
Artificial Intelligence in
Gastrointestinal Endoscopy

ISSN 2689-7164 (online)

Artif Intell Gastrointest Endosc  2021 August 28; 2(4): 95-197

Published by Baishideng Publishing Group Inc



AIGE https://www.wjgnet.com I August 28, 2021 Volume 2 Issue 4

Artificial Intelligence in 

Gastrointestinal 
EndoscopyA I G E

Contents Bimonthly Volume 2 Number 4 August 28, 2021

OPINION REVIEW

Artificial intelligence assisted assessment of endoscopic disease activity in inflammatory bowel disease95

Lo B, Burisch J

Robotic pancreaticoduodenectomy: Where do we stand?103

Khachfe HH, Habib JR, Chahrour MA, Nassour I

MINIREVIEWS

Robotic surgery in colon cancer: current evidence and future perspectives – narrative review110

Tagliabue F, Burati M, Chiarelli M, Cioffi U, Zago M

Artificial intelligence in endoscopy: The challenges and future directions117

Gao X, Braden B

Deep learning applied to the imaging diagnosis of hepatocellular carcinoma127

Ballotin VR, Bigarella LG, Soldera J, Soldera J

Role of capsule endoscopy in inflammatory bowel disease: Anything new?136

Pérez de Arce E, Quera R, Núñez F P, Araya R

Role of optical coherence tomography in Barrett’s esophagus149

Gupta N, Yelamanchi R, Agrawal H, Agarwal N

Artificial intelligence and colonoscopy − enhancements and improvements157

Yoo BS, D'Souza SM, Houston K, Patel A, Lau J, Elmahdi A, Parekh PJ, Johnson D

Impact of endoscopic ultrasound elastography in pancreatic lesion evaluation168

Lesmana CRA, Paramitha MS

Artificial intelligence as a means to improve recognition of gastrointestinal angiodysplasia in video 
capsule endoscopy

179

Cox II GA, Jackson CS, Vega KJ

Early gastrointestinal cancer: The application of artificial intelligence185

Yang H, Hu B



AIGE https://www.wjgnet.com II August 28, 2021 Volume 2 Issue 4

Artificial Intelligence in Gastrointestinal Endoscopy
Contents

Bimonthly Volume 2 Number 4 August 28, 2021

ABOUT COVER

Associate Editor of Artificial Intelligence in Gastrointestinal Endoscopy, Peter Bauerfeind, MD, Professor, Department 
of Gastroenterology and Hepatology, University hospital Zurich, Zurich 8091, Switzerland.  
peter.bauerfeind@usz.ch

AIMS AND SCOPE

The primary aim of Artificial Intelligence in Gastrointestinal Endoscopy (AIGE, Artif Intell Gastrointest Endosc) is to 
provide scholars and readers from various fields of artificial intelligence in gastrointestinal endoscopy with a 
platform to publish high-quality basic and clinical research articles and communicate their research findings 
online. 
    AIGE mainly publishes articles reporting research results obtained in the field of artificial intelligence in 
gastrointestinal endoscopy and covering a wide range of topics, including artificial intelligence in capsule 
endoscopy, colonoscopy, double-balloon enteroscopy, duodenoscopy, endoscopic retrograde cholangio-
pancreatography, endosonography, esophagoscopy, gastrointestinal endoscopy, gastroscopy, laparoscopy, natural 
orifice endoscopic surgery, proctoscopy, and sigmoidoscopy. 

