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Abstract
Electroconvulsive therapy (ECT) uses a certain amount of electric current to pass 
through the head of the patient, causing convulsions throughout the body, to 
relieve the symptoms of the disease and achieve the purpose of treatment. ECT 
can effectively improve the clinical symptoms of patients with major depression, 
but its therapeutic mechanism is still unclear. With the rapid development of 
neuroimaging technology, it is necessary to explore the neurobiological 
mechanism of major depression from the aspects of brain structure, brain function 
and brain metabolism, and to find that ECT can improve the brain function, 
metabolism and even brain structure of patients to a certain extent. Currently, an 
increasing number of neuroimaging studies adopt various neuroimaging 
techniques including functional magnetic resonance imaging (MRI), positron 
emission tomography, magnetic resonance spectroscopy, structural MRI, and 
diffusion tensor imaging to reveal the neural effects of ECT. This article reviews 
the recent progress in neuroimaging research on ECT for major depression. The 
results suggest that the neurobiological mechanism of ECT may be to modulate 
the functional activity and connectivity or neural structural plasticity in specific 
brain regions to the normal level, to achieve the therapeutic effect.

Key Words: Neuroimaging; Major depression; Electroconvulsive therapy; Magnetic 
resonance imaging; Positron emission tomography; Magnetic resonance spectroscopy
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and after electroconvulsive therapy (ECT) have shown that ECT has effects on specific 
brain areas. However, these ECT-regulated brain regions and their changes are 
uncertain. Based on recent studies with various neuroimaging techniques, this paper 
reviews longitudinal neuroimaging findings in recent years and discusses the relatively 
consistent results.
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depression with electroconvulsive therapy. World J Psychiatry 2022; 12(1): 128-139
URL: https://www.wjgnet.com/2220-3206/full/v12/i1/128.htm
DOI: https://dx.doi.org/10.5498/wjp.v12.i1.128

INTRODUCTION
Major depressive disorder (MDD) has become a major public health problem 
throughout the world. Approximately 322 million people suffer from depression 
worldwide, with a prevalence rate of 4.4%. More than 1 million people commit suicide 
due to depression every year[1]. Neuroimaging studies have shown that the structural 
and functional alterations in frontal lobe, cingulate gyrus (CG), hippocampus, basal 
ganglia and other brain regions are closely related to the pathogenesis of depression
[2].

Electroconvulsive therapy (ECT) is essentially a method of using electrical current to 
induce epileptiform discharges in the cortex, causing a systemic seizure to control 
mental symptoms. Since ECT was invented by Italian scientists Cerletti and Bini in 
1938, it has been extensively applied to the treatment of mental disorders for > 80 
years[3]. At present, ECT is an indispensable treatment in the field of psychiatry. It is 
still the first choice for patients with severe depression with stubborn suicidal 
thoughts, delusions, and food refusal, followed by schizophrenia and mania[4]. ECT 
has attracted increasing attention in neurologic diseases due to its rapid and high 
response rate in patients with depression[5,6].

Currently, the neural mechanisms underlying the clinical response to ECT for MDD 
remain uncertain, and there are no widely accepted biomarkers that can be used to 
assist in the diagnosis or treatment options for individual patients. It only relies on 
subjective judgments based on clinical features and lacks objective and reliable 
evidence[7]. To facilitate treatment development, a clearer understanding of the neural 
correlates of successful antidepressant responses is essential[8]. Neuroimaging 
technology has the potential to identify objective neurobiological markers that reflect 
the underlying pathophysiological process in a given mental illness, and it is a 
noninvasive research method for observing brain changes. Various neuroimaging 
techniques such as positron emission tomography (PET) and magnetic resonance 
imaging (MRI) have promoted research on neuropsychiatric diseases. At the same 
time, this provides a new window for the study of the therapeutic mechanism of ECT 
in depression.

Longitudinal studies of neuroimaging in patients with major depression before and 
after ECT have shown that ECT has effects on specific brain regions and circuits. Some 
studies in the late 1980s focused on refuting the hypothesis that ECT caused brain 
damage and found no overall evidence of structural changes or harmful effects[9-11]. 
After the first high-resolution (1 mm3) MRI study determined ECT-induced structural 
changes by detecting the increase in hippocampal volume[12], several subsequent 
studies confirmed that ECT can also induce alterations in hippocampal structure and 
other brain regions[13-16]. Recent research using machine learning and MRI can help 
patients and psychiatrists make more informed decisions about ECT as a treatment 
option[17,18]. These studies use machine learning algorithms to identify patients who 
are most likely to benefit from ECT at the individual level. Using these methods also 
helps to discover biomarkers in the brain that can predict the response to ECT 
treatment.

