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Abstract
BACKGROUND 
Abnormal bone metabolism and renal anemia seriously affect the prognosis of 
patients with chronic kidney disease (CKD). Existing studies have mostly 
addressed the pathogenesis and treatment of bone metabolism abnormality and 
anemia in patients with CKD, but few have evaluated their mutual connection. 
Administration of exogenous erythropoietin to CKD patients with anemia used to 
be the mainstay of therapeutic approaches; however, with the availability of 
hypoxia-inducible factor (HIF) stabilizers such as roxadustat, more therapeutic 
choices for renal anemia are expected in the future. However, the effects posed by 
the hypoxic environment on both CKD complications remain incompletely 
understood.

AIM 
To summarize the relationship between renal anemia and abnormal bone 
metabolism, and to discuss the influence of hypoxia on bone metabolism.

METHODS 
CNKI and PubMed searches were performed using the key words “chronic 
kidney disease,” “abnormal bone metabolism,” “anemia,” “hypoxia,” and “HIF” 
to identify relevant articles published in multiple languages and fields. Reference 
lists from identified articles were reviewed to extract additional pertinent articles. 
Then we retrieved the Abstract and Introduction and searched the results from 
the literature, classified the extracted information, and summarized important 
information. Finally, we made our own conclusions.

RESULTS 
There is a bidirectional relationship between renal anemia and abnormal bone 
metabolism. Abnormal vitamin D metabolism and hyperparathyroidism can 
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affect bone metabolism, blood cell production, and survival rates through mul-
tiple pathways. Anemia will further attenuate the normal bone growth. The 
hypoxic environment regulates bone morphogenetic protein, vascular endothelial 
growth factor, and neuropilin-1, and affects osteoblast/osteoclast maturation and 
differentiation through bone metabolic changes. Hypoxia preconditioning of 
mesenchymal stem cells (MSCs) can enhance their paracrine effects and promote 
fracture healing. Concurrently, hypoxia reduces the inhibitory effect on osteocyte 
differentiation by inhibiting the expression of fibroblast growth factor 23. Hypoxia 
potentially improves bone metabolism, but it still carries potential risks. The 
optimal concentration and duration of hypoxia remain unclear.

CONCLUSION 
There is a bidirectional relationship between renal anemia and abnormal bone 
metabolism. Hypoxia may improve bone metabolism but the concentration and 
duration of hypoxia remain unclear and need further study.

Key Words: Chronic kidney disease; Abnormal bone metabolism; Anemia; Hypoxia; 
Hypoxia-inducible factor

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Anemia and abnormal bone metabolism are complications in patients with 
chronic kidney disease (CKD), which seriously affect the prognosis of patients. This 
review summarizes the findings from recent studies on renal anemia and abnormal 
bone metabolism in patients with CKD. The bidirectional relationship between anemia 
and abnormal bone metabolism in patients with CKD is discussed. While studying the 
treatment of anemia with hypoxia-inducible factor (HIF), it was found that hypoxia can 
affect bone metabolism, but there is no consensus on the efficacy of HIF stabilizers in 
renal bone disease.

Citation: Kan C, Lu X, Zhang R. Effects of hypoxia on bone metabolism and anemia in patients 
with chronic kidney disease. World J Clin Cases 2021; 9(34): 10616-10625
URL: https://www.wjgnet.com/2307-8960/full/v9/i34/10616.htm
DOI: https://dx.doi.org/10.12998/wjcc.v9.i34.10616

