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Abstract
Gastrointestinal (GI) cancer, including esophageal, gastric, and colorectal cancer, 
is one of the most prevalent types of malignant carcinoma and the leading cause 
of cancer-related deaths. Despite significant advances in therapeutic strategies for 
GI cancers in recent decades, drug resistance with various mechanisms remains 
the prevailing cause of therapy failure in GI cancers. Accumulating evidence has 
demonstrated that the transforming growth factor (TGF)-β signaling pathway has 
crucial, complex roles in many cellular functions related to drug resistance. This 
review summarizes current knowledge regarding the role of the TGF-β signaling 
pathway in the resistance of GI cancers to conventional chemotherapy, targeted 
therapy, immunotherapy, and traditional medicine. Various processes, including 
epithelial-mesenchymal transition, cancer stem cell development, tumor microen-
vironment alteration, and microRNA biogenesis, are proposed as the main 
mechanisms of TGF-β-mediated drug resistance in GI cancers. Several studies 
have already indicated the benefit of combining antitumor drugs with agents that 
suppress the TGF-β signaling pathway, but this approach needs to be verified in 
additional clinical studies. Moreover, the identification of potential biological 
markers that can be used to predict the response to TGF-β signaling pathway 
inhibitors during anticancer treatments will have important clinical implications 
in the future.

Key Words: Drug resistance; Gastrointestinal cancer; Transforming growth factor-β; 
Epithelial-mesenchymal transition; Cancer stem cells; MicroRNAs
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Core Tip: The transforming growth factor (TGF)-β signaling pathway is involved in the 
drug resistance of gastrointestinal (GI) cancers. This review summarizes the current 
understanding of the roles played by the TGF-β signaling pathway in resistance to 
conventional chemotherapy, targeted therapy, immunotherapy, and traditional 
medicine in GI cancers as well as the various processes by which this occurs, including 
epithelial-mesenchymal transition, cancer stem cell development, tumor microenvir-
onment alteration, and microRNA biogenesis.

Citation: Lv X, Xu G. Regulatory role of the transforming growth factor-β signaling pathway in 
the drug resistance of gastrointestinal cancers. World J Gastrointest Oncol 2021; 13(11): 1648-
1667
URL: https://www.wjgnet.com/1948-5204/full/v13/i11/1648.htm
DOI: https://dx.doi.org/10.4251/wjgo.v13.i11.1648

INTRODUCTION
Gastrointestinal (GI) cancer, including esophageal cancer (EC), gastric cancer (GC), 
and colorectal cancer (CRC), is one of the most prevalent types of malignant 
carcinoma, falling within the top six in mortality according to global cancer statistics in 
2018. In both sexes, CRC is the second leading cause of cancer death (9.2% of total 
cancer deaths), closely followed by GC (8.2%), and EC as the sixth leading cause of 
mortality (5.3%)[1]. CRC is also the second most common cause of cancer death in the 
United States[2]. Despite improvements in current therapeutic strategies, including 
surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy, clinical 
prognoses and therapeutic responses of GI cancer patients are far from satisfactory 
because of delayed diagnosis, recurrence, poor clinical response, high cost, and 
medication side effects[3,4].

Chemotherapy is the most commonly used treatment for patients with advanced GI 
cancer. The most widely used chemotherapeutic regimens for GI cancer are 
fluorouracil and platinum[5-7]. Despite the continual development of new 
chemotherapeutic strategies, resistance to anticancer drugs remains a significant 
problem that is responsible for unfavorable clinical outcomes and treatment failures. 
Chemoresistance, including intrinsic and acquired drug resistance, is defined as the 
resistance of cancer cells to various structurally and functionally unrelated anti-cancer 
drugs[8]. The mechanisms of drug resistance are complex and closely related to 
various signaling pathways that are activated by many stimuli to promote chemores-
istance[9].

The transforming growth factor (TGF)-β signaling pathway is deregulated in cancer 
and can have tumor-suppressive or tumor-promoting roles, depending on the 
molecular and cellular context[10,11]. In the GI tract, TGF-β has crucial and complex 
roles in many cellular functions related to drug resistance, such as maintaining stem 
cell homeostasis, regulating epithelial to mesenchymal transition, modulating 
immunity, and promoting fibrosis[12,13]. In this review, we discuss the role of the 
TGF-β signaling pathway in regulating chemoresistance in GI cancers.

MECHANISMS OF CHEMORESISTANCE IN CANCER
Molecular investigations have revealed several mechanisms underlying chemores-
istance, including the epithelial-mesenchymal transition (EMT), the efflux of 
intracellular chemotherapeutic drugs, noncoding RNAs, stem cell development, and 
the tumor microenvironment[14-17]. EMT is a complex and important cellular 
program in which epithelial cells shed their differentiated characteristics and acquire 
mesenchymal phenotypes, including motility, invasiveness, and resistance to 
apoptosis. Cells undergoing EMT become more invasive and exhibit increased 
resistance to anticancer drugs[18,19]. In addition, EMT has been found to result in 
stem cell-like characteristics and is positively correlated with the expression of ATP-

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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binding cassette (ABC) transporters[18,20,21]. Different stimulus-induced EMT may 
contribute to chemoresistance via the upregulation of distinct transcription factors[19].

Failure of cancer chemotherapy can also be caused by changes in the expression or 
activity of membrane transporters, primarily those belonging to the ABC transporter 
family. ABC transporters can export chemotherapeutic agents out of the cell, thereby 
reducing intracellular drug levels and drug sensitivity and ultimately contributing to 
cancer chemoresistance[22,23]. In addition, ABC proteins transport signaling 
molecules that contribute to tumorigenesis[24].

Increasing evidence shows that non-coding RNAs, especially microRNAs (miRNAs) 
and long non-coding RNAs (lncRNAs), can affect chemoresistance by forming a 
competing endogenous RNA regulatory network with mRNAs[25]. MiRNAs can play 
roles in drug resistance by targeting hundreds of tumor-related gene transcripts and 
affecting complex molecular pathways[14,26]. Specific miRNAs may be used as 
potential predictive biomarkers to guide individualized chemotherapy by reversing 
drug resistance[14].