Although an increasing number of neuroimaging studies have attempted to reveal 
the neurological effects of ECT, these ECT-regulated brain regions and their changes 
are usually inconsistent. Therefore, based on recent longitudinal neuroimaging 
findings related to ECT treatment in depression, we investigated the progress made in 
these studies.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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BRAIN FUNCTIONAL IMAGING STUDY FOR DEPRESSION WITH ECT
Functional MRI
Blood oxygenation level-dependent functional MRI (BOLD-fMRI) has been applied in 
the field of brain function research since the 1990s and has become the most rapidly 
developing functional detection technology. BOLD-fMRI has the advantages of being 
noninvasive, nonradioactive, repeatable, and having high temporal and spatial 
resolution. It also allows analysis on a single-subject basis to reflect the dynamic 
activity of neurons and the different patterns of response between adjacent cortices 
throughout the process. The spontaneous low-frequency activity information collected 
in the resting state is defined as the baseline brain function information, which reflects 
the spontaneous functional activities of the central nervous system in the basic state
[19,20]. Therefore, fMRI in the resting state has obvious clinical advantages. Resting-
state fMRI (rs-fMRI) is also particularly suitable for the study of patients with major 
depression because it does not require the patient to perform a specific task. Thus, rs-
fMRI is increasingly widely used in the study of brain function in depression.

ECT can cause changes in the functional connectivity (FC) in specific brain regions 
in patients with depression. These changes may reveal that the clinical improvement 
of depression is related to the treatment effect of ECT through fMRI. Assessing 
changes in FC requires analyzing the differences before and after ECT. In recent years, 
different results have been reported[21]. In the voxel-analysis method, the CG is 
generally regarded as an important area related to ECT. There were significant 
changes in ECT, including a decrease in resting state FC (rsFC) in the left dorsal 
anterior cingulate cortex (dACC) and an increase in rsFC in the bilateral posterior 
cingulate cortex (PCC). Other important areas found in the rsFC after ECT are the 
frontal cortex, parietal cortex and temporal cortex, including the bilateral anterior 
central gyrus, dorsomedial prefrontal cortex, bilateral superior frontal gyrus (SFG), left 
angular gyrus (LAG), left precuneus, bilateral hippocampus, right superior temporal 
gyrus, right island, and cerebellum[21]. For instance, Wei et al[22] adopted FC strength 
(FCS) to identify brain hubs through resting-state fMRI at three time points, i.e., prior 
to ECT, at the completion of ECT, and 1 mo after the completion of ECT. The results 
showed that the FCS of the LAG of patients with depression after ECT was 
significantly increased. Mo et al[23] found that the FC of the LAG with the bilateral 
inferior temporal gyrus (ITG), bilateral middle frontal gyrus, and other areas was sig-
nificantly increased, accompanied by emotional improvement. Sun et al[24] used fMRI 
data to make preliminary predictions of individual response to ECT, and the results 
showed that the predictive areas were concentrated in the prefrontal and temporal 
cortices and the subcortical nuclei.

In seed-based analysis, CG is usually also selected as the seed region. After ECT, it 
was found that rsFC of the left subgenual anterior cingulate cortex (sgACC) with the 
left parahippocampal gyrus (PHG) increased, while rsFC of the contralateral temporal 
pole decreased[25]. During ECT treatment, rsFC of the subcallosal cingulate cortex 
with bilateral hippocampus, bilateral temporal poles, and ventral prefrontal cortex 
was significantly reduced[26]. Some studies also pointed out that rsFC of the sgACC 
with the amygdala and fusiform gyrus changed significantly after ECT treatment. 
Using fMRI data, Leaver et al[27] found that rsFC between the left dorsolateral 
prefrontal cortex (DLPFC) and sgACC was probably an important feature of the ECT 
response to depression. With regard to network-based and region-of-interest (ROI) 
analysis, the changes in rsFC in the left cerebellum, default mode network, ACC, and 
PCC were more frequent after ECT treatment.