INTRODUCTION
Chronic kidney disease (CKD) is defined according to the presence of kidney damage 
or an estimated glomerular filtration rate lower than 60 mL/min per 1.73 m2 for 3 mo 
or longer[1]. In addition to sustained kidney damage, patients with CKD are also at 
increased risk of developing multiple complications including renal anemia, abnormal 
mineral and bone metabolism, dyslipidemia, and malnutrition. The pathophysiology 
of anemia in CKD includes many important factors such as the presence of comor-
bidities, erythropoietin (EPO) deficiency resulting from lower nephron mass, the 
resistance of bone marrow to EPO action due to uremic toxins, a reduced red cell life 
span, hepcidin metabolism dysfunction, absolute and functional deficiency of iron, 
and an increase in proinflammatory mediators[2]. Abnormal bone metabolism in 
patients with CKD stems from disorders involving calcium and phosphorus meta-
bolism, vitamin D deficiency, and elevated parathyroid hormone, leading to a higher 
risk of osteoporosis, myelofibrosis, and other bone diseases[3,4]. According to prior 
research and experience from clinical practice, the pathogenesis and potentially the 
treatment of renal anemia and abnormal bone metabolism may have many interactions
[5]. For example, improving the hematopoietic microenvironment of bone marrow can 
be achieved by improving bone metabolism. When anemia is corrected, the 
oxygenation of bone tissues is expected to improve, leading to better bone function.

Hypoxia-inducible factor (HIF) is a heterodimeric transcriptional factor that can 
induce the production of EPO and oxygen-sensitive genes under the hypoxic envi-
ronment. HIF-prolyl hydroxylase (HIF-PHD) is an enzyme that regulates the stability 
of the α subunit of HIF through post-translational HIF hydroxylation in an oxygen-

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/2307-8960/full/v9/i34/10616.htm
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dependent manner, thereby maintaining the balance between environmental oxygen 
availability and HIF activities. Recent reports have confirmed the pivotal role of HIF-
PHD as a critical gatekeeper overseeing the process of coordinated transcriptional 
adaptation to hypoxia and oxidative stress; its unique physiological position renders it 
a suitable therapeutic target for managing renal anemia. Inhibitors of HIF-PHD have 
been tested and validated as a viable therapeutic option clinically[6-8]. However, the 
hypoxic regulation of bone metabolism regarding bone maturation and osteoblast 
differentiation remains poorly understood, although hypoxia is expected to participate 
in the pathogenesis of both anemia and abnormal bone metabolism. There is still a lack 
of effective treatment options for the simultaneous occurrence of anemia and abnormal 
bone metabolism.

Therefore, the present study aimed to clarify the bidirectional relationship between 
anemia and abnormal bone metabolism, search for evidence that hypoxia can improve 
bone metabolism, and provide a new research direction for the treatment of complic-
ations in patients with CKD.

MATERIALS AND METHODS
CNKI and PubMed searches were performed using the key words “chronic kidney 
disease,” “abnormal bone metabolism,” “anemia,” “hypoxia,” and “HIF” to identify 
relevant articles published in multiple languages and fields. Reference lists from 
identified articles were reviewed to extract additional pertinent articles. Then we 
retrieved the Abstract and Introduction and searched the results from the literature, 
classified the extracted information, and summarized important information. Finally, 
we made our own conclusions. We have expanded the scope of literature search to 
reduce the risk of bias associated with article selection.

RESULTS
After reviewing 59 studies, we found that abnormal bone metabolism and renal bone 
disease were connected in the hematopoietic microenvironment. Abnormal vitamin D 
metabolism and hyperparathyroidism can affect bone metabolism, blood cell 
production, and survival rates through multiple pathways. Anemia will further 
attenuate the normal bone growth. According to the study of HIF in the treatment of 
renal anemia, HIF has more physiological potential. The hypoxic environment 
regulates bone morphogenetic protein, vascular endothelial growth factor, and 
neuropilin-1, and affects osteoblast/osteoclast maturation and differentiation through 
bone metabolic changes. Hypoxia preconditioning of mesenchymal stem cells (MSCs) 
can enhance their paracrine effects and promote fracture healing. Concurrently, 
hypoxia reduces the inhibitory effect on osteocyte differentiation by inhibiting the 
expression of fibroblast growth factor 23. Hypoxia potentially improves bone meta-
bolism, but it still carries potential uncertainty, and the optimal concentration and 
duration of hypoxia remain unclear.

