World Journal of Clinical Cases

World J Clin Cases 2021 October 16; 9(29): 8627-8952

Contents

Thrice Monthly Volume 9 Number 29 October 16, 2021

REVIEW

8627 Time to give up traditional methods for the management of gastrointestinal neuroendocrine tumours Yozgat A, Kekilli M, Altay M

MINIREVIEWS

8647 Healthcare practice strategies for integrating personalized medicine: Management of COVID-19 Liu WY, Chien CW, Tung TH

8658 Clinical application of repetitive transcranial magnetic stimulation for post-traumatic stress disorder: A literature review

Cheng P, Zhou Y, Xu LZ, Chen YF, Hu RL, Zou YL, Li ZX, Zhang L, Shun Q, Yu X, Li LJ, Li WH

8666 Pros and cons of continuous glucose monitoring in the intensive care unit

Sun MT. Li IC. Lin WS. Lin GM

ORIGINAL ARTICLE

Clinical and Translational Research

8671 Prognostic implications of ferroptosis-associated gene signature in colon adenocarcinoma Miao YD, Kou ZY, Wang JT, Mi DH

Retrospective Study

8694 Cefoperazone sodium/sulbactam sodium vs piperacillin sodium/tazobactam sodium for treatment of respiratory tract infection in elderly patients

Wang XX, Ma CT, Jiang YX, Ge YJ, Liu FY, Xu WG

8702 Modified Gant procedure for treatment of internal rectal prolapse in elderly women

Xu PP, Su YH, Zhang Y, Lu T

8710 Clinical and imaging features of desmoid tumors of the extremities

Shi Z, Zhao XM, Jiang JM, Li M, Xie LZ

8718 Retrospective analysis of surgically treated pT4b gastric cancer with pancreatic head invasion

Jin P, Liu H, Ma FH, Ma S, Li Y, Xiong JP, Kang WZ, Hu HT, Tian YT

8729 Development of a random forest model for hypotension prediction after anesthesia induction for cardiac

Li XF, Huang YZ, Tang JY, Li RC, Wang XQ

Contents

Thrice Monthly Volume 9 Number 29 October 16, 2021

Clinical Trials Study

8740 Effects of mindful breathing combined with sleep-inducing exercises in patients with insomnia Su H, Xiao L, Ren Y, Xie H, Sun XH

Observational Study

8749 Chronic hepatitis-C infection in COVID-19 patients is associated with in-hospital mortality Ronderos D, Omar AMS, Abbas H, Makker J, Baiomi A, Sun H, Mantri N, Choi Y, Fortuzi K, Shin D, Patel H, Chilimuri S

8763 Midazolam dose is associated with recurrence of paradoxical reactions during endoscopy Jin EH, Song JH, Lee J, Bae JH, Chung SJ

CASE REPORT

8773 Isolated mass-forming IgG4-related sclerosing cholangitis masquerading as extrahepatic cholangiocarcinoma: A case report

Song S, Jo S

8782 Samonella typhi infection-related appendicitis: A case report

Zheng BH, Hao WM, Lin HC, Shang GG, Liu H, Ni XJ

8789 ACTA2 mutation is responsible for multisystemic smooth muscle dysfunction syndrome with seizures: A case report and review of literature

Yang WX, Zhang HH, Hu JN, Zhao L, Li YY, Shao XL

8797 Whole-genome amplification/preimplantation genetic testing for propionic acidemia of successful pregnancy in an obligate carrier Mexican couple: A case report

Neumann A, Alcantara-Ortigoza MA, González-del Angel A, Zarate Díaz NA, Santana JS, Porchia LM, López-Bayghen E

8804 Is mannitol combined with furosemide a new treatment for refractory lymphedema? A case report

Kim HS, Lee JY, Jung JW, Lee KH, Kim MJ, Park SB

Successful treatment of floating splenic volvulus: Two case reports and a literature review 8812

Sun C, Li SL

8820 Removal of "ruptured" pulmonary artery infusion port catheter by pigtail catheter combined with gooseneck trap: A case report

Chen GQ, Wu Y, Zhao KF, Shi RS

8825 Isolated neutropenia caused by copper deficiency due to jejunal feeding and excessive zinc intake: A case

П

Ohmori H, Kodama H, Takemoto M, Yamasaki M, Matsumoto T, Kumode M, Miyachi T, Sumimoto R

8831 Diagnosis and treatment of eosinophilic fasciitis: Report of two cases

Song Y, Zhang N, Yu Y

8839 Familial left cervical neurofibromatosis 1 with scoliosis: A case report

Mu X, Zhang HY, Shen YH, Yang HY

World Journal of Clinical Cases

Contents

Thrice Monthly Volume 9 Number 29 October 16, 2021

8846 Successful treatment after toxic epidermal necrolysis induced by AZD-9291 in a patient with non-small cell lung cancer: A case report