ECT can also cause regional functional activity changes in patients with depression. 
It is an important method to study the regional functional activity changes in brain 
regions through fMRI. The indicators include amplitude of low frequency fluctuations 
(ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo). Qiu et al[28] 
found that ReHo of rs-fMRI showed significant differences in brain activity before and 
after ECT. MDD patients who received eight courses of ECT showed higher ReHo 
values in the bilateral frontal lobes, bilateral parietal lobes, and right caudate nucleus. 
Decreased ReHo values were observed in the left anterior cerebellar lobe, right CG, 
right superior temporal gyrus, and right medial temporal gyrus. Argyelan et al[29] 
used rs-fMRI to compare patients with treatment-resistant depression before ECT with 
normal controls and found that the fALFF of the right cingulate cortex increased 
significantly in patients, suggesting that local brain functional activity is hyperactive. 
The fALFF in the cingulate cortex in patients after ECT was significantly lower than 
that before ECT, and there was no significant difference compared with normal 
controls, indicating that ECT can significantly improve abnormal brain function 
activities. In addition, ReHo of the LAG[23] and ALFF of the dorsal medial prefrontal 
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cortex[30] in MDD patients increased significantly after ECT treatment. In a sham-
controlled fMRI study, Miskowiak et al[31] found that the regulation of medial 
prefrontal hyperactivity during the encoding of negative affectional information may 
be a common mechanism for different biological depression treatments. In response to 
negative emotional stimulation for depression, the activity in the amygdala increases 
abnormally. Redlich et al[32] used fMRI data to find that the patient’s amygdala 
function normalized after ECT.

PET
PET is a modern imaging technology to detect and identify metabolic changes that 
occur prior to structural changes in tissues and organs under disease conditions at the 
molecular level. It measures and displays the biological activities of cells and 
molecules by injecting radioisotope drugs with appropriate half-life into the body. 
According to the concentration of the tracer, cerebral blood perfusion and glucose and 
neurotransmitter metabolism levels can be inferred, and it has the advantages of high 
sensitivity and accurate quantitative analysis.

PET is currently used to study changes in specific neurotransmitter receptors after 
ECT. Masuoka et al[33] used [18F]FE-PE2I PET to examine MDD patients before, during 
and after treatment and found that all patients had a reduced striatal dopamine 
transporter-binding potential (BPND). Combined with the patient’s clinical response, it 
has been proven that the dopamine nervous system is part of the mechanism of ECT. 
Tiger et al[34] used PET and [11C]raclopride to examine patients with severe MDD 
before and after ECT, and healthy controls. Compared with the control group, the [11

C]raclopride binding rate in all three parts of the striatum decreased significantly in 
the patients. However, there was no significant effect of ECT on D2/D3 binding in the 
patients. Baldinger-Melich et al[35] used PET and radioligand [11C]harmine to evaluate 
cerebral monoamine oxidase A (MAO-A) distribution volumes (VT). The results 
showed no significant difference in MAO-A VT between patients with post-ECT 
treatment-resistant depression and healthy controls at baseline. This suggested that 
MAO-A VT is not related to the clinically relevant mechanism of action of ECT. Using 
[18F]Setoperone PET, Yatham et al[36] found that serotonin2 (5-HT2) receptor binding 
was extensively reduced in all cortical regions of MDD patients after ECT. Furthe-
rmore, the reduction in the 5-HT2 receptor in the right PHG, right lingual gyrus and 
right medial frontal gyrus was correlated with the improvement of depressive 
symptoms. These results were consistent with research on antidepressants[37-39]. 
Lanzenberger et al[40] used highly selective radioligand [carbonyl-11C] WY100635-PET 
scans and compared the voxels of serotonin-1A (5-HT1A) receptor binding (BPND) 
before and after ECT. The results showed extensive decreases in cortical and 
subcortical areas, except for the cerebellum and the occipital cortex. This PET study 
proposed the whole-brain involvement of postsynaptic 5-HT1A receptor binding in 
ECT effects.

