
	FBS		
DMEM/F12	Serum-free		[81]

DMEM/F12	Serum-free	Twice	[107]
KO-DMEM	Serum-free	Thrice	[39]
DMEM/Ham's F12	Serum-free		[29]
DMEM/HBSS			[15]
EBM2			[71]
Alpha-MEM	Serum-free		[30] [89] [28] [105]
Alpha-MEM	Serum-free	Once	[53], [63], [47]
Alpha-MEM	Serum-free	Twice	[98] [107]
Alpha-MEM	Serum-free	Thrice	[38] [33] [34]
Alpha-MEM	Serum-free	Five times	[108] [106]
Alpha-MEM	0.1% FBS	Twice	[45]
Alpha-MEM	0.5% FBS	Twice	[46]
Alpha-MEM	10% FBS		[43] [65] [128] [127] [122]
Alpha-MEM			[44] [124] [35]
Alpha-MEM	Exosome-free FBS		[119]
Alpha-MEM	1% exosome-depleted		[115]
	FBS		
Alpha-MEM	10% exosome-depleted		[116]
	FBS		
Neurobasal-A	Serum-free	Once	[57]
MSC NutriStem XF	Serum-free		[16] [25]
Ham's F-12K	Serum-free		[109]
STK2	Serum-free		[31]

SH-SY5Y	0.1% FBS		[36]
CCM	Exosome-free FBS		[50]
Vesicle-free medium	Vesicle-free serum		[103]
Exosome-free medium			[58]
Odontogenic media	Serum-free	With serum-free media	[56] [69]
TheraPEAK MSCGM-CD	Serum-free		[118] [121] [99]
RPMI	Serum-free		[90]

Supplementary Table S5: Culture medium used for the preparation of DMSC-CM in literature. FBS: fetal bovine serum, empty cells mean that data were not provided.

Microenvironment cues	References
3D culture	[16]
Stimulation with NRG1-beta1, bFGF, PDGF and forskolin	[44]
	[50]
Lipopolysaccharide (LPS)-preconditioning	[98]
Hypoxia (1% O2, 5% CO2, and 94% N2)	[68]
Hypoxic preconditioning through stabilization of hypoxia-	[89]
inducible factor 1α (HIF-1α)	
Oxygen deprivation	[104]
Odontogenic induction	[53] [91] [56] [69]
Osteo-differentiation	[66] [90]
FGF-2 gene-modification using lentiviral transfection	[114]

Supplementary Table S6: The microenvironmental conditions and DMSC population selections used to prepare CM in the literature. Empty cells mean that data were not provided.

Centrifugation	Ultrafiltration	Filtration	Dilution	References
At 726 g for 5min	Concentration with a cutoff of 3-kDa	0.2 μm		[97]
	Concentration with a cutoff of 3 kDa			[72] [71]
At 1800 g for 10 min	Concentration 5X with a cutoff of 3 kDa			[40]
	Concentration 10X with a cutoff of 3 kDa			[79]
	Concentration 25X with a cutoff of 3 kDa			[49] [74] [73]
At 269 g for 6 min	Concentration 25X with cutoff of 3 KDa	0.2 μm		[55]
	Concentration 40X with a cutoff of 3 kDa			[13] [37]
	Concentration 80X with a cutoff of 3 kDa			[77]
	Concentration 10X with a cutoff of 10 kDa			[78], [80]
At 1500 rpm for 5 min → 3000 rpm for 3 min	Concentration 10X with a cutoff of 10 kDa			[14]
At 1000 g for 3 min	Concentration 30X with cutoff of 10 KDa	0.2 μm	2-, 5- 10- fold	[59]
	Concentration 40X with a cutoff of 10 kDa			[28]
At 1000 rpm for 10 min	Concentration 50X with a cutoff of 10 kDa	0.2 μm		[114]
At 173 g for 5min	Concentration 100X with a cutoff of 10 kDa	0.2 μm		[30]
At 1000 rpm for 5 min	Concentration 17 – 31 X and 450 X with a	0.2 μm		[101]
	cutoff of 10 kDa			
At 2500 rpm for 3 min	Concentration with a cutoff of 5 - 30 kDa			[81] [15]
Centrifugation	Concentration 10X			[68]
	Concentration			[60] [76]
At 130 g for 10 min	Concentration	0.2 μm		[106]
At 130 g for 10 min		0.2 μm		[107]
Centrifugation		0.2 μm		[41]