Li W, He X, Liu H, Zhu J, Zhang HM

8852 Anesthesia management in a pediatric patient with Becker muscular dystrophy undergoing laparoscopic surgery: A case report

Peng L, Wei W

8858 Diagnosis of upper gastrointestinal perforation complicated with fistula formation and subphrenic abscess by contrast-enhanced ultrasound: A case report

Qiu TT, Fu R, Luo Y, Ling WW

8864 Adenomyoepithelioma of the breast with malignant transformation and repeated local recurrence: A case report

Oda G, Nakagawa T, Mori M, Fujioka T, Onishi I

8871 Primary intracranial synovial sarcoma with hemorrhage: A case report

Wang YY, Li ML, Zhang ZY, Ding JW, Xiao LF, Li WC, Wang L, Sun T

8879 Lumbar infection caused by Mycobacterium paragordonae: A case report

Tan YZ, Yuan T, Tan L, Tian YQ, Long YZ

8888 Primary intratracheal neurilemmoma in a 10-year-old girl: A case report

Wu L, Sha MC, Wu XL, Bi J, Chen ZM, Wang YS

8894 Ovarian pregnancy rupture following ovulation induction and intrauterine insemination: A case report

Wu B, Li K, Chen XF, Zhang J, Wang J, Xiang Y, Zhou HG

8901 Delayed diagnosis of imperforate hymen with huge hematocolpometra: A case report

Jang E, So KA, Kim B, Lee AJ, Kim NR, Yang EJ, Shim SH, Lee SJ, Kim TJ

8906 Acute pancreatitis with hypercalcemia caused by primary hyperparathyroidism associated with paraneoplastic syndrome: A case report and review of literature

Yang L, Lin Y, Zhang XQ, Liu B, Wang JY

8915 Use of a modified tracheal tube in a child with traumatic bronchial rupture: A case report and review of literature

Fan QM, Yang WG

8923 Isolated liver metastasis detected 11 years after the curative resection of rectal cancer: A case report

Yonenaga Y, Yokoyama S

8932 Severe bleeding after operation of preauricular fistula: A case report

Tian CH, Chen XJ

8938 Secondary aortoesophageal fistula initially presented with empyema after thoracic aortic stent grafting: A

case report

Wang DQ, Liu M, Fan WJ

World Journal of Clinical Cases

Contents Thrice Monthly Volume 9 Number 29 October 16, 2021 8946 Disruption of sensation-dependent bladder emptying due to bladder overdistension in a complete spinal cord injury: A case report Yoon JY, Kim DS, Kim GW, Won YH, Park SH, Ko MH, Seo JH

Contents

Thrice Monthly Volume 9 Number 29 October 16, 2021

ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Jiiang-Huei Jeng, DDS, PhD, Professor, School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Taipei 100, Taiwan. jhjeng@ntu.edu.tw

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WICC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC's CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Jia-Hui Li; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL

World Journal of Clinical Cases

ISSN

ISSN 2307-8960 (online)

LAUNCH DATE

April 16, 2013

FREQUENCY

Thrice Monthly

EDITORS-IN-CHIEF

Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng

EDITORIAL BOARD MEMBERS

https://www.wignet.com/2307-8960/editorialboard.htm

PUBLICATION DATE

October 16, 2021

COPYRIGHT

© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION

https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

Submit a Manuscript: https://www.f6publishing.com

World J Clin Cases 2021 October 16; 9(29): 8694-8701

DOI: 10.12998/wjcc.v9.i29.8694

ISSN 2307-8960 (online)

ORIGINAL ARTICLE

Retrospective Study

Cefoperazone sodium/sulbactam sodium vs piperacillin sodium/tazobactam sodium for treatment of respiratory tract infection in elderly patients

Xiao-Xia Wang, Cheng-Tai Ma, Yan-Xia Jiang, Yun-Jie Ge, Fa-Yun Liu, Wen-Gang Xu

ORCID number: Xiao-Xia Wang 0000-0002-7923-7806; Cheng-Tai Ma 0000-0002-5620-5836; Yan-Xia Jiang 0000-0003-4939-0508; Yun-Jie Ge 0000-0003-3520-9771; Fa-Yun Liu 0000-0002-7702-7426; Wen-Gang Xu 0000-0001-8113-1771.

Author contributions: Wang XX, Ma CT, and Xu WG designed the research study; Jiang YX and Ge YJ performed the research; Liu FY analyzed the data and wrote the manuscript; all authors have read and approved the final manuscript.

Institutional review board

statement: The study was reviewed and approved by the Qingdao Municipal Hospital Institutional Review Board.

Informed consent statement: All study participants provided informed written consent prior to study enrollment.