INDEXING/ABSTRACTING

There is currently no indexing.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Lin-YuTong Wang; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

Artificial Intelligence in Gastrointestinal Endoscopy https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 2689-7164 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

July 28, 2020 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Bimonthly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Fatih Altintoprak, Sahin Coban, Krish Ragunath https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/2689-7164/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

August 28, 2021 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2021 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
https://www.wjgnet.com/2689-7164/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


AIGE https://www.wjgnet.com 117 August 28, 2021 Volume 2 Issue 4

Artificial Intelligence in 

Gastrointestinal 
EndoscopyA I G E

Submit a Manuscript: https://www.f6publishing.com Artif Intell Gastrointest Endosc 2021 August 28; 2(4): 117-126

DOI: 10.37126/aige.v2.i4.117 ISSN 2689-7164 (online)

MINIREVIEWS

Artificial intelligence in endoscopy: The challenges and future 
directions

Xiaohong Gao, Barbara Braden

ORCID number: Xiaohong Gao 0000-
0002-8103-6624; Barbara Braden 
0000-0002-8534-6873.

Author contributions: Gao XH and 
Braden B contributed to the 
literature research and writing of 
the manuscript; Both authors have 
read and approved the final 
manuscript.

Conflict-of-interest statement: The 
authors have no interests to 
declare.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Unsolicited 
manuscript

Specialty type: Gastroenterology 
and hepatology

Country/Territory of origin: United 

Xiaohong Gao, Department of Computer Science, Middlesex University, London NW4 4BT, 
United Kingdom

Barbara Braden, Translational Gastroenterology Unit, Oxford University Hospitals NHS 
Foundation Trust, Oxford OX3 9DU, United Kingdom

Corresponding author: Xiaohong Gao, PhD, Full Professor, Department of Computer Science, 
Middlesex University, The Burroughs, Hendon, London NW4 4BT, United Kingdom.  
x.gao@mdx.ac.uk

Abstract
Artificial intelligence based approaches, in particular deep learning, have 
achieved state-of-the-art performance in medical fields with increasing number of 
software systems being approved by both Europe and United States. This paper 
reviews their applications to early detection of oesophageal cancers with a focus 
on their advantages and pitfalls. The paper concludes with future recommend-
ations towards the development of a real-time, clinical implementable, 
interpretable and robust diagnosis support systems.
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Core Tip: Precancerous changes in the lining of the oesophagus are easily missed 
during endoscopy as these lesions usually grow flat with only subtle change in colour, 
surface pattern and microvessel structure. Many factors impair the quality of 
endoscopy and subsequently the early detection of oesophageal cancer. Artificial 
intelligence (AI) solutions provide independence from the skills and experience of the 
operator in lesion recognition. Recent developments have introduced promising AI 
systems that will support the clinician in recognising, delineating and classifying 
precancerous and early cancerous changes during the endoscopy of the oesophagus in 
real-time.
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INTRODUCTION
AI is the artificial intelligence exhibited by computer machines, which is in opposition 
to the natural intelligence that is displayed by human being, including consciousness 
and emotionality. With the advances on both computer hardware and software 
technology, at present, we are able to model about 600 K neurons and their interlaced 
connections, leading to processing over 100 million parameters. Since the human brain 
contains about 100 billion neurons[1], there is still a long way to go to before AI 
models are close enough to a human brain. Hence machine learning (ML) techniques 
are developed to perform task specific modelling that is in part supervised by human. 
While this supervised ML process is transparent and understandable, the human’s 
ability to comprehend large amounts of parameters, e.g., in millions, is limited, from a 
calculation point of view. Hence the application areas are restricted by employing 
semi- or fully supervised ML approaches. More recently, propelled by the advances of 
computer hardware, including large memory and graphics processing unit (GPU), task 
specific learning by computer itself, i.e., deep learning (DL), is realised, forming one of 
the most promising AI branches under the ML umbrella.

DL first made the headline when DL based computer program, AlphaGo, won the 
competition when playing board game Go with human players[2]. Since then, it has 
shown that nearly all winners in major competitions apply DL led methodologies, 
achieving state-of-the-art (SOTA) performance in nearly every domain, including 
natural language translation and image segmentation and classification. For example, 
the competition organised by Kaggle on detection of diabetics based on retinopathy 
has been won by DL based approach by a large margin in comparison with the other 
methods. While DL oriented methods have become a mainstream choice of meth-
odology, there are advantaged and disadvantages, especially in the medical field. For 
example, a DL-based approach requires large amount of training datasets, better in 
millions, which is hardly met in medical domains. In addition, the training in deep 
layers demands higher computational power, leading to real-time processing a great 
challenge.