Cancer stem cells (CSCs), which make up a distinct population within the tumor 
mass, possess unique self-renewal, multilineage differentiation, and potent 
tumorigenic abilities[27,28]. These cells acquire chemoresistance through various 
pathways involving apoptosis and DNA repair mechanisms[29]. In addition, upon 
exposure to cytotoxic therapies, CSCs can convert non-CSCs to CSC-like cells that may 
persist after treatment and serve as a mechanism for relapse. In GI malignancies, CSCs 
are abundant and contribute to chemotherapeutic resistance[15].

Interactions of tumor cells with alterations of the microenvironment, such as energy 
deprivation, hypoxia, and inflammation, give rise to heterogeneity and chemores-
istance. Most tumor cells display deviations from the normal energy metabolism, 
allowing them to survive in hypoxic and low nutrient microenvironments[30,31]. 
Mitochondrial dysfunction and fatty acid (FA) metabolism are associated with 
chemotherapeutic resistance[31,32]. Hypoxia can also drive tumor resistance to 
chemotherapy by upregulating hypoxia-inducible factor-1 (HIF-1) and its downstream 
genes[33]. Inflammation and inflammatory mediators, including TGF-β, have been 
shown to contribute to the development, progression, metastasis, and chemoresistance 
of cancer[34,35]. In addition, the gut microbiota, which is linked to chronic inflam-
mation and carcinogenesis[36], has an important role in the modulation of the host 
response to antitumor treatments, especially chemotherapy and immunotherapy[37]. 
Moreover, emerging evidence has demonstrated that cancer-associated fibroblasts 
(CAFs), one of the critical components of the tumor microenvironment, confer 
substantial resistance to chemotherapy and influence tumor cell responsiveness to 
immune checkpoint inhibitors[38].

ROLE AND ALTERATIONS OF THE TGF-β SIGNALING PATHWAY IN GI 
CANCER
The TGF-β signaling pathway can be subdivided into canonical Smad-dependent and 
noncanonical Smad-independent pathways. In the canonical pathway, TGF-β initially 
binds to the TGF-β type 2 receptor (TβRII), which recruits and phosphorylates the 
kinase domain of TGF-β type 1 receptor (TβRI), leading to the activation and 
phosphorylation of Smad2 and Smad3. Then, phosphorylated Smad2 and Smad3 bind 
to Smad4, allowing the entire complex to translocate into the nucleus. In the nucleus, 
the Smad complex regulates transcriptional activity by interacting with Smad binding 
elements within downstream target genes[39-41]. Smad7 negatively regulates the TGF-
β signaling pathway by blocking the interaction between Smads and receptors and 
inhibiting the phosphorylation of Smad2 and Smad3[42,43]. In addition to the Smad-
dependent pathway, the binding of the TGF-β ligand to its receptors also activates 
several Smad-independent signaling pathways, including the mitogen-activated 
protein kinase, phosphoinositide 3-kinase (PI3K)/AKT, and Rho-associated protein 
kinase pathways[44,45].

The TGF-β signaling pathway has an important role in controlling tissue 
development, proliferation, apoptosis, differentiation, and homeostasis[46]. Disruption 
of this signaling pathway leads to various diseases, including some cancers. In cancer 
cells, TGF-β signaling causes EMT and CSC-like traits, resulting in an aggressive 
phenotype and a poor prognosis[47,48]. In addition to its direct effect on epithelial 
tumor cells, TGF-β controls tumor development by regulating the tumor microenvir-
onment and growth factors from the surrounding stroma[13,49]. Furthermore, TGF-β 
signaling activation in the tumor microenvironment suppresses antitumor immune 



Lv X et al. TGF-β signaling pathway and drug resistance

WJGO https://www.wjgnet.com 1651 November 15, 2021 Volume 13 Issue 11

responses and supports cancer cell survival[50]. TGF-β has been found to inhibit 
multiple components of the immune system, including natural killer cells, CD8+ 
cytotoxic T lymphocytes, B-cell proliferation, and immunoglobulin A secretion[51]. 
Therefore, the TGF-β signaling pathway is associated with drug resistance and 
immune system escape.

In CRC, TGF-β1 expression is markedly increased and is correlated with poor 
clinical outcomes and a high risk of relapse[52,53]. TGF-β1 expression is also increased 
in GC mucosa and precancerous gastric cells[54,55]. However, active TGF-β1 is 
expressed most highly in smooth muscle actin-positive fibroblasts rather than in the 
malignant epithelial cells of gastric tumors[56]. In GC patients, high serum and tissue 
TGF-β1 levels are associated with lymph node involvement and poor prognosis[57]. 
Moreover, increased expression of TGF-β is found in EC[58]. In sum, serum and tissue 
TGF-β levels are upregulated in GI cancers and are associated with metastases and 
poor prognoses. Alterations in the TGF-β signaling pathway, especially receptor and 
Smad gene mutations, are commonly observed in GI cancers where they lead to tumor 
formation and metastasis[13]. Mutations in the TGF-β signaling pathway are found in 
80% of CRC cell lines and approximately one-third of CRC tumors[46]. A decreased or 
complete loss of TGF-β receptor expression is common in patients with esophageal 
adenocarcinoma, primary gastric tumors, and CRC[49]. TβRII mutations frequently 
occur in the advanced stages of the colon[59] and gastric tumors along with 
progressive microsatellite instability (MSI-H)[49,60]. The overall incidence of TβRII 
mutations is approximately 30% in CRC, while frameshift mutations can be found in 
approximately 80% of MSI-H CRC[60,61]. TβRII mutations in CRC cells can contribute 
to the malignant phenotype via multiple pathways, regulate the components secreted 
by cancer cells, and directly promote inflammation in the tumor microenvironment
[50]. Compared with TβRII, mutations in its counterpart TβRI are less frequent in both 
CRC and GC[13,60].

A study of over 700 cases of sporadic CRCs reveals that the prevalence of Smad4, 
Smad2, and Smad3 mutations was 8.6%, 3.4%, and 4.3%, respectively, with a combined 
prevalence of 14.8%[62]. Both Smad2 and Smad4 are located on chromosome 18q, 
which is commonly deleted in CRC[63]. However, Smad2 and Smad4 mutations tend 
to occur in the early and advanced stages of CRC, respectively[13,61,64]. Loss of 
Smad4 contributes to colorectal carcinogenesis[46] and may be a predictive biomarker 
of the response to 5-fluorouracil (5-FU)-based chemotherapy[65]. In GC, the expression 
of Smad3 is low or even undetectable in 40% of tissues, so mutations in Smad2 and 
Smad3 have not been described[13].