Conflict-of-interest statement: The authors have nothing to disclose.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external

Xiao-Xia Wang, Yun-Jie Ge, Department of Cadre Health, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China

Cheng-Tai Ma, Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266011, Shandong Province, China

Yan-Xia Jiang, Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266011, Shandong Province, China

Fa-Yun Liu, Wen-Gang Xu, Department of Pulmonary, Shandong Qingdao Hospital of Integrated Traditional Chinese and Western Medicine, Qingdao 266011, Shandong Province, China

Corresponding author: Wen-Gang Xu, MD, Chief Physician, Department of Pulmonary Medicine, Shandong Qingdao Hospital of Integrated Traditional Chinese and Western Medicine, No. 5 Jiaxiang Road, Shinan District, Qingdao 266011, Shandong Province, China. jackyxu2021@126.com

Abstract

BACKGROUND

Respiratory tract infections in the elderly are difficult to cure and can easily recur, thereby posing a great threat to patient prognosis and quality of life.

To investigate the therapeutic effects of different antibiotics in elderly patients with respiratory tract infection.

Seventy-four elderly patients with respiratory tract infection were randomly allocated to a study (n = 37; treated with cefoperazone sodium/sulbactam sodium) or control (n = 37; treated with piperacillin sodium/tazobactam sodium on the basis of routine symptomatic support) group. Both groups were treated for 7 d. Time to symptom relief (leukocyte recovery; body temperature recovery; cough and sputum disappearance; and rale disappearance time), treatment effect, and laboratory indexes [procalcitonin (PCT), C-reactive protein (CRP), white blood cell count (WBC), and neutrophil percentage (NE)] before and 7 d after treatment and the incidence of adverse reactions were assessed.

8694

reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Specialty type: Respiratory system

Country/Territory of origin: China

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C Grade D (Fair): 0 Grade E (Poor): 0

Received: June 2, 2021 Peer-review started: June 2, 2021 First decision: June 24, 2021 Revised: July 5, 2021 Accepted: August 9, 2021 Article in press: August 9, 2021

Published online: October 16, 2021

P-Reviewer: Rombach M S-Editor: Wang JL L-Editor: Wang TQ P-Editor: Xing YX

RESULTS

In the study group, the time to WBC normalization (6.79 \pm 2.09 d), time to body temperature normalization $(4.15 \pm 1.08 \text{ d})$, time to disappearance of cough and sputum (6.19 \pm 1.56 d), and time to disappearance of rales (6.68 \pm 1.43 d) were shorter than those of the control group $(8.89 \pm 2.32 \text{ d}, 5.81 \pm 1.33 \text{ d}, 8.77 \pm 2.11 \text{ d},$ and 8.69 ± 2.12 d, respectively; P = 0.000). Total effective rate was higher in the study group (94.59% vs 75.68%, P = 0.022). Serum PCT (12.89 ± 3.96 µg/L), CRP $(19.62 \pm 6.44 \text{ mg/L})$, WBC $(20.61 \pm 6.38 \times 10^{9}/\text{L})$, and NE $(86.14 \pm 7.21\%)$ levels of the study group before treatment were similar to those of the control group (14.05 $\pm 4.11 \mu g/L$, $18.79 \pm 5.96 mg/L$, $21.21 \pm 5.59 \times 10^{\circ}/L$, and $84.39 \pm 6.95\%$, respectively) with no significant differences (P = 0.220, 0.567, 0.668,and 0.291, respectively). After 7 d of treatment, serum PCT, CRP, WBC, and NE levels in the two groups were lower than those before treatment. Serum PCT (2.01 \pm 0.56 μ g/L), CRP (3.11 ± 1.02 mg/L), WBC (5.10 ± 1.83 × 10 $^{\circ}$ /L), and NE (56.35 ± 7.17%) levels were lower in the study group than in the control group (3.29 \pm 0.64 µg/L, $5.67 \pm 1.23 \text{ mg/L}$, $8.13 \pm 3.01 \times 10^{9}/\text{L}$, and $64.22 \pm 8.08\%$, respectively; P = 0.000). There was no significant difference in the incidence of adverse reactions between the groups (7.50% vs 12.50%, P = 0.708).

CONCLUSION

Piperacillin sodium/tazobactam sodium is superior to cefoperazone sodium/ sulbactam sodium in the treatment of elderly patients with respiratory tract infection with a similar safety profile.

Key Words: Cefoperazone sodium; Sulbactam sodium; Piperacillin sodium; Tazobactam sodium; Respiratory tract infection; Elderly

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Antibiotics are the main treatment for respiratory tract infection in elderly patients. Piperacillin sodium/tazobactam sodium belongs to the β-lactam antibiotics class, with a wide antibacterial spectrum, and plays an important role in the treatment of diseases. In this study, the authors wanted to determine the therapeutic value and safety of different antibiotics.