Hence this paper aims to review the latest development of application of AI to 
endoscopy realm and is organised below. Section 2 details the SOTA DL techniques 
and their application to medical domains. Section 3 explores the challenges facing 
early detection of oesophageal diseases from endoscopy and current solutions of 
computer aided systems. Section 4 points out future directions in achieving accurate 
diagnosis of oesophageal diseases with summaries provided in conclusion.

STATE OF THE ART DL TECHNIQUE AND ITS APPLICATION TO MEDICAL 
FIELD
DL neural networks refer to a class of computing algorithms that can learn a hierarchy 
of features by establishing high-level attributes from low-level ones. One of the most 
popular models remains the convolutional neural network (CNN)[3], which comprises 
several (deep) layers of processing involving learnable operators (both linear and non-
linear), by automating the process of constructing discriminative information from 
learning hierarchies. In addition, recent advances in computer hardware technology (
e.g., the GPU) have propagated the implementation of CNNs in studying images. 
Usually, training a DL system to perform a task, e.g., classification, employs an arch-
itecture in an end-to-end training fashion. As a result, by input of a raw datum, the 
trained system will output a classification label. The training activity takes place by 
processing the input data with known annotations (labels, or segmented regions) with 
a goal to establish a model to differentiate these annotated labels/region automatically 
by fine-tuning the relationship between parameters without the intervention of 
humans.

Conventionally, training a DL model requires large datasets and substantial training 
time. For example, the pre-trained CNN classifier, AlexNet[4], is built upon 7 Layers, 
simulating 500000 (K) neurons with 60 million (M) parameters and 630 M connections, 
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and trained on a subset (1.2 M with 1 K categories) of ImageNet with 15 M 2D images 
of 22 K categories, taking up 16 d on a CPU and 1.6 d on a GPU. Usually, more data 
will lead to more accurate systems. In the development of electric cars of Tesla’s 
Autopilot, the training takes place with more than 780 million miles[5] whereas for 
playing AlphaGo[6] game using a computer, the training employed more than 100 
million games.

DL-oriented approaches have recently been applied to medical images in a range of 
domains and achieved SOTA results. Although some doubt on DL has been casted on 
the ‘black box’ status while training without the embedding of human’s knowledge in 
the middle stages (e.g., hidden layers) apart from the initial input of labelled datasets, 
the performance of AI-led approached has been widely recognised, which is evidenced 
by the approval of medical devices by authorities. Between the year 2015 and 2020, 124 
(about 15%) medical devices (mainly software) that are AL/ML/DL-based have been 
approved in Europe with Conformité Européene -marked and United States Food and 
Drug administration agency[7], highlighting the importance of AI/ML to the medical 
field, including an imaging system that uses algorithms to give diagnostic information 
for skin cancer and a smart electrocardiogram device that estimates the probability of a 
heart attack[8]. Table 1 summaries the recent achievements of DL-oriented approaches 
in medical domains.

Recently, AI or more specific DL-based approaches have won a number of compet-
itions including the Kaggle competition on detection of diabetic retinopathy, 
segmentation of brain tumors from MRI images[9], analysis of severity of tuberculosis 
(TB) from high resolution 3D CT images in Image CLEFmed Competition[10] and 
detection of endoscopic artefacts from endoscopy video images in EAD2019[11] and 
EAD2020[12].

While applying AI/ML/DL approaches in medical domain, there are several 
challenges in need of responding. Firstly, in the medical domain, the number of 
datasets is limited, usually in hundreds whereas in other application, e.g., self-driving 
cars, datasets are in millions. Secondly, images are in multiple dimensions ranging 
from 2D to 5D (e.g., a moving heart at a specific location). And thirdly, perhaps the 
most outstanding obstacle is that medical data present subtle changes between normal 
and abnormal demanding the developed systems to be more precise.