PET is utilized to evaluate ECT-related changes in [18F]-fluorodeoxyglucose (FDG) to 
measure the rate of local brain metabolism of glucose. The most consistent finding in 
pre- and post-ECT comparisons was decreased glucose metabolism in the bilateral 
frontal medial and inferior frontal areas and right frontal operculum[41]. The areas 
with increased glucose metabolism included the hippocampus, middle temporal lobe, 
left occipital lobe, parietal lobe and pons. Bak et al[42] used [18F]-FDG PET to study the 
efficacy of ECT in a 55-year-old woman with late-onset depression. 18F-FDG 
PET/computed tomography (CT) images of the patient’s brain showed a diffuse 
decrease in brain metabolism. After the patient’s symptoms were improved by ECT, 
her PET imaging showed her brain metabolism was normal. After improving the 
patient’s symptoms through ECT, PET imaging showed that her brain metabolism was 
normal. Hassamal et al[43] adopted 18F-FDG-PET/CT before ECT to show extensive 
hypometabolism in the frontal, parietal and temporal cortices. After eight sessions of 
ECT, symptoms of psychosis and anxiety symptoms as well as cognitive impairment 
were resolved. 18F-FDG-PET/CT showed improvement in hypometabolism of the 
cerebral cortex, especially in the left parietal cortex, left temporal/occipital cortex, and 
bilateral frontal areas. The improvement of brain glucose hypometabolism may 
represent the neurophysiological mechanism of ECT for the treatment of psychotic 
episodes. However, Reininghaus et al[6] reported inconsistent results. They employed 
FDG-PET scans to measure the effects of a series of ECT treatments on brain glucose 
metabolism in depressed subjects before and after treatment. They found that there 
was almost no change in brain glucose metabolism. Therefore, they did not think that 
FDG-PET can evaluate the functional brain changes that may occur after ECT.
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Magnetic resonance spectroscopy
Magnetic resonance spectroscopy (MRS) is used to determine abnormal metabolic 
conditions in tissues by measuring changes in the concentration of metabolites in the 
human body and observing different peaks and ratios of the spectrum curve. MRS is a 
noninvasive detection technology that can measure neurobiochemical information in 
specific brain functional areas and analyze the content of neurobiochemical 
substances. These compounds include γ-aminobutyric acid (GABA), glutamate (Glu), 
choline-containing compounds, N-acetyl-L-aspartic acid (NAA), glutamine (Gln), 
myoinositol, and creatine (Cr).

Glu plays a key role in the pathophysiology of depression[44]. There was evidence 
that the levels of Glu and Gln in pgACC were reduced[45,46], while the concentration 
of Glu in the DLPFC was unchanged[47,48]. ECT caused changes in glutamatergic 
neurotransmission that seem to be closely related to its antidepressant effects[49,50]. 
Njau et al[51] reported that Glx (Glu and Gln) increased in sgACC but decreased in the 
left hippocampus in patients with depression after ECT treatment, and these changes 
were related to the improvement of mood. Glx disorders in MDD patients and the 
regulation of Glx levels by ECT vary from region to region. Although some studies 
reported increased Glx levels in the DLPFC and ACC after ECT[49,52], one study was 
unable to replicate these findings[48]. There were similar contradictory reports for the 
hippocampus. A recent study reported the correlation between elevated hippocampal 
Glx and ECT response in patients with medication-resistant depression[53], while 
another report was unable to confirm these results[54]. In general, brain metabolism of 
Glu has been an important component of ECT efficacy, but there are differences in the 
exact mechanism.

In addition, reduced levels of GABA in cerebrospinal fluid and plasma, as well as in 
the frontal cortex, were reported in patients with depression[55]. Thus, increased 
serum levels and occipital GABA concentrations were observed after ECT[56,57]. 
However, Knudsen et al[58] used MRS to measure GABA changes in the prefrontal 
and occipital cortex in patients before and after ECT. There were no significant 
differences in GABA/Cr levels in the prefrontal cortex or occipital lobe between 
baseline patients and healthy subjects, and there was no statistically significant 
difference in GABA, Glu, glutamine, choline or GSH before and after ECT. They 
concluded that GABA should not be considered a key factor in the treatment of major 
depression with ECT.