Citation: Wang XX, Ma CT, Jiang YX, Ge YJ, Liu FY, Xu WG. Cefoperazone sodium/sulbactam sodium vs piperacillin sodium/tazobactam sodium for treatment of respiratory tract infection in elderly patients. World J Clin Cases 2021; 9(29): 8694-8701

URL: https://www.wjgnet.com/2307-8960/full/v9/i29/8694.htm

DOI: https://dx.doi.org/10.12998/wjcc.v9.i29.8694

INTRODUCTION

As a class of clinical multiple diseases, respiratory tract infections include lower respiratory tract infections and upper respiratory tract infections. Infection can occur in any age group, and most patients can achieve good recovery after active and standardized intervention. However, the respiratory mucosa of the elderly population has poor clearance. Additionally, immunity and resistance are poor in this population, and respiratory tract infections can easily occur due to external pathogen invasion and infection[1-3]. At the same time, respiratory tract infections in elderly patients are difficult to cure and can easily reoccur, thereby posing a great threat to patient prognosis and quality of life. As a consequence, it is very important to take effective measures to treat these patients as soon as possible[4,5].

Antibiotics are the main treatment for respiratory tract infection in the elderly. Cefoperazone sodium/sulbactam sodium is more commonly used, and can relieve the clinical symptoms to some extent, but the overall effect is not optimal [6,7]. In addition, piperacillin sodium/tazobactam sodium is also commonly used in respiratory tract infections. Piperacillin sodium/tazobactam sodium belongs to the β -lactam antibiotics class, with a wide antibacterial spectrum, and plays an important role in the treatment of diseases[8].

This study selected 74 elderly patients with respiratory tract infection at our hospital to determine the therapeutic value and safety of different antibiotics.

MATERIALS AND METHODS

General information

A total of 74 elderly patients with respiratory tract infection treated at our hospital from January 2019 to October 2020 were randomly allocated into either a study group (n = 37) or a control group (n = 37). In the study group, there were 19 males and 18 females, aged from 61 to 79 years, with an average age of (70.04 ± 6.78) years, and the disease types included lung abscess (n = 6), bronchiectasis with infection (n = 6), bacterial pneumonia (n = 11), and chronic bronchitis (n = 14). In the control group, there were 22 males and 15 females, aged from 60 to 82 years, with an average age of (71.12 ± 7.03) years, and the disease types included pulmonary abscess (n = 4), bronchiectasis with infection (n = 7), bacterial pneumonia (n = 13), and chronic bronchitis (n = 13). The clinical data such as sex, age, and type of disease were comparable between the two groups (P > 0.05).

Selection criteria

Inclusion criteria: The inclusion criteria were: (1) Patients who were confirmed with respiratory tract infection by laboratory examinations such as radiography and blood routine examination; (2) Age \geq 60 years old; (3) Having been briefed regarding the details of this study and having signed a consent form; and (4) Not taking related treatment before being included in the study.

Exclusion criteria: The exclusion criteria were: (1) Patients with organic diseases such as kidney and liver disease; (2) Allergic constitution; (3) Allergic history to known drugs; (4) Patients who showed poor compliance and were unable to cooperate with the investigators; and (5) Patients with other systemic infectious diseases.

Methods

After admission, the two groups of patients were treated with routine symptomatic support, including relieving asthma, resolving phlegm, and relieving cough symptoms. Different medication schemes were adopted on this basis. The control group was treated with cefoperazone sodium/sulbactam sodium [Zhijun (Shenzhen) Pharmaceutical Co., Ltd., Chinese medicine standard H20040401] via an intravenous drip of 3 g/once/12 h. The study group was treated with piperacillin sodium/ tazobactam sodium (Hainan General Kangli Pharmaceutical Co., Ltd., H20103063) via an intravenous drip of 3.375 g piperacillin sodium/tazobactam sodium + sodium chloride injection 250 mL once/6 h. Both groups were treated for 7 d.

Observation indexes

The main indexes were as follows: (1) The time to symptom relief of the two groups was calculated, including the time to recovery of white blood cells, body temperature, cough and sputum, and rales; (2) After 7 d of treatment, the therapeutic effects of the two groups were assessed. The treatment was deemed markedly effective if the blood routine examination was normal and the clinical symptoms disappeared completely, and the X-ray examination showed that the absorption of pulmonary lesions was more than 90%. The treatment was deemed effective if the clinical symptoms partially disappeared, and the X-ray examination showed that the absorption of pulmonary lesions was 50%-89%. The treatment was deemed invalid if it was not up to the above standard. The total effective rate was calculated as (markedly effective + effective) / total number of cases × 100%[9]; (3) The levels of laboratory indexes [procalcitonin (PCT), C-reactive protein (CRP), leukocyte count (WBC), and neutrophil percentage (NE)] were counted both before and 7 d after treatment; and (4) The incidence of adverse reactions in the two groups was calculated.

Statistical analysis

The data were analyzed with SPSS version 22.0 (IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.). The measurement data are described as the mean ± SD and comparisons between treatment groups were made using Student's t-tests. The counting data are described as frequency and constituent ratio (%) and were tested by the χ^2 test. A non-parametric test was used to compare the measurement data that were not normally distributed. P < 0.05 indicated that the difference was statistically significant.