Hence progress has been made to allow additional measures to be taken into 
account in order to apply DL techniques in medical fields. For example, for classi-
fication of 3D echocardiographic video images[13], a fused CNN architecture is 
established to incorporate both unsupervised CNN and hand-crafted features. For 
classification of 3D CT brain images[14], integration of both 2D and 3D CNN networks 
is in place. In addition, patch-based DL technique is designed to analyse 3D CT images 
for classification of TB types and analysis of multiple drug resistance[15,16] to 
overcome the sparse presence of diseased regions (< 10%). Another way to address 
small dataset issue is to employ transfer ML technique that is frequently implemented 
whereby a model developed built upon one dataset (e.g., ImageNet) for a specific task 
is reused as a starting point for a model on a different task with completely different 
datasets [e.g., coronavirus disease 2019 (COVID-19) computed tomography (CT) 
images]. Subsequently, most currently developed learning systems commence with a 
pre-trained model, such as VGG16[17] that is pre-trained on ImageNet datasets to 
extract initial feature maps that are then retrained to fit the new datasets and new 
tasks[18], capitalising on the accuracy a pre-trained model sustaining whilst saving 
considerable training times.

More recently, these AI techniques have been applied to predict COVID-19 virus 
and have demonstrated significant performance. With regard to medical images for 
diagnosis of COVID-19, CT and chest X-ray (CXR) represent the most common 
imaging tools. For 3D CT images, attention-based DL networks have shown effect-
iveness in classifying COVID-19 from normal subjects[19,20]. In relation to CXR, 
patch-based CNN is applied to study chest x-ray images[21] and to differentiate 
discriminatory features of COVID-19. In addition, COVID-Net[22], one of the pioneer 
studies, classifies COVID-19 from normal and pneumonia diseases through the 
application of a tailored DL network. To overcome the shortage of datasets, a number 
of researchers[23] apply generative adversarial neural network (GAN) to augment 
data first and subsequently to classify COVID-19.

In this paper, the application of AI/ML/DL techniques is exploited to endoscopy 
video images.
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Table 1 Examples of deep learning-based approaches in application of medical tasks

Ref. Medical domain Tasks

Muehlematter et al[7] Skin Diagnosis of skin cancer

United States Food and Drug Administration[8] Electrocardiogram Detection of heart attack

Pereira et al[9] Retinopathy Detection of diabetics

Gao et al[10] Pulmonary CT 
images

Detection of tuberculosis types and severity

Sharib et al[11], Ali et al[12] Endoscopy Detection of artefact.

Gao et al[14] CT Brain images Classification of Alzheimer’s disease

Gao et al[15,16] Pulmonary CT 
images

Analysis of multi-drug resistance

Gao et al[13] Ultrasound Classification of 3D echocardiographic video images

Wang et al[19], Ouyang et al[20] Chest CT Diagnosis of COVID-19

Oh et al[21], Wang et al[22], Waheed et al[23] Chest X-Ray Diagnosis of COVID-19

Everson et al[33], Horie et al[34], Ghatwary et al[35], Ohmori et 
al[38]

Endoscopy Still image based cancer detection for 2 classes (normal vs 
abnormal)

de Groof et al[32], Everson et al[35], He et al[41], Guo et al[42] Endoscopy Video detection of SCC in real time

Gao et al[44], Tomita et al[45] Endoscopy Explainable AI for early detection of SCC

CT: Computed tomography; AI: Artificial intelligence; SCC: Squamous cell cancer; COVID-19: Coronavirus disease 2019.