DISCUSSION
Relationship between abnormal bone metabolism and anemia in the pathogenesis 
of CKD
Effects of impaired vitamin D metabolism: Inorganic phosphorus within the fluid of 
cortical tubules increases significantly in patients with CKD, and this increase in 
phosphorus significantly inhibits the synthesis of 1,25(OH)2D3. The injured kidney is 
unable to synthesize calcitrio[3,4], and even if calcitriol is synthesized, osteoblastic 
vitamin D receptors (VDRs) cannot bind to it effectively[9-11]. These pathologic 
changes serve as triggers of abnormal bone metabolism observed in CKD patients. 
Furthermore, abnormal lipid metabolism associated with decreased vitamin D stores 
can aggravate CKD-related osteoporosis in patients with specific physical conditions
[12]. In addition, the hematopoietic system, especially hematopoietic stem cells (HSCs) 
in the bone marrow (BM), are vulnerable to the adverse effects of CKD[13-17]. Bony 
disorders can damage the BM hematopoietic microenvironment. VDR is also ex-
pressed by immunocytes, and VDR activation on these cells enhances their anti-
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inflammatory effects and also promotes the proliferation of erythrocyte progenitor 
cells[18,19]. During the course of CKD, the ability of VDRs to be activated is 
compromised, and their influence on erythrocyte progenitor cells is diminished. 
Inflammatory cytokines, which are released in higher quantities during CKD, also 
stimulate the liver to produce hepcidin[20,21], resulting in iron deficiency anemia. 
Earlier studies have confirmed that vitamin D is effective against abnormal bone 
metabolism in patients with CKD, and is widely used clinically. Icardi et al[22] showed 
that low hemoglobin (Hb) levels and EPO resistance in patients with CKD were 
associated with vitamin D deficiency. Along these lines, it is plausible that vitamin D 
supplementation in patients with CKD can ameliorate erythrocyte damage, increase 
Hb levels, and reduce EPO resistance, thereby improving symptoms related to anemia 
(Figure 1).

Anemia and abnormal bone metabolism can be caused by secondary hyperpara-
thyroidism: With the increase of parathyroid hormone (PTH) during CKD, the 
generation of early erythroid progenitor cells is inhibited. PTH potentially antagonizes 
EPO production[23], increases the osmotic brittleness of erythrocytes, and impairs 
their survival[24]. In patients with CKD, elevated PTH causes accelerated bone 
turnover and is associated with myelofibrosis[25,26], which reduces the production of 
EPO and aggravates anemia. Moreover, due to the positive correlation between 
erythroferrone (ERFE) and EPO and lower endogenous EPO production, the inhibition 
of hepcidin mediated by ERFE is reduced, which also aggravates anemia[27]. 
Cinacalcet, a calcimimetic for treating secondary hyperparathyroidism (SHPT), has 
been shown to attenuate the inhibitory effects on erythrocytes posed by PTH[6,28,29], 
reduce the amount of EPO required for correcting anemia in patients with CKD[30], 
and improve bone integrity in such patients[31]. Cinacalcet can simultaneously 
optimize their BM hematopoietic microenvironment[32]. After parathyroidectomy 
(PTX), the required EPO dose in patients with CKD-related anemia significantly 
declines[33]. Together, these findings suggest that surgical or medical treatments 
directed toward SHPT and associated abnormal bone metabolism can potentially 
improve symptoms related to anemia (Figure 1).

Abnormal bone metabolism can be exacerbated by anemia: Due to the complications 
of abnormal calcium and phosphorus metabolism, patients with CKD frequently have 
osteodystrophy. Anemia will further attenuate the normal bone growth and affect the 
formation of bone marrow as well as the generation of hematopoietic stem cells. This 
constitutes a vicious circle.