RESULTS

Time to symptom relief of the two groups

The times to recovery of leukocytes, body temperature, cough and sputum, and rales in the study group were 6.79 ± 2.09 d, 4.15 ± 1.08 d, 6.19 ± 1.56 d, and 6.68 ± 1.43 d, respectively, which were significantly shorter than those in the control group (8.89 ± 2.32 d, $5.81 \pm 1.33 \text{ d}$, $8.77 \pm 2.11 \text{ d}$, and $8.69 \pm 2.12 \text{ d}$, respectively) (P = 0.000 for all)

Therapeutic effects of the two groups

The total effective rate of the study group (94.59%) was significantly higher than that of the control group (75.68%; P = 0.022) (Table 2).

Serum levels of laboratory indexes in the two groups before and 7 d after treatment

There was no significant difference in serum levels of PCT, CRP, WBC, or NE between the study group $(12.89 \pm 3.96 \,\mu\text{g/L}, 19.62 \pm 6.44 \,\text{mg/L}, 20.61 \pm 6.38 \times 10^{\circ}/\text{L}, \text{ and } 86.14 \pm$ 7.21%, respectively) and the control group $(14.05 \pm 4.11 \,\mu\text{g/L}, 18.79 \pm 5.96 \,\text{mg/L}, 21.21$ $\pm 5.59 \times 10^{9}$ /L, and 84.39 $\pm 6.95\%$, respectively) before treatment (P = 0.220, 0.567, 0.668, and 0.291, respectively). After 7 d of treatment, the levels of serum PCT, CRP, WBC, and NE in both groups were lower than those before treatment. The serum levels of PCT, CRP, WBC, and NE in the study group $(2.01 \pm 0.56 \mu g/L, 3.11 \pm 1.02$ mg/L, $5.10 \pm 1.83 \times 10^9/L$, and $56.35 \pm 7.17\%$, respectively) were lower than those in the control group $(3.29 \pm 0.64 \, \mu g/L)$, $5.67 \pm 1.23 \, mg/L$, $8.13 \pm 3.01 \times 10^{9}/L$, and $64.22 \pm 1.03 \, mg/L$ 8.08%, respectively) (P = 0.000 for all) (Table 3).

Incidence of adverse reactions in the two groups

There was no significant difference in the incidence of adverse reactions between the study group (7.50%) and the control group (12.50%; P = 0.708) (Table 4).

DISCUSSION

Respiratory tract infection is a common type of disease in respiratory departments. The incidence of respiratory infection continues to increase in recent years. It is affected by many factors such as environmental pollution, smoking, and the aging of the population. At present, it has become especially a serious threat to the quality of life and the physical and mental health of the elderly population[10,11]. As a consequence, there is an urgent need to find a safe and effective antibiotic regimen for the treatment of respiratory tract infection in the elderly.

Cefoperazone sodium/sulbactam sodium is a common compound preparation for the clinical treatment of respiratory tract infection. Cefoperazone belongs to the third generation cephalosporins, but it lacks good stability in the presence of β -lactamase. In addition, combined with sulbactam sodium, it can produce significant synergistic antibacterial activity against negative bacteria[12,13]. Piperacillin sodium/tazobactam sodium is also commonly used in respiratory tract infection, and it is also a compound preparation. Piperacillin sodium is a penicillin antibiotic, which can inhibit the synthesis of pathogenic bacterial cell wall, so as to achieve bactericidal and bacteriostatic purposes. Tazobactam sodium is a β-lactamase inhibitor, which has a good inhibitory effect on clinically important β-lactam and type I enzymes mediated by some chromosomes. Moreover, the inhibition intensity and breadth of tazobactam sodium are significantly better than those of sulbactam sodium. As a consequence, the combination of piperacillin sodium and tazobactam sodium can effectively broaden the antibacterial spectrum, regulate the sensitivity of drug-resistant bacteria, and improve the antibacterial effect [14,15]. The results of Bao et al [16] show that the total effective rate of piperacillin sodium/tazobactam sodium can reach 97.50%, and the time for the drug to take effect, the time to symptom improvement, and the time for physical signs to disappear are relatively short after elderly patients with respiratory tract infection are treated with piperacillin/tazobactam. Torres et al[17] confirmed that the clinical efficacy (93.33%) and bacterial clearance rate (93.33%) of piperacillin tazobactam in elderly patients with respiratory tract infection were significantly higher

8697

Table 1 Com	narison of time to	symptom relief betwe	en the two arouns	(mean + SD d)
I able I Colli	iparison of time to	SAIIIMIOIII LEILEI MEIME	en me two groups	(IIIIcali ± 5D, u)

Group	n	Time to recovery of white blood cells	Time to recovery of body temperature	Time to disappearance of cough and expectoration	Time to disappearance of rales
Study	37	6.79 ± 2.09	4.15 ± 1.08	6.19 ± 1.56	6.68 ± 1.43
Control	37	8.89 ± 2.32	5.81 ± 1.33	8.77 ± 2.11	8.69 ± 2.12
t		4.091	5.894	5.981	4.781
P value		< 0.001	< 0.001	< 0.001	< 0.001