TGF-β SIGNALING AND DRUG RESISTANCE IN GI CANCER
Accumulating evidence suggests that the expression levels of components of the TGF-
β signaling pathway are closely associated with response to chemotherapy. Immuno-
histochemical analysis of 78 patient biopsies reveals that p-Smad2/3 expression was 
elevated in C-type CRC tumors, which benefit the least from chemotherapy[66]. 
Mediator Complex Subunit 12 (MED12) negatively regulates TβRII through physical 
interactions; therefore, its suppression induces the activation of TGF-β signaling[67]. In 
CRC cells, both MED12 knockdown and recombinant TGF-β treatment result in 
resistance to cisplatin, oxaliplatin (OXA), and 5-FU[66,67]. However, another study 
shows that TGF-β2 suppression was associated with recurrence in patients with 
colorectal adenocarcinomas. In addition, disease-free survival (DFS) and overall 
survival (OS) are significantly longer in patients with tumors expressing TGF-β2[68]. 
Additionally, in esophageal squamous cell carcinoma (ESCC) patients, TGF-β
1–509C/T polymorphisms benefit from radiochemotherapy and therefore might be 
useful genetic markers for predicting radiochemotherapy response[69]. In GI cancers, 
the TGF-β pathway is correlated with resistance to antitumor agents, including 
conventional chemotherapy, targeted therapy, immunotherapy, and traditional 
medicine. In Table 1, we provide a summary of the relationships between the TGF-β 
signaling pathway and drug resistance in GI cancers.

Conventional chemotherapy
Fluorouracil: 5-FU belongs to the antimetabolite family[70] and is a commonly used 
chemotherapeutic regimen for CRC and GC. 5-FU, a pyrimidine analog and an 
inhibitor of thymidylate synthase, is incorporated into RNA or DNA in the place of 
uracil or thymine and leads to the prevention of DNA replication and cell death[71]. 
Unfortunately, the treatment effectiveness of 5-FU is reduced, and its clinical 
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Table 1 Studies of the transforming growth factor-β signaling pathway  in drug resistance in gastrointestinal cancer

Cancer 
type In vivo/In vitro Upstream regulator Alteration of TGF-β 

signaling Effect Downstream 
antitumor drug Ref.

CRC SK-CO-1 cells MED12 knockdown The activation of TGF-β 
signaling or TGF-β 
treatment

Resistance DDP, OXA, and 5-
FU

Brunen et al
[66], 2013

CRC HCT116/HCT116p53KO 
chemoresistant cell lines

- TGF-β1 treatment/TβRI 
inhibition

Resistance/sensitivity 5-FU Romano et al
[82], 2016

CRC HCT116 cells - Smad4 knockdown Sensitivity Dox Li et al[103], 
2015

CRC in vivo, CRC animal model, 
stable OXA-resistant cell 
line HCT116/OXA

Curcumin Inhibition of p-Smad2 
and p-Smad3

Sensitivity OXA Yin et al[90], 
2019

CRC The resistant cell model 
HCT-8/5-FU cell line

Hedyotis diffusa Willd Inhibition of TGF-β 
signaling

Antimetastasis in 5-
FU-resistant cells

5-FU Lai et al[116], 
2017

CRC HCT116 and DLD1 CRC 
cell lines

- siRNA-mediated 
knockdown of 
SMAD2/3, TGF-β 
inhibitor SB431542

Sensitivity OXA Kim et al[89], 
2019

CRC RKO cells - Silencing of TβRII 
expression, TβRI 
inhibitor LY2157299

Sensitivity BETi Shi et al[112], 
2016

CRC HCT116 cells - TGF-β inhibitor 
LY2157299

Sensitivity 5-FU Quan et al
[81], 2019

CRC CT26 cells Chemokine C-C motif 
ligand-1 secreted by 
Snail-expression 
fibroblasts

Phosphorylated Smad2 Resistance 5-FU or paclitaxel Li et al[143], 
2018

CRC 5-FU resistant cell 
line(HCT-8/5-FU)

Pien Tze Huang (PZH) Suppression of TGF-β 
and Smad4

Overcome MDR and 
inhibit EMT

- Shen et al
[117], 2014

CRC Patients - P-Smad3 overexpression Resistance 5-FU and 
leucovorin, 
capecitabine

Huang et al
[78], 2015

CRC HCT116 Smad4+/+ and 
Smad4-/- cell lines

- Smad4 defect Resistance 5-FU Papageorgis 
et al[76], 2011

CRC in vivo, colorectal tumor 
biopsies

- Normal SMAD4 diploidy Sensitivity 5-FU and 
mitomycin

Boulay et al
[73], 2002

CRC Dukes CRC patients - Low SMAD4 mRNA and 
protein levels

Resistance 5-FU-based 
adjuvant 
chemotherapy

Alhopuro et 
al[75], 2005

CRC Colorectal tumor biopsies - The amplification of 
STRAP, an inhibitor of 
TGF-β signaling

Resistance 5-FU /mitomycin C 
adjuvant 
chemotherapy

Buess et al
[74], 2004

CRC Colo205 and RKO cells - TGF-β1 treatment Resistance 5-FU, etoposide Moon et al
[80], 2019

CRC Mouse models - Blockade of TGF-β 
signaling

Sensitivity Anti-PD-1-PD-L1 
checkpoint therapy

Tauriello et al
[115], 2018

CRC Mice models of MC38-
derived tumors

- 1D11 antibody anti-TGF-
β mAb

Sensitivity Anti-PD1 plus anti-
CD137 mAb

Rodríguez-
Ruiz et al
[114], 2019

CRC SNU-C5/5-FU -resistant 
cells.