Effects of hypoxia on anemia and abnormal bone metabolism in patients with CKD
Patients with CKD invariably suffer from a status of low tissue oxygen tension. 
Hypoxia is a common precipitator of abnormal bone metabolism and anemia. Because 
HIF-PHD inhibitors (HIF-PHI) have been used to treat renal anemia and abnormal 
bone metabolism interacts with anemia, it is possible that HIF-PHIs exert similar 
therapeutic efficacy against bone disease in patients with CKD. In the following 
sections, we will provide several unifying theories to support this therapeutic plau-
sibility.

Hypoxic environment and anemia: Hypoxia may occur during episodes of microcir-
culatory insufficiency and hypoperfusion involving different tissues, including the 
kidney[34,35]. Studies have shown that the pathogenesis of CKD might include the 
loss of coherence within the microvascular network, resulting in an aberrantly hetero-
geneous pattern of focal microvascular rarefaction; this abnormality could diminish 
local blood flow velocity, relax vessel tone, and impair the oxygen uptake of tissues. 
From this perspective, tissue hypoxia is not uncommon during CKD[36,37]. Further-
more, chronic hypoxia by itself constitutes a vicious cycle, in which inflammatory cells 
are recruited and aggregate locally, promoting tissue fibrosis and further aggravating 
tissue hypoxia and organ damages[38,39]. On the other hand, anemia in patients with 
CKD is associated with destruction of the BM hematopoietic microenvironment. BM is 
widely considered to be a relatively hypoxic tissue[13], due to the finding that the low 
oxygen environment can optimize HSC activity[40,41] and improve anemia. The 
discovery of this hematopoiesis machinery facilitates the subsequent development of 
HIF-PHIs as a new treatment strategy for renal anemia. Under hypoxic conditions, the 
mechanisms by which treatment of renal anemia is accomplished predominantly 
involve the manipulation of HIF-α and PHD. HIF-2 regulates the expression of 
divalent metal transporter 1 (DMT1) and duodenal cytochrome b (Dcytb), thereby 
inhibiting the production of hepcidin in the liver. Dcytb has been shown to reduce 
dietary Fe3+ to Fe2+, which is transported by DMT1 later to small intestinal epithelial 
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Figure 1 The pathogenetic relationship between anemia and abnormal bone metabolism in patients with chronic kidney disease. CFU: 
Colony-forming unit; VDR: Vitamin D receptor; PTH: Parathyroid hormone; EPO: Erythropoietin; ERFE: Erythroferrone.

cells for storage in the liver, small intestine, and macrophages. In addition, HIF-1 
induces the expression of transferrin (Tf), transferrin receptor 1, and ferroportin (FPN), 
facilitating the transportation of iron stores to BM. HIFs also bind to the hypoxia 
responsive element within the promoter area of the EPO gene, and directly stimulate 
endogenous EPO production. Through the decrease of hepcidin, HIFs improve iron 
transportation[42] and increase BM iron stores, resulting in anemia improvement. In 
the backdrop of this complicated scene, PHD is key to the regulation of the HIF 
pathway. During hypoxia, PHD2 is inactivated and HIF degradation is inhibited. In 
line with these findings, HIF-PHI has been shown to stabilize HIF-α and increase the 
expression of downstream targets[43]. The therapeutic advantage of HIF-PHI over 
conventional EPO for renal anemia lies in the fact that HIF-PHI is more physiologically 
directed relative to EPO[44].

Hypoxic environment and bone development: Hypoxia exhibits complex effects on 
bone metabolism. Heterotopic ossification (HO) refers to the formation of bone-like 
tissues outside the skeletal system, and the process of adaptation to a hypoxic 
microenvironment is a powerful driver for the development of HO. The hypoxic 
microenvironment increases the stability of HIF-1α, which regulates a coordinated 
network consisting of bone morphogenetic proteins, vascular endothelial growth 
factor, and neuropilin-1, all of which are implicated in the formation of ectopic bone-
like tissues[45]. Existing studies have found that the severity and duration of hypoxia 
to which tissues are exposed and the stage of osteoblast differentiation during which 
hypoxia occurs may influence bone growth and reconstruction.