ENDOSCOPY FOR DIAGNOSIS OF OESOPHAGEAL DISEASES
The oesophagus is the muscular tube that carries food and liquids from mouth to the 
stomach. The symptoms of oesophageal disorders include chest or back pain or having 
trouble swallowing. The most common problem with the oesophagus is gastroeso-
phageal reflux disease which occurs when stomach contents frequently leak back, or 
reflux, into the oesophagus. The acidity of the fluids can irritate the lining of the 
oesophagus. Treatment of these disorders depends on the problem. Some problems get 
better with over-the-counter medicines or changes in diet. Others may need prescribed 
medicines or surgery.

As the 8th most common cancer worldwide[24], one of the most serious problems 
with regard to oesophagus is oesophageal cancer that constitutes the 6th leading cause 
of cancer-related death[25]. The main cancer types include adenocarcinoma and 
squamous cell carcinoma cancer (SCC). Globally, about 87% of all oesophageal cancers 
are in the form of SCC. The highest incidence rates often take place in Asia, the Middle 
East and Africa[26,27]. Early oesophageal cancer usually does not cause symptoms. At 
later stage, the symptoms might include swallowing difficulty, weight loss or 
continuous cough. Diagnosis of oesophageal cancer relies on imaging test, an upper 
endoscopy, and a biopsy.

Optical endoscopy or endoscopy is the primary diagnostic and therapeutic tool for 
management of gastrointestinal malignancies, in particular oesophagus cancers. As 
illustrated in Figure 1A, to perform an endoscopy procedure of monitoring oesopha-
gus, an endoscopic camera along with a lighting inspection is inserted into the food 
pipe of the patient in concern, whereby the appearance inside the oesophageal tube in 
the form of video images can be visualised on a computer monitor that is linked to the 
camera image processing system, which is depicted in Figure 1B.

While Figure 1 presents the surface of oesophageal walls, it also shows the artefact 
in a number of frames. This is because the movements of the inserted camera is 
confined within the limited space of the food pipe. The most common artefacts include 
colour misalignment (C), burry (B), saturation (S), and device (D) as demonstrated in 
Figure 1B.

Challenges for detecting oesophageal squamous cancer
Commonly the five-year survival rate of oesophagus cancer is less than 20% as 
reported in[28]. However, this rate can be improved significantly to more than 90% if 
the cancer is detected in its early stages due to the fact that at this early stage, 



Gao X et al. AI-endoscopy of the oesophagus

AIGE https://www.wjgnet.com 121 August 28, 2021 Volume 2 Issue 4

Figure 1 The endoscopy procedure. A: The oesophagus camera; B: A montage display of a clip of an endoscopic video including narrow-band imaging and 
conventional white light endoscopy (e.g., top 2 rows). C: Colour misalignment; S: Saturation; B: Blurry; D: Device.

oesophageal cancer can be treated endoscopically[29], e.g., by removing diseased 
tissues or administrating (spraying) treatment drugs. The challenge lies here is that 
precancerous stages (dysplasia in the oesophageal squamous epithelium) and early 
stages of SCC display subtle changes in appearance (e.g., colour, surface structure) and 
in microvasculature, which therefore are easily missed at the time of conventional 
white light endoscopy (WLE) as illustrated in Figure 2A-D. To overcome this 
shortcoming while viewing WLE images, narrow-band imaging (NBI) can be turned 
on to display only two wavelengths [415 nm (blue) and 540 nm (green)] (Figure 2E-G) 
to improve the visibility of those suspected lesions by filtering out the rest of colour 
bands. Another approach is dye-based chromoendoscopy, i.e. Lugol’s staining 
technique, which highlights dysplastic abnormalities by spraying iodine[30] 
(Figure 2H).

While NBI technique improves the visibility of the vascular network and surface 
structure, it mainly facilitates the detection of unique vascular and pit pattern 
morphology that are present in neoplastic lesions[31], whereas precancerous stages 
can take a variety of forms. With the Lugol’s staining approach, many patients react 
uncomfortably to the spray.