(1S,2S,3E,7E,11E)-
3,7,11,15-
cembratetraen-17,2-
olide (LS-1) from 
Lobophytum sp

The increase of Smad-3 
phosphorylation and the 
nuclear localization of p-
Smad3 and Smad4

Sensitivity 5-FU Kim et al
[118], 2015 

CRC The early stages of 
colorectal carcinogenesis in 
rats

5-FU/thymoquinone 
(TQ) combination 
therapy

Upregulation of the TGF-
β1, TβRII, Smad4

Sensitivity 5-FU Kensara et al
[122], 2016 

CRC Azoxymethane (AOM) rat 
model

Vitamin D3/5-FU co-
therapy

Upregulation of the TGF-
β1, TβRII, smad4

Sensitivity 5-FU Refaat et al
[77], 2015 
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CRC RKO cells Oxymatrine Inhibition of the Smad2 
phosphorylation and the 
formation of Smad2/3/4

Sensitivity - Wang et al
[119], 2017

EC Paclitaxel-resistant EC109 
cells

- BMP-4 and p-Smad1/5 
overexpression

Resistance Paclitaxel Zhou et al
[100], 2017

ESCC KYSE-150 and KYSE-180 
cells, xenograft tumors in 
nude mice

- TβRI inhibitor LY2157299 Sensitivity DDP and taxol Zhang et al
[142], 2017

ESCC Xenotransplanted tumor 
mice model

- Dual PD-1/PD-L1 and 
TGF-β blockades

Sensitivity PD-1/PD-L1 
blockade

Chen et al
[139], 2018

EC and 
GC

EC cells T.T, GC cells 
MKN28 and MKN45

- Pretreatment with TGF-β Sensitivity Adriamycin Izutani et al
[104], 2002

EAC EAC cells, EAC patient-
derived xenograft tumors

- TβR inhibitor and 
trastuzumab, 
pertuzumab

Sensitivity Trastuzumab and 
Pertuzumab

Ebbing et al
[106], 2017

EC KYSE150 andKYSE450 cells Garcinol Inhibition of the 
p300/CBP and p-
Smad2/3 expression

Sensitivity - Wang et al
[120], 2020

ESCC Patients - High serum levels of 
VEGF-A and TGF-β1

Resistance Taxane-based/5-
FU -based 
chemotherapy

Cheng et al
[79], 2014 

ESCC TE1 - Anti-TGF-β2 neutralizing 
mAb and SB-431542

Sensitivity Trastuzumab Mimura et al
[110], 2005

ESCC TE1/TE5 - Anti-TGF-β2 neutralizing 
mAb/exogenous 
addition of TGF-β2

Sensitivity/resistance Cetuximab Kawaguchi et 
al[109], 2007

ESCC ECA109 and TE1 cells Overexpression of 
LEF1

Upregulation of p-
Smad2, p-Smad3, and 
TGF-β

Resistance DDP Zhao et al
[130], 2019

GC AGS cells Glycoprotein from the 
Capsosiphon fulvescens

Inhibition of TGF-β1-
activated 
FAK/PI3K/AKT 
pathways

Sensitivity - Kim et al
[121], 2013

GC SGC7901 and BGC823 cells HMMR Upregulation of p-Smad2 
level and the 
nuclearaccumulation of 
Smad2

Resistance 5-FU Zhang et al
[84], 2019

GC A peritoneal-metastatic cell 
line, 60As6

- TGF-β treatment Sensitivity Docetaxel Fujita et al
[99], 2015

GC MKN-45 cells Eribulin Inhibition of the TGF-β
/Smad pathway

Sensitivity - Kurata et al
[126], 2018

GC Peritoneal mesothelial cells 
(HPMCs)

Paclitaxel Inhibition of 
phosphorylation of 
Smad2

Reduce stromal 
fibrosis

- Tsukada et al
[98], 2013 

GC NCI-N87 cells - TGF-β treatment Resistance Trastuzumab Zhou et al
[107], 2018

AGS and MKN45 cells MSCs Activated TGF-β 
signaling

Resistance 5-FU and OXA He et al[146], 
2019

CRC Patients - TGF-β2 expression Sensitivity Fluoropyrimidine Kim et al[68], 
2009

5-FU: 5-fluorouracil; BETi: Bromodomain and extraterminal domain protein inhibitors; BMP-4: Bone morphogenetic protein 4; CRC: Colorectal cancer; 
DDP: Cisplatin; Dox: Doxorubicin; EC: Esophageal cancer; ESCC: Esophageal squamous cell carcinoma; GC: Gastric cancer; MDR: Multidrug resistance; 
MSCs: Mesenchymal stem cells; TGF-β: Transforming growth factor-β; TβRI: Type 1 TGF-β receptor; TβRII: Type 2 TGF-β receptor.

application is limited by the emergence of drug resistance. The response rate to 5-FU is 
limited to 10%–15% in CRC. Various strategies have been used to improve the efficacy 
of 5-FU, resulting in the extension of the median survival to 30 mo[72].

A study of colorectal tumor biopsies shows that CRC patients with normal Smad4 
diploidy experienced a threefold higher benefit from postoperative 5-FU-based 
adjuvant chemotherapy than those with Smad4 deficiency[73]. Another study of the 
same collection of tumor specimens reveals that serine-threonine receptor-associated 
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protein, a TGF-β-signaling inhibitor that acts at the receptor level, was a predictor of 
unfavorable responses to 5-FU-based adjuvant chemotherapy[74]. Similarly, CRC 
patients treated with surgery and 5-FU-based adjuvant therapy and followed for over 
6 years to evaluate the prognostic value of Smad4 expression, demonstrate that 
patients with a low level of Smad4 expression had shortened DFS and OS compared 
with those with a high level of Smad4 expression[75]. In HCT116 colon cancer cells, 
Smad4 deficiency is found to be responsible for 5-FU resistance[76]. Moreover, in an 
azoxymethane rat model of colon cancer, vitamin D3 supplementation promotes the 
efficacy of 5-FU through multiple mechanisms including increased expression of TGF-
β1, TβRII, and Smad4[77]. In brief, the results indicate that the effectiveness of 
adjuvant 5-FU-based chemotherapy might depend on TGF-β signaling in CRC.