NAA is a marker of neurons and axons, and its concentration can reflect the number 
and functional status of neurons. Proton MRS (H-MRS) showed that ECT can increase 
the content of NAA in the anterior CG and amygdala, suggesting that ECT has a 
nerve-promoting effect. Njau et al[51] detected MDD patients with ECT through 1H-
MRS and found that compared with the control group, the content of NAA in the left 
hippocampus of the patients was reduced before treatment. Meanwhile, the NAA 
levels of the dACC and right hippocampus also decreased significantly after ECT 
treatment.

Tosun et al[59] observed the metabolic changes of ACC in MDD patients after ECT 
through 1H-MRS. There was no significant difference in the levels of ACC metabolites 
between the patients and the control group at baseline. ECT was associated with a 
statistically significant decrease in the NAA/Cr ratio in ACC. All patients responded 
to ECT treatment as measured by the clinical scale. These results suggest that a relative 
increase in Cr levels after ECT in MDD appears to be associated with an improvement 
in clinical severity. However, Ende et al[60] found that hippocampal NAA did not 
change after ECT, and the choline content increased, indicating that ECT may be 
related to increased membrane transformation and may reflect neurogenesis.

Because the different neurotransmitter systems involved in the antidepressant effect 
of ECT are connected to each other through a complex signal transduction network 
and the changes in the content of neurobiochemical substances are also complicated, 
the above findings based on MRS have presented inconsistent results.

BRAIN STRUCTURAL IMAGING STUDY FOR DEPRESSION WITH ECT
Structural MRI
ECT can improve brain function and change the brain structure in patients with 
depression. Many MRI structural studies in patients with MDD have shown morpho-
logical abnormalities, mainly manifested as cortical thickness, gray matter volume, 
and white matter integrity[61]. Longitudinal structural neuroimaging studies have 
proven that ECT increases the volume of the hippocampus, amygdala, caudate 
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nucleus, and temporal lobe. Some studies have found that ECT increases the volume of 
the hippocampus and amygdala in the temporal lobe system in patients with 
depression[62-64]. The strongest evidence of structural changes in the brain after ECT 
was an increase in the volume of the temporal lobe and subcortical structures, such as 
the hippocampal-amygdala complex, anterior cingulate cortex and striatum[65].

Voxel-based morphology (VBM) is a powerful and objective method for studying 
brain structural changes in patients with depression before and after ECT through 
MRI. Due to its simplicity of use, VBM has inspired many neuroscientists to charac-
terize specific abnormalities in brain gray matter volume in MDD[66,67].

Some studies have used ROI methods to analyze brain regions closely associated 
with depression. Tendolkar et al[62] took the bilateral hippocampus and amygdala as 
regions of interest and found that ECT could increase the gray matter volume of the 
bilateral hippocampus and amygdala in patients with refractory depression. 
Accordingly, the Hamilton Depression Scale score was significantly reduced after ECT, 
and the severity of depressive symptoms was reduced. Gryglewski et al[68] found that 
structural changes were observed in the hippocampal subregions and amygdala after 
ECT. These structural changes are particularly involved in the pathophysiology of 
depression and stress-related diseases and still have high neuroplasticity in adulthood. 
Cao et al[69] used the latest hippocampal segmentation method and found that ECT 
induced cornu ammonis subfields, granule cell layer, molecular layer, and 
hypothalamic volume increases. It also accurately predicted the quantitative efficacy of 
ECT for each patient. Joshi et al[70] used FreeSurfer to segment the hippocampus and 
amygdala and found that ECT induced neuroplasticity processes related to clinical 
responses, which can correct the reduction in the structure of the hippocampus and 
amygdala associated with MDD. Patients with small hippocampal volumes were most 
likely to show an increase in volume and improve clinical response. Therefore, 
changes in the structure of the hippocampus and amygdala could serve as potential 
biomarkers for the development of other rapidly effective therapies. Jorgensen et al[54] 
used structural MRI (sMRI) of the hippocampus, amygdala, DLPFC, orbitofrontal 
cortex, and hypothalamus and found that the hippocampus and amygdala volume 
increased in patients with major depression after ECT, while the volume of the DLPFC 
decreased slightly. However, due to the lack of correlation between these changes and 
the antidepressant effect, this remodeling of the brain structure does not appear to 
directly affect the antidepressant effect of ECT. Wade et al[8] conducted a longitudinal 
study on the cortical volume, cortical thickness and cortical surface area of the caudate 
nucleus, putamen, pallidum, and nucleus accumbens through surface-based 
morphometry. Compared with the control group, the volume of the nucleus 
accumbens and nucleus pallidum were smaller in MDD patients. ECT caused an 
increase in the volume of the left putamen. In patients defined as responders to 
treatment, there was an increase in overall nucleus accumbens volume and local 
changes in globus pallidus and caudate nucleus volume. Thus, ECT induces structural 
plasticity in the dorsal and ventral striatum/pallium.