In an environment of low oxygen level, pathways involved in bone metabolism are 
altered, which affect the maturation and differentiation of osteoblasts/osteoclasts. For 
osteoblasts, hypoxia predominantly occurs during their early stage of differentiation, 
and hypoxia facilitates premature osteoblast differentiation with incorrect signals 
produced for stimulating matrix maturation and mineralization[46,47]. Through up-
regulating HIF-1α, short-term hypoxia enhances matrix mineralization, promotes 
osteoblast differentiation and maturation, and accelerates osteogenesis[48-51]. For 
osteoclasts, hypoxia increases osteoclast production irrespective of the differentiation 
stage during which hypoxia occurs, but the duration and severity of hypoxia may 
influence osteoclast differentiation. During hypoxia, anaerobic metabolism becomes 
predominant with acidic metabolites accumulation, causing mild acidosis of the local 
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microenvironment and driving the activation of osteoclasts[52]. The regulatory 
relationship between HIF and adenosine A2B receptors in the hypoxic microenvir-
onment can also enhance glycolysis and alter mitochondrial metabolism within 
osteoclasts, increasing the likelihood of bone absorption[53].

CKD patients with abnormal bone metabolism, especially those who are older, are 
at a higher risk of developing pathological fractures due to aberrant bone metabolism 
and the co-existing osteoporosis. Prior studies have demonstrated that hypoxic 
preconditioning of MSCs can enhance their paracrine effects by increasing the pro-
duction of exosomal miR-126 through activating HIF-1α; hypoxia-treated exosomes 
promote bone fracture healing through exosomal miR-126[54].

FGF23 is mainly secreted by osteocytes. The bone-derived FGF23 acts in concert 
with PTH and active vitamin D calcitriol to regulate calcium and phosphate home-
ostasis. Overexpression of FGF23 inhibits osteoblast differentiation and bone matrix 
mineralization[55]. Experimental studies have shown that in rat preosteoblasts, 
1,25(OH)2-D-induced FGF23 expression is completely repressed under hypoxic con-
ditions (0.2% O2) for 24 or 48 h, while hypoxia alone fails to trigger FGF23 expression
[56]. Therefore, hypoxia can reduce the inhibitory effect on osteocyte differentiation by 
inhibiting FGF23 expression. α-Klotho is also an important factor affecting bone 
metabolism. However, whether hypoxia affects bone metabolism by manipulating α-
Klotho expression remains unclear.

Current guidelines for treating bone diseases fail to consider the control of hypoxia 
as a therapeutic option. Sustained and intermittent hypoxia may inhibit osteogenic 
differentiation and promote osteoclast function, and cyclic hypoxia has been proposed 
as a promising strategy for favorably affecting bone metabolism. Exposure to mo-
derate oxygen concentration (> 2% in vitro and 9%–16% in vivo) persistently over days 
to weeks may increase bone mineralization potential, inhibit osteoclastic activity, 
and/or stimulate osteoblastic action[57]. In fact, hypoxia may potentially improve 
bone metabolism, but the underlying side effects should not be neglected, including 
the induction of senescence involving bone marrow mesenchymal stem cells and the 
risk of bone metastases in patients with cancer. Additional research is necessary to 
discover and test the optimal regimen of cyclically exposing tissues to certain oxygen 
concentration and the time required for exposure (e.g., the duration, length, and 
frequency of exposures per day).

Delaying CKD progression reduces complications: Li et al[58] studied the stress 
response of renal tubules to hypoxia and found that during the transition from acute 
kidney injury to CKD, the absence of forkhead box O3 in renal tubules led to the 
deterioration of tubular structure and function, manifesting as a more severe CKD 
phenotype. In hypoxic kidneys, transcription factors associated with stress responses 
can be activated to ameliorate hypoxic injury and reduce the risk of progression to 
CKD.