As the TGF-β signaling pathway appears to have both suppressive and promoting 
effects in cancer, other studies have suggested that activation of the TGF-β signaling 
pathway might induce resistance to 5-FU in GI cancers. Immunohistochemical staining 
in patients with stage II-III advanced rectal cancer showed that p-Smad3 overex-
pression was associated with poor preoperative responses to fluoropyrimidine-based 
chemoradiotherapy. Therefore, p-Smad3 could be a potential predictor of a poor 
response to radiochemotherapy[78]. Moreover, pre-CCRT serum TGF-β1 levels were 
found to be negatively correlated with DFS in patients with ESCC receiving concurrent 
neoadjuvant chemoradiotherapy with taxane-based/5-FU-based chemotherapy 
followed by esophagectomy[79]. In CRC cells, TGF-β1 treatment was found to increase 
apoptotic resistance in cells exposed to therapeutics including 5-FU and etoposide[80]. 
TGF-β inhibition was found to sensitize HCT116 cells to 5-FU treatment and suppress 
cell migration[81]. Likewise, TβRI inhibition reduced proliferation and increased cell 
death in chemoresistant cancer cells[82]. Furthermore, Moon et al[83] found that 
Smad3/4 acted as a drug sensitivity regulator in TGF-β-mediated chemoresistant CRC 
cells, and knockdown of Smad3/4 significantly decreased tumor propagation and 
migration in the presence of 5-FU[83]. In GC, hyaluronan-mediated motility receptor is 
a key regulator of chemoresistance, and its upregulation was found to promote EMT 
and CSC properties by activating the TGF-β/Smad2 signaling pathway, ultimately 
leading to 5-FU resistance[84].

Platinum compounds: Platinum compounds are used as single agents or in combin-
atorial regimens for the treatment of GI cancers. The molecular mechanism of 
platinum compound-induced apoptosis involves the inhibition of DNA synthesis and 
repair, resulting in cell cycle arrest. This effect is mediated by the activation of various 
signal transduction pathways[85]. OXA is an important platinum-based option for the 
treatment of CRC[86]. In two multicenter trials in which single-agent OXA was 
administered as first-line treatment of advanced CRC, response rates were 12% and 
24%, progression-free survival was 4 mo, and median survival was 14.5 mo and 13 mo, 
respectively[87].

In CRC cells, TGF-β1 contributes to OXA resistance primarily through EMT, which 
leads to antiapoptotic effects and the attenuation of DNA damage[88]. Furthermore, 
both siRNA-mediated knockdown of Smad2/3 and treatment with the potent TGF-β 
inhibitor SB43154225 suppress migration and invasion and increase therapeutic 
sensitivity to OXA in HCT116 and DLD1 CRC cell lines[89]. Curcumin, a naturally 
occurring polyphenolic substance extracted from the Curcaceae plant Curcuma longa, 
sensitizes CRC to OXA treatment by inhibiting the TGF-β/Smad2/3 pathway in the 
OXA-resistant cell line HCT116/OXA and in an in vivo animal model of CRC[90]. In 
EC, TGF-β secreted from CAF-like fibroblasts induces chemoresistance to cisplatin, 
which is reversed after administration of TGF-β neutralizing antibodies[91].

Taxoid compounds: Paclitaxel (PTX) is an antineoplastic agent derived from the bark 
of the Pacific yew Taxus brevifolia[92]. Docetaxel is a semi-synthetic taxane that 
primarily acts to promote microtubule assembly and prevents the depolymerization of 
assembled microtubules[93]. Both PTX and docetaxel exert potent antitumor effects by 
stabilizing microtubules, resulting in cell cycle arrest and apoptosis[94]. The results of 
a multicenter trial in patients with advanced or recurrent GC showed that the response 
rate to PTX as a second-line monotherapy was 17.5%[95]. The median duration of 
response to PTX monotherapy was 2.8 mo in patients with advanced gastric or 
gastroesophageal junction adenocarcinoma, and the patients eventually developed 
resistance to PTX[96]. The results of a phase II study in previously-untreated GC 
patients reported overall response rates to single-agent docetaxel in the range of 17% 
to 24%[97].

Peritoneal dissemination is the most common mode of metastasis in GC. Low-dose 
PTX can significantly inhibit Smad2 phosphorylation in human peritoneal mesothelial 
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cells, leading to a decrease in stromal fibrosis[98]. The results of a microarray analysis 
showed that C-X-C chemokine receptor type 4 (CXCR4) was a novel marker for highly 
metastatic CSCs. Treatment with TGF-β enhanced the anticancer effect of docetaxel via 
the induction of cell differentiation/asymmetric cell division within the CXCR4-
positive gastric CSC population, even when the cells were in a dormant state[99]. Bone 
morphogenetic protein 4 (BMP-4), which is involved in TGF-β signaling, is 
upregulated in PTX-resistant human esophageal carcinoma EC109 cells and docetaxel-
resistant human GC MGC803 cells. p-Smad1/5, which is also involved in the TGF-β
/Smad pathway, is also overexpressed in EC109/Taxol cells[100].

Doxorubicin: Doxorubicin (Dox), a chemotherapeutic agent extensively used to treat a 
wide range of cancers, exerts cytotoxic and DNA damaging effects through 
interference with nucleoside metabolism, but is less efficacious in GI cancers relative to 
other cancer types[101]. The antineoplastic activity of Dox is attributed to its 
intercalation into the DNA helix and its ability to generate free radicals[102]. In 
HCT116 colon cancer cells, long-term administration of low concentrations of Dox may 
promote resistance partly via the activation of TGF-β signaling. Moreover, knockdown 
of Smad4 significantly increases the sensitivity of HCT116 cells to Dox, in part via the 
inhibition of multidrug-resistant plasma membrane glycoprotein expression and 
reversal of the EMT process[103]. Therefore, the combination of Dox treatment and 
TGF-β downregulation might be a potential therapeutic strategy to overcome 
chemoresistance.

Adriamycin: Adriamycin (ADM) generates superoxide radicals that kill tumor cells by 
damaging DNA, directly intercalating into DNA, and preventing DNA replication. In 
human EC cells (T.T) and GC cells (MKN28 and MKN45), pretreatment with TGF-β1 
results in increased sensitivity to ADM. In vivo, the combined administration of TGF-β
1 and ADM delayed tumor growth better than either treatment alone and further 
exhibited synergistic antitumor effects[104].