Table 2 Comparison of	therapeutic effects between th	e two groups. n (%)

Group	n	Remarkably effective	Effective	Invalid	Total effectiveness
Study	37	23 (62.16)	12 (32.43)	2 (5.41)	35 (94.59)
Control	37	17 (45.95)	11 (29.73)	9 (24.32)	28 (75.68)
χ^2					5.232
P value					0.022

Group	n	PCT (ug/L)	CRP (mg/L)	WBC (× 10 ⁹ /L)	NE (%)
Before treatment					
Study	37	12.89 ± 3.96	19.62 ± 6.44	20.61 ± 6.38	86.14 ± 7.21
Control	37	14.05 ± 4.11	18.79 ± 5.96	21.21 ± 5.59	84.39 ± 6.95
t		1.236	0.575	0.430	1.063
P value		0.220	0.567	0.668	0.291
After 7 d of treatmen	nt				
Study	37	2.01 ± 0.56	3.11 ± 1.02	5.10 ± 1.83	56.35 ± 7.17
Control	37	3.29 ± 0.64	5.67 ± 1.23	8.13 ± 3.01	64.22 ± 8.08
t		9.155	9.745	5.232	4.432
P value		< 0.001	< 0.001	< 0.001	< 0.001
P value		< 0.001	< 0.001	< 0.001	< 0.001

PCT: Procalcitonin; CRP: C-reactive protein; WBC: White blood cell count; NE: Neutrophil percentage.

Table 4 Com	parison of the incidence of	adverse reactions I	between the tw	vo groups, n (%)
-------------	-----------------------------	---------------------	----------------	------------------

Group	n	Pain at injection site	Skin itch	Vomiting and nausea	Gastrointestinal reaction	Total incidence rate
Study	37	1 (2.50)	0 (0.00)	2 (5.00)	0 (0.00)	3 (7.50)
Control	37	1 (2.50)	2 (5.00)	1 (2.50)	1 (2.50)	5 (12.50)
χ^2						0.140
P value						0.708

than those (70.00% and 83.33%, respectively) of ceftazidime. Piperacillin sodium/ tazobactam sodium and cefoperazone sodium/sulbactam sodium were used to treat elderly patients with respiratory tract infection at our hospital. The time to symptom relief in the study group was significantly shorter than that in the control group. The total effective rate of 94.59% in the study group was significantly higher than that of 75.68% in the control group. Besides, there was no significant difference in adverse reactions between the two groups. The results showed that compared with cefoperazone sodium/sulbactam sodium, piperacillin sodium/tazobactam sodium had significant therapeutic advantages in elderly patients with respiratory tract infection. Piperacillin sodium/tazobactam sodium could shorten the time to symptom relief and improve the therapeutic effect for the disease. The similar adverse reaction incidence between the two treatments suggests that piperacillin sodium/tazobactam sodium is just as safe as cefoperazone sodium/sulbactam sodium. The main reason is that piperacillin sodium can inhibit the synthesis of bacterial cell wall, so as to achieve the antibacterial purpose, and can effectively treat the infection caused by *Pseudomonas* aeruginosa and Gram-negative bacilli. Tazobactam sodium can inhibit β-lactamases and type I enzymes mediated by some chromosomes. Besides, their combination can complement each other and improve the antibacterial effect[18,19]. Meanwhile, the study of Hitt et al[20] showed that piperacillin sodium and tazobactam sodium could improve the drug resistance of bacteria. The concentrations of piperacillin sodium and tazobactam sodium in plasma could rapidly increase to the peak levels after intravenous drip, and are not affected by the administration time or dose. Moreover, the pharmacokinetic characteristics of piperacillin sodium and tazobactam sodium are similar; hence, they could act in synergy.

PCT, CRP, WBC, and NE are all commonly used laboratory indexes for clinical evaluation of infectious diseases. Their serum levels are low under normal physiological conditions; however, in case of infections, their levels significantly increase, with a significant positive correlation between their increase and the degree of infection. In addition, their expression levels can be gradually decreased after patients receive corresponding standard treatment. Therefore, they can be used to evaluate the diagnosis, curative effect of treatment, and prognosis of infectious diseases[21]. The results of this study showed that after 7 d of treatment, the serum levels of PCT, CRP, WBC, and NE in the two groups were both lower than the levels before treatment. However, the above indexes in the study group were significantly lower than those in the control group (P < 0.05). The serum factors therefore further confirm that piperacillin sodium/tazobactam sodium has high application value in elderly patients with respiratory tract infection. It can reduce the level of serum inflammatory factors and reduce the degree of inflammatory reaction in vivo, and may be of great significance as a treatment to ensure optimal treatment effect for respiratory tract infection in the elderly and to promote good outcomes.

This study had some limitations. This is a single-center sample study; therefore, whether the results of the study are broadly valid still needs to be further examined by expanding the sample selection range and increasing the sample size in future investigations.