It is therefore of clinical priority to have a computer assisted system to help 
clinicians to detect and highlight those potential suspected regions for further examin-
ations. Currently, a number of promising results for computer-aided recognition of 
early neoplastic oesophageal lesions from endoscopic have been achieved based still 
images[32,33]. However, fewer less algorithms are applicable to real-time endoscopy 
to allow computer-aided decision-making during endoscopy at the point of 
examination. In addition, most of the existing studies focus mainly on the classification 
of endoscopic images between normal and abnormal stages with little work providing 
bounding boxes of the suspicious regions (detection) and delineating (segmentation).

Following challenges have been identified for the development of computerised 
algorithms for early detection of oesophageal cancers, which are inconspicuous 
changes on oesophageal surfaces artefacts of video images due to movement of 
endoscopic camera entering the food pipe limited time for patients undergoing each 
session of endoscopic procedure (about 20min) to minimise discomfort and 
invasiveness real time processing of video images to be in time to prompt endoscopist 
collecting biopsy samples while undertaking endoscopy limited datasets to train DL 
systems multiple modalities, including WLE, NBI and Lugol’s multiple classes, 
including LD, GD, SCC, normal, and artefact.
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Figure 2 Examples of endoscopic images where green and blue masks refer to low and high grade dysplasia respectively and red for 
squamous cell cancer. A-D: White light endoscopy; E-G: Narrow band imaging; H: Lugol’s. Mask colours: Green = low grade dysplasia; Blue = high grade 
dysplasia; Red = Squamous cell cancer.

Progress on the development of AI-based computer assisted supporting system for 
early detection of SCC
Progress on diagnosis of oesophageal cancer through the application of AI has been 
made by several research teams, mainly focusing on three directions, classification of 
abnormal from normal images, classification taking into consideration of processing 
speed, and detection of artefacts.

AI-based classification
Horie et al[34] conducted research to distinguish oesophageal cancers from non-cancer 
patients with an aim to reproduce diagnostic accuracy. While applying conventional 
CNN architecture to classify two classes, the researchers have achieved 98% sensitivity 
for cancer detection. In the study conducted by Ghatwary et al[35], researchers have 
evaluated several SOTA CNN approaches aiming to achieve early detection of SCC 
from high-definition WLE (HD-WLE) images and come to the conclusion that the 
approaches of single shot detection[36] and Faster R-CNN[37] perform better. They 
use one image modality of WLE. Again, two classes are investigated in their study, i.e., 
cancerous and normal regions. While these studies demonstrate high accuracy of 
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classification, the main focus of those research remains on the binary classification 
distinguishing abnormal from normal. Similarly, in the study by Ohmori et al[38], 
while the authors studied oesophageal lesions on several imaging modes including 
blue-laser images, only two classes of either cancer or non-cancer are classified by 
employing a deep neural network. For detection of any potential suspected regions 
regardless how small they are, segmentation of abnormal regions also plays a key role 
in supporting clinical decisions.

Classification with near real-time processing
In addition, in order to assist clinicians in early diagnosis during endoscopic 
procedures, real-time processing of videos, i.e., with processing speed of 24+ frames 
per second (fps) or at most 41 milliseconds (ms) per frame, should be realised. Everson 
et al[33] have achieved inference time between 26 to 37ms for an image of 696 × 308 
pixels. The work conducted by de Groof et al[32] requires 240ms to process each frame 
(i.e., 4.16 fps). For processing a video clip, frame processing and video playing back 
times all need to be considered to allow processed frames being played back 
seamlessly.