Targeted therapy
Knockdown of MED12 in the CRC cell lines SK-CO-1 (KRASV12) and SW1417 
(BRAFV600E) resulted in the activation of MEK/ERK and induced resistance to the 
MEK inhibitor AZD6244 (selumetinib). Moreover, TGF-β-induced resistance to 
AZD6244 and the BRAF inhibitor PLX4032 (vemurafenib) have also been observed in 
CRC cells[67]. However, another study demonstrated that vemurafenib downreg-
ulated the expression of TGF-β and p-Smad3 in HT29 CRC cells[105]. Trastuzumab, a 
human epidermal growth factor receptor (HER)2-targeting antibody, is the only 
available targeted agent for first-line palliative systemic treatment of HER2-positive 
esophagogastric adenocarcinoma (EAC). EAC cells become resistant to trastuzumab 
and the HER2-HER3 signaling inhibitor pertuzumab by activating TGF-β signaling, 
which subsequently induces EMT. TGF-β receptor inhibitors were shown to increase 
the antitumor efficacy of trastuzumab and pertuzumab in EAC cells and EAC patient-
derived xenograft tumors[106]. Sensitivity of the GC cell line NCI-N87 to trastuzumab 
was significantly decreased after treatment with TGF-β. Moreover, TGF-β was 
upregulated in trastuzumab-resistant NCI-N87/TR cells[107]. Cetuximab and 
trastuzumab, humanized antibodies against the HER family, exert antitumor effects by 
directly inhibiting epidermal growth factor receptor (EGFR) tyrosine kinase activity, 
inhibiting cell cycle progression, and activating proapoptotic molecules[108]. In 
addition, an anti-TGF-β2 neutralizing mAb enhances cetuximab-mediated and 
trastuzumab-mediated antibody-dependent cellular cytotoxicity (ADCC) in TE1 TGF-β
-producing ESCC cells. The TGF-β signaling inhibitor SB-431542 was found to enhance 
trastuzumab-mediated ADCC of TE1 cells. Furthermore, the exogenous addition of 
TGF-β2 significantly decreased cetuximab-mediated ADCC in non-TGF-β2-producing 
TE5 cells, and TGF-β2 inhibited the activity of trastuzumab-mediated ADCC in TE1 
cells[109,110]. TGF-β expression is upregulated in three FGFR2-amplified SNU-16 GC 
cell lines that are resistant to AZD4547, BGJ398, and PD173074. However, parental 
SNU-16 cells treated with TGF-β1 did not undergo EMT, and inhibition of TβRI was 
not sufficient to reverse EMT in the resistant cells[111]. Bromodomain and 
extraterminal domain protein inhibitors (BETis) are in clinical trials as a novel class of 
cancer therapeutics. Both TβRII knockdown and treatment with the small-molecule Tβ
RI inhibitor LY2157299 (galunisertib) were reported to increase the sensitivity of RKO 
colon carcinoma cells to BETis[112].

Immunotherapy
Treatment with the TGF-β inhibitors P144 and P17 may be able to enhance the efficacy 
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of immunotherapies by increasing antitumor immune responses[113]. Moreover, 
treatment with the TGF-β-neutralizing mAb 1D11 enhanced the abscopal effect of 
radiotherapy as well as overall treatment efficacy in subcutaneous large MC38 
colorectal tumors in conjunction with anti-programmed cell death protein 1 (PD-1) 
plus anti-CD137 mAb[114]. In mice with progressive metastatic liver disease, enabling 
immune infiltration using TGF-β inhibitors render tumors susceptible to anti-PD-
1/Programmed cell death ligand 1 (PD-L1) checkpoint-based therapies[115]. Immuno-
therapies directed against TGF-β signaling may have broad applications in treating 
patients with advanced CRC.

Traditional medicine
Traditional herbal medicine has an important role in reversing the resistance of CRC 
cells to 5-FU. Hedyotis diffusa Willd, a traditional Chinese herbal medicine in the family 
of Rubiaceae, may exert its antimetastatic activity by suppressing TGF-β/Smad4 
signaling pathway-mediated EMT in 5-FU-resistant CRC cells[116]. Similarly, the 
traditional Chinese medicine formula Pien Tze Huang can effectively overcome 
multidrug resistance and inhibit EMT via suppression of the TGF-β pathway in the 5-
FU-resistant CRC cell line HCT-8/5-FU[117]. Moreover, (1S,2S,3E,7E,11E)-3,7,11,15-
Cembratetraen-17,2-olide (LS-1), a marine cembrenolide diterpene from Lobophytum 
sp., can restore TGF-β signaling pathway activity and induce apoptosis in fluorouracil-
resistant human colon cancer SNU-C5/5-FU cells[118].

Various other Chinese herbs have been reported to exert antitumor or synergistic 
antitumor effects via TGF-β signaling pathway-mediated mechanisms. Oxymatrine, an 
alkaloid extracted from the Chinese herb Sophora flavescens Ait, can exert antimetastatic 
and anti-invasive effects through the inhibition of Smad2 phosphorylation and the 
formation of Smad2/3/4 in colorectal carcinoma RKO cells[119]. Garcinol, a natural 
compound extracted from Gambogic genera, can inhibit EC metastasis in vitro and in 
vivo by dose-dependent suppression of p-Smad2/3 expression in the nucleus[120]. In 
addition, a glycoprotein from the green alga Capsosiphon fulvescens was shown to 
suppress the proliferation and migration of AGS GC cells by downregulating integrin 
expression via inhibition of the TGF-β1-activated FAK/PI3K/AKT pathways[121]. 
However, combination therapy with 5-FU and thymoquinone, which is the main 
bioactive compound derived from Nigella sativa, enhanced antitumor effects in a 
preclinical rat model of colorectal tumorigenesis partly by upregulating the expression 
of TGF-β1, TβRII, and Smad4[122].