Centrifugation	0.2 μm		[102]
At 310 g for 6 min	0.2 μm		[31]
At 1500 rpm for 5 min → 3000 rpm for 3 min	0.2 μm		[48] [38]
At 3000 rpm for 5 min	0.2 μm		[33] [34]
At 1500 rpm	0.2 μm		[89]
At 250 g for 10 min	0.2 μm		[39]
At 200 g for 5 min	0.2 μm		[104]
At 1000 g for 4 min	0.2 μm		[113]
At 3000 g for 3 min and 1500 g for 5 min	0.2 μm		[100]
	0.2 μm		[66] [98]
	0.2 μm		[17]
At 1000 g for 5 min	0.2 μm	1-fold	[109]
	0.2 μm	1-fold	[110] [111] [112] [124] [128] [123]
At 3000 rpm for 5 min	0.2 μm	1-fold	[35]
At 200 g for 5 min	0.2 μm	1-fold	[46]
At 2000 g for 20 min	0.2 μm	1-fold	[125] [126]
Centrifugation	0.2 μm	1-fold	[122]
Centrifugation	0.2 μm		[41]
At 2000 g for 15 min			[127]
300 g for 10 min → 2000 g for 10 min		1 fold	[96]
	0.45 μm		[43]
At 22140 g for 5 min → 44280 g for 3 min			[27]
At 22140 g for 4–5 min → brief re-			[85] [52]

centrifugation		
At 440 g for 4–5 min →17400 g for 1 min		[86] [23] [84] [21] [51]
At 3000 g for 5 min		[92]
At 3000 g for 15 min		[121], [99]
At 440 g for 5 min →17400 g for 3 min		[87] [83] [94]
At 440 g for 3 min		[93]
At 300 g		[36]
At 22140 g twice for 5 min		[20]
At 1500 rpm for 5 min → 3000 rpm for 3 min		[18], [62], [88], [95], [22]
At 1200 rpm for 5 min → 3000 rpm for 3 min		[120], [118]
At 440 g for 3 min → 17400 g for 3 min		[24]
At 440 g for 3 min → 1740 g for 3 min		[19]
At 440 g for 3 min → 1750 g for 3 min		[26]
At 15000 g for 5 min		[29]
At 300 g for 6 min		[57]
C 1 . T 11 C7 C . COM	'C' .' 1 ' . DMC	 D 4 11 41 4

Supplementary Table S7: Summary of CM purification procedures in studies using DMSC-CM for tissue regeneration. Empty cells mean that data were not provided.

Purification of EVs	EV size range (nm)	References
		[16] [98] [103] [92]
	30–70	[25]
	100	[96]
	120.6	[105]
	40–140	[91]
	135	[56]
Differential centrifugation/ Ultracentrifugation	87 - 143	[61]
	30–150	[50] [116]
	30–200	[38]
	30–250	[67]
	50–200	[64]
	50–300	[55]
		[39] [69] [121]
	95.8 ±5.8	[117]
	30–100	[82]
	102	[119]
Isolation using exosome isolation reagent	103.8±2.1	[115]
	30–150	[53]
	45–156	[58]
	90±20 and 1,200±400	[99]

Supplementary Table S8: Summary of extravesicles (EVs) purification procedures in studies using DMSC-CM derived products for tissue regeneration. Empty cells mean that data were not provided.

References
[43] [13] [35]
[87] [94] [88] [28]
[78] [80] [79] [127] [122]
[13]
[29], [25], [41]
[88] [28] [35] [55] [68] [92] [66] [14] [17] [39] [36] [38] [110] [46] [48] [45] [30] [57] [109]
[91] [34] [107] [59] [111] [112] [113] [56] [105] [61] [123] [104] [103] [102] [64] [97] [114]
[116] [40] [74] [73] [16]
[100]
[13] [74] [73] [16]

Supplementary Table S9: Summary of CM storage conditions in studies using DMSC-CM for tissue regeneration. Empty cells mean that data were not provided.

Characterization methods	References
Bradford protein assay	[49] [74] [73] [77] [65] [120] [13] [118]
BCA protein assay	[60] [24] [23] [18] [53] [83] [67] [56] [105] [61] [50] [51] [64] [97] [116] [119] [81] [57] [21]
	[48] [45] [109] [63] [104] [30] [84] [15] [108] [34] [106]
ELISA	[55] [68] [92] [66] [44] [88] [89] [47] [35] [41] [114] [48] [45] [109] [63] [104] [84] [15] [42]
Antibody array	[81] [57] [21] [48] [45] [109] [63] [104] [28] [84] [15] [101]
Multiplex immunoassay	[31] [102] [90] [13]
Multiplex Bead Array Assays	[40]
LC-MS/MS	[93] [33] [108] [34] [101] [106]
Western blot	[118] [106]
Proton NMR spectroscopy	[40]
Quantitative RT-PCR	[42] [106]

Supplementary Table S10: Summary of CM characterization methods in studies using DMSC-CM for tissue regeneration. BCA: Bicinchoninic Acid, ELISA: Enzyme-Linked Immunosorbent Assay, LC-MS/MS: Liquid Chromatography with Tandem Mass Spectrometry, NMR: Nuclear Magnetic Resonance, RT-PCR: Reverse Transcription Polymerase Chain Reaction. +: done.