In order to ensure lesion detection takes place in time while patients undertaking 
endoscopy procedure, processing speed constitutes one of the key elements. Hence, 
comparisons are made to devalue the processing speed when detecting, classifying, 
and delineating multi-class (LD, HD, SCC) on multi-modality images (WLE, NBI, 
Lugol’s)[39] employing DL architectures of YOLOv3[40] and mask-CNN[41]. In this 
study by applying YOLOv3, the average processing time is in the range of 0.064-0.101 
s per frame, which leads to 10-15 frames per second while processing frames of 
endoscopic videos with a resolution of 1920 × 1080 pixels. This work was conducted 
under Windows 10 operating system with 1 GPU (GeForce GTX 1060). The averaged 
accuracies for classification and detection can be realised to 85% and 74% respectively. 
Since YOLOv3 only provides bounding boxes without masks, the approach of mask-
RCNN is utilised to delineate lesioned regions, producing classification, segmentation 
(masks) and bounding boxes. As a result, mask-RCNN achieves better detection result 
(i.e., bounding box) with 77% accuracy whereas the classification accuracy is similar to 
that obtained using YOLOYv3 with 84%. However, the processing speed applying 
mask-RCNN appears to be more than 10 times slower with an average of 1.2 s per 
frame, which is mainly stemmed from the time spent on the creation of masks. For the 
segmentation while employing mask-RCNN, the accuracy retains 63% measured on 
the overlapping regions between predicted and ground truth regions.

More recently, a research group by Guo et al[42] has developed a CAD system to aid 
decision making for early diagnosis of precancerous lesions. Their system can realise 
video processing time at 25 frames per second while applying narrow band images 
(NBI) that present clearer lesion structures than WLE. It appears that only one 
detection is identified for each frame, hence the study does not support localisation by 
bounding boxes.

Artefact detection
Due to the confined space to film the oesophageal tube, a number of artefacts are 
present, which not only hamper clinician’s visual interpretation but also mislead 
training AI-based systems. Therefore, endoscopic artefact detection challenges were 
organised in 2019 (EAD2019)[11] and 2020 (EAD2020)[12] aiming to find solutions to 
these challenges. As expected, all top performant teams apply DL-based approaches to 
detect (bounding box), classify and segment artefacts including bubbles, saturation, 
blurry and artefacts[43].

FUTURE WORK
While significant progress has been made towards development of AI-enhanced 
systems to support clinicians’ diagnosis, especially for early detection of oesophageal 
cancer, there is a still a considerable distance to go to benefit clinical diagnosis and to 
equip these assistant systems in an operative room. The following recommendations 
might shed light on future research directions.

Firstly, detection should be based on multi-classes, especially early onset lesions 
should be included. This is because most of the currently developed systems work on 
binary classifications between cancer and normal whereas cancers present most distin-
guishable visual features. At present, in 1 in 4 patients, the diagnosis of early stage 
oesophageal cancer is missed in their first visit[30]. Hence more work should emphasis 
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on the detection of early onset of SCC. Only in this way can patients’ 5-year survival 
rates be increased to 90% from current 20%.

In addition, to circumvent data shortage, conventional data augmentation 
techniques appear to increase system accuracy by cropping, colour shifting, resizing 
and rotating. Due to the subtle change of early stages of SCC, data augmentation by 
inclusion of fake datasets generated by employing generative adversarial DL networks 
(GAN) appear to decrease the performance in this regard. Furthermore, when training 
with data that include samples with artefact, data augmentation with colour shifting 
also tend to hamper the system performance. Computational spectral imaging appears 
to benefit in this regard.

Secondly, to increase the wide acceptance by clinicians, the developed systems 
should be explainable and interpretable to a certain degree. For example, case-based 
reasoning[44] or attention-based modelling[45] are a way forward.

Lastly, real-time process should be achieved before the developed systems can make 
any real impact. This is because a collection of biopsy takes place only during the time 
of endoscopy. If those suspicious regions are overlooked, the patients in concern will 
miss the chances of correct diagnosis and appropriate treatment.

CONCLUSION
In conclusion, this paper overviews the current development of AI-based computer 
assisted systems for supporting early diagnosis of oesophageal cancers and proposes 
several future directions, expediting the clinical implementation and hence benefiting 
both patient and clinician communities.
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