TGF-β SIGNALING AND EMT IN GI CANCER DRUG RESISTANCE
TGF-β secreted from tumor cells is involved in paracrine signaling cascades that 
promote EMT and activate CAFs. CAFs, in turn, secrete more TGF-β that further 
drives EMT. Extracellular TGF-β binds to its receptor, resulting in the expression of 
key EMT genes. Furthermore, TGF-β can promote non-Smad pathways to accelerate 
EMT progression[16]. It has been reported that fibronectin, a marker of EMT 
progression, induced EMT through Smad3/4-mediated TGF-β signaling[123]. 
Therefore, TGF-β is an important inducer of EMT. SW837 rectal cancer cells treated 
with a TβR inhibitor or transfected with TβRII siRNA exhibited downregulation of 
mesenchymal markers, such as N-cadherin and vimentin and EMT regulators, 
including Snail, Twist, Slug, and Zeb1[124]. Ginsenoside Rb2, the bioactive component 
in ginseng, inhibited EMT in CRC cells by inhibiting the expression of Smad4 and p-
Smad2/3[125]. Similarly, eribulin significantly inhibited EMT by downregulating the 
TGF-β/Smad pathway in GC[126]. The EMT phenotype has been observed in GC cell 
lines resistant to 5-FU and AZD4547 and CRC cell lines resistant to BGJ398, PD173074, 
and OXA[84,111,127]. Anticancer drugs can activate the TGF-β signaling pathway and 
further induce EMT, which is closely associated with chemotherapy resistance and 
evasion of immune surveillance[10,128]. Dox treatment of HCT116 colon cancer cells 
was found to increase TGF-β1 and p-Smad2/3 expression and induce an EMT 
phenotype, exemplified by a reduction in E-cadherin and the upregulation of vimentin 
and N-cadherin. The changes ultimately resulted in the acquisition of Dox resistance. 
Furthermore, silencing Smad4 by stable RNA interference reversed the EMT process 
and increased the sensitivity of HCT116 cells to Dox[103]. In EAC cells, EMT has been 
identified as a chemoradiation resistance mechanism in which EMT is mediated by the 
autocrine production of TGF-β in response to chemoradiation. Neutralization of TGF-β 
ligands effectively counteracted chemoradiation-induced EMT by reversing the 
mesenchymal phenotype[129]. EAC cells incubated with trastuzumab and 
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pertuzumab can secrete ligands for the TGF-β receptor and induce EMT-related 
changes, including reduced expression of epithelial markers (CD24, CD29, and CDH1) 
and increased expression of mesenchymal markers (CXCR4, VIM, ZEB1, SNAI2, and 
CDH2), resulting in drug resistance. However, combining the drugs with a TGF-β 
receptor inhibitor caused the cells to regain an epithelial phenotype[106].

TGF-β SIGNALING AND CSC IN GI CANCER DRUG RESISTANCE
Emerging evidence indicates that CSCs are the main factor underlying therapeutic 
failure, and chemotherapeutic resistance. The TGF-β pathway has been identified as a 
major stem cell-associated signaling pathway. ESCC has been found to arise from 
CSCs. Zhao et al[130] showed that the TGF-β signaling pathway contributed to the 
lymphoid enhancer-binding factor 1-mediated CSC-like phenotype in ESCC cells. In 
EC, the TGF-β1 inhibitor SB525334 significantly suppressed the migration and invasion 
of sphere-forming stem-like cells, which possess key traits of CSCs, including 
chemoresistance[131]. EMT is a critical process for the generation and maintenance of 
CSCs and the invasive front of ESCC. Moreover, the EGFR inhibitors erlotinib and 
cetuximab can both markedly suppress CSCs enrichments via TGF-β1-mediated EMT 
in ESCC[132]. In mouse GC cells, activation of the TGF-β pathway downregulated the 
expression of Sca-1, which has been identified as a potential CSC enrichment marker. 
High expression of Sca-1 was related to increased resistance to cisplatin/fluorouracil-
based chemotherapy[133]. In addition, TGF-β enhanced the anticancer effect of 
docetaxel by inducing the differentiation of gastric CSCs[99].

TGF-β SIGNALING AND TUMOR MICROENVIRONMENT IN GI CANCER 
DRUG RESISTANCE
TGF-β is a pleiotropic cytokine with potent immunosuppressive effects. TGF-β 
downregulates CD8+ and CD4+ T cell activation and stimulates the differentiation of 
immune-suppressive regulatory T (Treg) cells[10,114]. CRC cells secrete anti-inflam-
matory cytokines, including TGF-β, which can affect the dendritic cell (DC) phenotype 
and support tumor escape from immune surveillance[134]. However, the TGF-β 
receptor inhibitor SB-431542 can induce potent phenotypic and functional maturation 
of DCs and trigger an antitumor immune response[135]. In ESCC, TGF-β1 was shown 
to partially contribute to the downregulation of CD16 on natural killer (NK) cells, 
resulting in NK cell dysfunction[136].

TGF-β signaling pathway activation plays an important role in immune evasion and 
contributes to immune checkpoint therapy failure[137,138]. Enabling immune infilt-
ration by blocking TGF-β signaling renders tumors susceptible to anti-PD-1-PD-L1 
checkpoint-based therapy[115]. Moreover, the TGF-β neutralizing monoclonal 
antibody 1D11 markedly enhanced the abscopal effects and the overall treatment 
efficacy in conjunction with an anti-PD-1 plus anti-CD137 mAb combination in large 
MC38 colorectal tumors[114]. In ESCC, myeloid-derived suppressor cell-derived TGF-
β increased PD-1 expression on CD8+ T cells, which led to resistance to PD-1/PD-L1 
blockade in the tumor microenvironment. Dual PD-1/PD-L1 and TGF-β pathway 
blockades restored the function and antitumor ability of CD8+ T cells[139]. 
Furthermore, combined treatment with cyclophosphamide and interleukin (IL)-12-
expressing adenovirus, which might be a valid immunotherapeutic strategy for 
advanced GI cancer, was shown to revert the Treg immunosuppressive phenotype by 
blocking the secretion of IL-10 and TGF-β, resulting in loss of their DC inhibitory 
activity[140].