In some studies, VBM has been effectively used to evaluate anatomical 
abnormalities in the whole brain. Ota et al[71] found that the volume of the bilateral 
medial temporal cortex, inferior temporal cortex and right anterior CG increased 
significantly after ECT. In addition, the rate of increase was associated with clinical 
improvement as measured by the Hamilton Depression Scale. Van Eijndhoven et al[72] 
compared the brain images of treatment-resistant MDD patients before and after ECT 
with normal controls and found that there was no significant difference in the 
thickness of the whole cerebral cortex between patients before ECT and normal 
controls. After ECT, the patients had increased cerebral cortex thickness in the left 
temporal pole, left middle temporal gyrus, and right insula compared with the control 
group. Meanwhile, the Hamilton Depression Scale score was significantly lower than 
before treatment, with an average decrease of 57%. Sartorius et al[16] analyzed sMRI 
before and after ECT and found that the gray matter volume of the whole brain 
increased in most patients after ECT, while the white matter volume of the brain did 
not significantly change. Further voxel-based morphological analysis showed that the 
volume of gray matter in the bilateral temporal lobe, the middle CG, the insular lobe 
and the putamen increased after treatment. Jiang et al[73] adopted six GM areas 
including the right hippocampus/parahippocampus, the right orbitofrontal gyrus, the 
right ITG, the left posterior middle gyrus/anterior process, the left auxiliary motor 
area and the left lingual gyrus to be identified as predictors of ECT response. They 
revealed that GM density only increased in the left auxiliary motor cortex and the left 
middle posterior gyrus/protrusion after ECT. The results indicate that the treatment 
prediction area and the treatment response area may be anatomically different. Pirnia 
et al[74] found that the thickness increased in the bilateral anterior cingulate cortex, 
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superior temporal cortex etc. ECT resulted in extensive neuroplasticity in the 
neocortex, limbic and paralimbic areas. Moreover, changes in ACC thickness can 
distinguish treatment responders and predict early responses during ECT.

Gbyl and Videbech[75] concluded that current MRI studies do not support the 
hypothesis that ECT causes brain damage. They confirmed that ECT causes an increase 
in the volume of the limbic area of the frontal lobe, and further research should 
explore the relationship between these increases and treatment effects and cognitive 
side effects. Many studies have shown an increase in hippocampal volume following 
ECT, but there are conflicting results as to whether the increase in hippocampal 
volume is associated with clinical response. Other studies have found increased GMV 
or cortical thickness in areas such as the amygdala, frontotemporal cortex, lingual 
gyrus, thalamus, and striatum.

Diffusion tensor imaging
Diffusion tensor imaging (DTI) is a derivative technique of diffusion-weighted 
imaging that can noninvasively detect the direction and integrity of white matter tracts 
by evaluating the diffusion of water molecules in nerve tissue. It has important applic-
ations in neuroimaging research.