Previous studies have shown that HIF-1 restricts the anabolic actions of PTH[59]. In 
the bidirectional relationship between anemia and abnormal bone metabolism 
(Figure 1), lowering PTH can improve anemia and abnormal bone metabolism through 
multiple pathways. Although there is no clear evidence that HIF enhances vitamin D 
metabolism, HIF can act separately on several downstream pathways including 
calcitriol transformation, osteoblasts and osteoclasts growth and development, EPO 
production, and iron transport. Unfortunately, due to the limited evidence available, 
currently there is no therapeutic approach related to hypoxia for promoting bone 
metabolism. It is expected that potential HIF subtypes and pathways involved in the 
hematopoietic system and bone metabolisms will be discovered in the future.

CONCLUSION
This review summarizes findings from recent studies on renal anemia and abnormal 
bone metabolism in patients with CKD. Mounting evidence supports the notion that 
there is a connection between both CKD complications, ranging from their patho-
genesis to viable therapeutic strategies. Several reports have shown that hypoxia can 
improve anemia and delay the progression of CKD, and hypoxia-targeted treatments 
such as HIF-PHIs are starting to be used clinically for anemia. Moreover, there is also 
evidence that hypoxia potentially improves bone metabolism, although the exact 
degree of low oxygen concentration and the duration required for obtaining results 
remain uncertain, necessitating further studies. Anemia and abnormal bone metabo-
lism adversely influence patient prognosis. To improve the quality of life of patients 
with CKD, future studies should address the effect of HIF on bone metabolism while 
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treating anemia, and HIF may be a useful treatment for improving the prognosis of 
patients with CKD.

ARTICLE HIGHLIGHTS
Research background
Abnormal bone metabolism and renal anemia seriously affect the prognosis of patients 
with chronic kidney disease (CKD). Currently, there are few studies on the evaluation 
of their mutual connection. With the availability of hypoxia-inducible factor (HIF) 
stabilizers, more therapeutic choices for renal anemia are expected in the future. 
However, the effects posed by the hypoxic environment on abnormal bone metabolism 
remain incompletely understood. If we can find evidence that HIF could improve both 
complications, it will be a great advantage to improve the prognosis of patients with 
CKD.

Research motivation
The purpose of this article is to summarize the relationship between renal anemia and 
abnormal bone metabolism, and to discuss the influence of hypoxia on bone meta-
bolism, in order to provide a new way of thinking for the future studies on the 
treatment of CKD complications.

Research objectives
To clarify the bidirectional relationship between anemia and abnormal bone meta-
bolism, to find evidence that hypoxia can improve bone metabolism, and to provide a 
new research direction for the treatment of complications in patients with CKD.

Research methods
We searched relevant articles published in multiple languages and fields, summarized 
important information, and drew our conclusions.

Research results
Anemia and bone metabolism interact. The hypoxic environment could affect 
osteoblast/osteoclast maturation and differentiation, enhance the paracrine effect of 
mesenchymal stem cells, and reduce the inhibitory effect of fibroblast growth factor 23 
on osteocyte differentiation. Hypoxia potentially improves bone metabolism, but the 
optimal concentration and duration of hypoxia remain unclear and need further study.

Research conclusions
There is a bidirectional relationship between renal anemia and abnormal bone 
metabolism. The relationship has rarely been studied. Hypoxia may improve bone 
metabolism, but the concentration and duration of hypoxia remain unclear and need 
further study. To improve the quality of life of patients with CKD, future studies 
should address the effect of HIF on bone metabolism while treating anemia, and HIF 
may be a useful treatment for improving the prognosis of patients with CKD.

Research perspectives
In future studies, we can focus more on the exact degree of hypoxia concentration and 
duration required for improving bone metabolism.
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