CAFs are the most abundant cell type in the tumor microenvironment. One of the 
main sources of CAFs is endothelial cells undergoing EMT, which is mainly promoted 
by TGF-β[141]. CAFs can confer TGF-β1-mediated ESCC cell resistance to several 
chemotherapeutic drugs, including cisplatin, taxol, irinotecan, 5-FU, carboplatin, 
docetaxel, pharmorubicin, and vincristine. Inhibition of CAF-secreted TGF-β1 
signaling via treatment with the TβRI inhibitor LY2157299 significantly enhanced 
chemosensitivity[142]. Moreover, TGF-β secreted by miR-27-induced CAFs induced 
chemoresistance to cisplatin in EC[91]. In CRC, Snail-expressing 3T3 fibroblasts exhibit 
CAF properties that support 5-FU and PTX chemoresistance via TGF-β/NF-κB-
mediated CCL1 secretion[143]. Tang et al[144] found that, in CRC, hypoxia-inducible 
factor 1α (HIF-1α) and CAF-secreted TGF-β2 synergistically induced the expression of 
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Table 2 Studies evaluating the relationship between miRNAs and drug resistance related to the transforming growth factor-β signaling 
pathway in gastrointestinal cancer

miRNA Tumor type Target Effect on drug resistance Ref.

miR-21 CRC cell line HCT-116 Downregulation of TβRII Induction of stemness Yu et al[148], 2012

miR-552 CRC tissues of patients, CRC cell lines 
SW-480 and SW-620

The 3′-UTR of Smad2 Reduction 5-FU resistance Zhao et al[150], 
2019

miR-34a CRC cell line HT29 Downregulation of the TGF-β/Smad4 
signaling pathway

Acquired chemoresistance to 
oxaliplatin

Sun et al[149], 
2017

miR-455-3p ESCC cell lines Eca109 and Kyse30 Enhanced expression level of p-Smad2 Resistance to DDP and 
docetaxel

Liu et al[151], 
2017

miR-27 ESCC cell line TE10 TGF-β secreted from CAF-like fibroblasts Resistance to DDP Tanaka et al[91], 
2015

miR-187 DDP-resistant GC cells SGC7901/DDP Downregulated TGF-β1 and p-Smad4 Alleviates DDP-resistance Zhu et al[153], 
2019

miR-204 GC cell lines AGS and SGC-7901 Target TβRII Sensitizes GC cells to 5-FU Li et al[154], 2018

5-FU: 5-fluorouracil; CAF: Cancer-associated fibroblast; CRC: Colorectal cancer; DDP: Cisplatin; ESCC: Esophageal squamous cell carcinoma; GC: Gastric 
cancer; miRNA: Microribonucleic acid; TGF-β: Transforming growth factor-β.

GLI2, which promoted chemoresistance.
Mesenchymal stem cells (MSCs), an important part of the tumor environment, 

contribute to the development of drug resistance[145]. In GC cells, TGF-β1 secretion by 
MSCs activated Smad2/3 and induced expression of the lncRNA MACC1-AS1 that 
promoted FA oxidation-dependent stemness and chemoresistance to 5-FU and OXA
[146].

TGF-β SIGNALING AND MIRNA IN GI CANCER DRUG RESISTANCE
Emerging evidence indicates that some miRNAs can regulate the resistance of GI 
cancers to a variety of chemotherapeutic drugs through the TGF-β signaling pathway, 
as summarized in Table 2. In HT-29 colon cancer cells, overexpression of miR-146a was 
found to be associated with various processes in the cancer microenvironment, 
including enhancement of 5-FU and irinotecan resistance and promotion of TGF-β 
secretion[147]. MiR-21 was shown to increase both stemness and the overall 
proportion of CSCs in colon cancer cells by downregulating TβRII, a direct target of 
miR-21, and by activating the Wnt/β-catenin pathway[148]. MiR-34a was found to 
mediate OXA resistance in CRC cells by inhibiting macroautophagy via regulation of 
the TGF-β/Smad4 pathway[149]. However, the expression levels of miR-552 were 
negatively correlated with resistance to 5-FU-based chemotherapy in CRC cells. 
Mechanically, miR-552 directly targeted the 3'-UTR of Smad2, and stable knockdown 
of Smad2 reversed miR-552 deficiency-induced 5-FU resistance[150]. Overexpression 
of miR-455–3p conferred resistance to cisplatin and docetaxel in ESCC cells, whereas 
miR-455–3p antagonism reversed chemoresistance and reduced the number of CD90+ 
and CD271+ tumor-initiating cells via the suppression of multiple stemness-associated 
pathways, including TGF-β signaling[151]. Moreover, miR-27 has shown to play a role 
in cisplatin resistance in EC through the transformation of normal fibroblasts into 
CAFs and the induction of TGF-β secretion from the CAFs[91]. In GC, overexpression 
of miR-577 contributed to TGF-β-mediated EMT and stemness by forming a positive 
feedback loop, resulting in chemoresistance to OXA[152]. However, overexpression of 
miR-187 in GC cells alleviated cisplatin resistance by inhibiting the TGF-β/Smad 
signaling pathway[153]. Furthermore, overexpression of miR-204 was found to 
sensitize 5-FU-resistant GC cells through the suppression of TβRII-mediated EMT
[154].

CONCLUSION
Drug resistance, which leads to unfavorable clinical outcomes and treatment failure, 
remains a considerable challenge in the treatment of GI cancers. The TGF-β signaling 
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Figure 1 Mechanisms of transforming growth factor-β signaling and involvement in gastrointestinal cancer chemoresistance. CAFs: 
Cancer-associated fibroblasts; CSCs: Cancer stem cells; EMT: Epithelial-mesenchymal transition; MSCs: Mesenchymal stem cells; TβRI: TGF-β Type 1 receptor; Tβ
RII: TGF-β Type 2 receptor.

pathway plays an important role in the regulation of the drug responses to conven-
tional chemotherapy, targeted therapy, immunotherapy, and traditional medicine. 
Furthermore, TGF-β-mediated drug resistance in GI cancers is closely associated with 
several processes, including EMT, CSC development, alteration of the tumor microen-
vironment, and miRNA biogenesis (Figure 1).

Despite improvements in treatment strategies, EC, GC, and metastatic CRC have a 
poor prognosis, with 5-year OS rates of 15%–25%, 29.3%, and 14%, respectively[2,155,
156]. The key obstacle to therapeutic success is the development of drug resistance, 
highlighting the urgency driving the development of alternative treatments for GI 
cancers. Many reports indicate the benefits of combining antitumor agents with agents 
that suppress TGF-β signaling. However, the findings require further verification by 
additional clinical studies. The use of some small-molecule inhibitors of TGF-β 
signaling is currently being investigated in both preclinical and clinical trials[60,157]. 
As TGF-β possesses paradoxical activities, the identification of potential biological 
markers related to the response to TGF-β inhibitors would have important clinical 
implications and would help select patients most likely to benefit from their use.
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