CONCLUSION

In general, piperacillin sodium/tazobactam sodium is better than cefoperazone sodium/sulbactam sodium in the treatment of respiratory tract infection in elderly patients. It can effectively relieve clinical symptoms; down-regulate the contents of serum PCT, CRP, and other factors, and reduce the degree of inflammatory reaction; and has a comparable degree of safety.

ARTICLE HIGHLIGHTS

Research background

Respiratory tract infections in elderly patients are difficult to cure and can easily reoccur, thereby posing a great threat to patient prognosis and quality of life. It is very important to take effective measures to treat these patients as soon as possible.

Research motivation

Elderly patients who have severe pulmonary infections require antibiotic treatment.

Research objectives

This study aimed to determine the therapeutic value and safety of different antibiotics in elderly patients with respiratory tract infection.

Research methods

Seventy-four elderly patients with respiratory tract infection were randomly allocated

to a study (n = 37; treated with cefoperazone sodium/sulbactam sodium) or control (n = 37) treated with cefoperazone sodium/sulbactam sodium) or control (n = 37) treated with cefoperazone sodium/sulbactam sodium) or control (n = 37) treated with cefoperazone sodium/sulbactam sodium) or control (n = 37) treated with cefoperazone sodium/sulbactam sodium) or control (n = 37) treated with cefoperazone sodium/sulbactam sodium) or control (n = 37) treated with cefoperazone sodium/sulbactam sodium) or control (n = 37) treated with cefoperazone sodium/sulbactam sodium) or control (n = 37) treated with cefoperazone sodium/sulbactam sodium) or control (n = 37) treated with cefoperazone sodium/sulbactam sodium) or control (n = 37) treated with cefoperazone sodium/sulbactam sodium) or control (n = 37) treated with cefoperazone sodium/sulbactam sodium s = 37; treated with piperacillin sodium/tazobactam sodium on the basis of routine symptomatic support) group.

Research results

Total effective rate was higher in the study group. There was no significant difference in the incidence of adverse reactions between the groups.

Research conclusions

Piperacillin sodium/tazobactam sodium is better than cefoperazone sodium/ sulbactam sodium in the treatment of respiratory tract infections in elderly patients, and they can reduce the degree of inflammatory reaction, and have a comparable degree of safety.

Research perspectives

Rationality and safety of antibiotic application.

REFERENCES

- Luther MK, Timbrook TT, Caffrey AR, Dosa D, Lodise TP, LaPlante KL. Vancomycin Plus Piperacillin-Tazobactam and Acute Kidney Injury in Adults: A Systematic Review and Meta-Analysis. Crit Care Med 2018; 46: 12-20 [PMID: 29088001 DOI: 10.1097/CCM.00000000000027691
- 2 Rodriguez CA, Agudelo M, Zuluaga AF, Vesga O. In vivo pharmacodynamics of piperacillin/tazobactam: implications for antimicrobial efficacy and resistance suppression with innovator and generic products. Int J Antimicrob Agents 2017; 49: 189-197 [PMID: 27988068 DOI: 10.1016/j.ijantimicag.2016.10.011]
- Messori A, Tulli G, Caccese E, Trippoli S, Marinai C. Piperacillin-Tazobactam: Extended Infusion Versus Continuous Infusion. Crit Care Med 2018; 46: e725 [PMID: 29912125 DOI: 10.1097/CCM.0000000000003115]
- 4 Schuetz AN, Reyes S, Tamma PD. Point-Counterpoint: Piperacillin-Tazobactam Should Be Used To Treat Infections with Extended-Spectrum-Beta-Lactamase-Positive Organisms. J Clin Microbiol 2018; **56** [PMID: 29237787 DOI: 10.1128/JCM.01917-17]
- So M, Oda K, Ota K, Sakamoto N, Suzuki T. [Retrospective Analysis of Factors Decreasing the Efficacy of Tazobactam/Piperacillin for Pneumonia in Elderly Patients]. Yakugaku Zasshi 2018; 138: 581-588 [PMID: 29608008 DOI: 10.1248/yakushi.17-00225]
- Beaulieu C, Kurczewski L, Yajnik V. Cefepime challenge after piperacillin/tazobactam-induced thrombocytopenia. J Thromb Thrombolysis 2019; 48: 167-170 [PMID: 30968302 DOI: 10.1007/s11239-019-01848-31
- Leihof RF, Ethelberg S, Nielsen KL, Rasmussen SC, Frimodt-Møller N. Nosocomial urinary tract infection and risk of bacteraemia in elderly patients: urinary catheter, clinical factors and bacterial species. Infect Dis (Lond) 2019; 51: 547-549 [PMID: 30985255 DOI: 10.1080/23744235.2019.1599135]
- Kornmehl H, Gorouhi F, Konia T, Fung MA, Tartar DM. Generalized fixed drug eruption to piperacillin/tazobactam and review of literature. Dermatol Online J 2018; 24 [PMID: 29906010]
- Baldwin CM, Lyseng-Williamson KA, Keam SJ. Meropenem: a review of its use in the treatment of serious bacterial infections. *Drugs* 2008; **68**: 803-838 [PMID: 18416587 DOI: 10.2165/00003495-200868060-00006]
- 10 **Doi Y**, Iovleva A, Bonomo RA. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J Travel Med 2017; 24: S44-S51 [PMID: 28521000 DOI: 10.1093/jtm/taw102]
- Wang Y, Zhang S, Li L, Xie J. The usefulness of serum procalcitonin, C-reactive protein, soluble triggering receptor expressed on myeloid cells 1 and Clinical Pulmonary Infection Score for evaluation of severity and prognosis of community-acquired pneumonia in elderly patients. Arch Gerontol Geriatr 2019; **80**: 53-57 [PMID: 30366226 DOI: 10.1016/j.archger.2018.10.005]
- Trinh TD, Zasowski EJ, Claeys KC, Lagnf AM, Kidambi S, Davis SL, Rybak MJ. Multidrugresistant Pseudomonas aeruginosa lower respiratory tract infections in the intensive care unit: Prevalence and risk factors. Diagn Microbiol Infect Dis 2017; 89: 61-66 [PMID: 28716451 DOI: 10.1016/j.diagmicrobio.2017.06.0091
- 13 Petersen MW, Perner A, Sjövall F, Jonsson AB, Steensen M, Andersen JS, Achiam MP, Frimodt-Møller N, Møller MH. Piperacillin/tazobactam vs carbapenems for patients with bacterial infection: Protocol for a systematic review. Acta Anaesthesiol Scand 2019; 63: 973-978 [PMID: 31020663 DOI: 10.1111/aas.13382]
- Liu JW, Chen YH, Lee WS, Lin JC, Huang CT, Lin HH, Liu YC, Chuang YC, Tang HJ, Chen YS, Ko WC, Lu MC, Wang FD. Randomized Noninferiority Trial of Cefoperazone-Sulbactam vs Cefepime in the Treatment of Hospital-Acquired and Healthcare-Associated Pneumonia. Antimicrob Agents Chemother 2019; 63 [PMID: 31138577 DOI: 10.1128/AAC.00023-19]