Chen et al[76] performed a meta-analysis of microstructural brain abnormalities in 
drug-naïve patients with major depression through DTI. They observed that the main 
areas of fractional anisotropy reduction included the bilateral anterior limb of the 
internal capsule, body of the corpus callosum, right SFG, and right ITG. Gbyl and 
Videbech[74] found that an ECT-induced increase in the integrity of the white matter 
pathways in the frontal and temporal lobes through a meta-analysis of DTI, but the 
correlation between the increase in volume and the treatment effect and the 
mechanism of action of ECT are still uncertain. Yrondi et al[77] found a reduction in 
the hippocampus and left amygdala during ECT in patients with treatment-resistant 
depression using mean diffusivity (MD) measure. They concluded that ECT can 
correct the microstructural integrity of these structures. Gryglewski et al[78] conducted 
a DTI study on patients with treatment-resistant depression using unilateral ECT and 
found that axial diffusivity was increased in the posterior limb of the internal capsule 
in the right hemisphere. Compared with the left hemisphere, the increase in this region 
was higher on the right. However, no correlation between this effect and treatment 
response was found. Repple et al[79] used DTI to analyze the alterations in the white 
matter structure in patients with depression before and after ECT and found that MD 
of the right hemisphere increased after ECT, which was a specific effect in the ECT 
group. Kubicki et al[80] revealed alterations in the structural connections of the 
hippocampal neural circuits after ECT. It also means that glial, neurotrophic or inflam-
matory response mechanisms affect the integrity of the axons. Lyden et al[81] observed 
a significant increase in fractional anisotropy in the dorsal frontolimbic circuits 
including the anterior cingulate, forceps, and left superior longitudinal fascia between 
baseline and transition to maintenance therapy. Radial and MD in overlapping regions 
and anterior thalamic radiation were reduced. Changes in DTI indicators related to 
treatment response indicated that ECT effects significantly differed between MDD and 
control groups. Alterations in white matter microstructure in the pathways connecting 
the frontal and limbic regions that occur in MDD are regulated by ECT and are 
associated with treatment response.

CONCLUSION
In recent years, the rapid development of neuroimaging technologies represented by 
MRI has played a major role in promoting the study of neurological mechanisms of 
mental diseases. With the continuous emergence of new technologies, they have been 
able to provide different levels of physiological and pathological information from 
macroscopic tissue morphology to microscopic subcellular structure, and from blood 
flow and energy metabolism to high-level brain functional networks, which embodies 
the characteristics of multidimensional and multimodal information. Research on the 
neural effects of ECT needs to consider the physical and mental state of patients with 
major depression to adopt appropriate neuroimaging technology. At present, MRI is 
the most commonly used method, and there are very few studies using single-photon 
emission CT.

In general, the findings of current neuroimaging studies are inconsistent. The main 
reasons are as follows: (1) The operating methods of ECT such as electrode position, 
electric dose, and treatment times are different; (2) Data collection and analysis 
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Table 1 Consistent findings in neuroimaging research on electroconvulsive therapy effects

Neuroimaging technologies Methods/measures Relatively consistent findings

Functional connectivity strength Changes in cingulate cortex, frontal cortex, and left angel 
gyrus

fMRI

Functional activity of local brain regions Changes in cingulate cortex and prefrontal cortex

Neurotransmitters Downregulation of brain serotonin receptorsPET

Glucose metabolism Reduction in glucose metabolism after ECT in bilateral 
anterior and posterior frontal areas

MRS Gln/Glx, GABA, NAA, Cho, mI, Cr None

sMRI Gray matter volumn Increase in hippocampus and amygdala

DTI White matter Alterations in microstructure and pathways

fMRI: Functional magnetic resonance imaging; PET: Positron emission tomography; MRS: Magnetic resonance spectroscopy; sMRI: Structural magnetic 
resonance imaging; DTI: Diffusion tensor imaging; Gln: Glutamine; Glx: Glutamate and Gln; GABA: γ-aminobutyric acid; NAA: N-acetyl-L-aspartic acid; 
Cho: Choline-containing compounds; mI: Myoinositol; Cr: Creatine; ECT: Electroconvulsive therapy.

methods are different; (3) Sample size collected for research is too small; and (4) 
Physiological disorders of patients with depression are heterogeneous. Despite these 
shortcomings, it is not possible to fully understand how ECT works, and there are still 
some encouraging findings. Table 1 gives a summary of relatively consistent findings. 
In the fMRI study of ECT treatment, the significant changes in the functional 
connection strength of the cingulate cortex, frontal cortex, and left angel gyrus were 
relatively consistent. Significant changes in the functional activity of the cingulate 
cortex and frontal cortex are also response markers for ECT treatment. For PET 
studies, consistent conclusions include a reduction in glucose metabolism after ECT in 
the bilateral anterior and posterior frontal areas and downregulation of brain serotonin 
receptors. Due to the complex neurobiochemical alterations in the brain, no consistent 
results have been obtained in the current studies on the treatment of depression with 
ECT based on MRS. Many sMRI studies have found that the increased volumes of the 
hippocampus and amygdala are the most important imaging markers for improving 
depression after ECT. Among white matter DTI studies, much evidence supports an 
increase in white matter pathway integrity after ECT.
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