- 15 Le C, Chu F, Dunlay R, Villar J, Fedullo P, Wardi G. Evaluating vancomycin and piperacillintazobactam in ED patients with severe sepsis and septic shock. Am J Emerg Med 2018; 36: 1380-1385 [PMID: 29321120 DOI: 10.1016/j.ajem.2017.12.055]
- Bao H, Lv Y, Wang D, Xue J, Yan Z. Clinical outcomes of extended versus intermittent administration of piperacillin/tazobactam for the treatment of hospital-acquired pneumonia: a randomized controlled trial. Eur J Clin Microbiol Infect Dis 2017; 36: 459-466 [PMID: 27796647 DOI: 10.1007/s10096-016-2819-1]
- Torres A, Zhong N, Pachl J, Timsit JF, Kollef M, Chen Z, Song J, Taylor D, Laud PJ, Stone GG, 17 Chow JW. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilatorassociated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis 2018; 18: 285-295 [PMID: 29254862 DOI: 10.1016/S1473-3099(17)30747-8]
- King ST, Barber KE, Parham JJ, Stover KR. Shifts in antimicrobial consumption and infection rates before and during a piperacillin/tazobactam shortage. J Glob Antimicrob Resist 2017; 11: 111-113 [PMID: 28774865 DOI: 10.1016/j.jgar.2017.07.015]
- Janardhanan J, Bouley R, Martínez-Caballero S, Peng Z, Batuecas-Mordillo M, Meisel JE, Ding D, Schroeder VA, Wolter WR, Mahasenan KV, Hermoso JA, Mobashery S, Chang M. The Quinazolinone Allosteric Inhibitor of PBP 2a Synergizes with Piperacillin and Tazobactam against Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2019; 63 [PMID: 30858202 DOI: 10.1128/AAC.02637-18]
- Hitt CM, Patel KB, Nicolau DP, Zhu Z, Nightingale CH. Influence of piperacillin-tazobactam on pharmacokinetics of gentamicin given once daily. Am J Health Syst Pharm 1997; 54: 2704-2708 [PMID: 9408514 DOI: 10.1093/ajhp/54.23.2704]
- Ortiz-Brizuela E, Rangel-Cordero A, Ponce-de-León A, Sierra-Madero J. False-positive results in the galactomannan PlateliaTM Aspergillus assay with generic piperacillin/tazobactam. Rev Iberoam Micol 2019; **36**: 51-52 [PMID: 30704831 DOI: 10.1016/j.riam.2018.07.004]

8701

Published by Baishideng Publishing Group Inc

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

Telephone: +1-925-3991568

E-mail: bpgoffice@wjgnet.com

Help Desk: https://www.f6publishing.com/helpdesk

https://www.wjgnet.com

