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Abstract
Retinal degeneration is a major contributor to visual dysfunction worldwide. 
Although it comprises several eye diseases, loss of retinal pigment epithelial 
(RPE) and photoreceptor cells are the major contributors to their pathogenesis. 
Early therapies included diverse treatments, such as provision of anti-vascular 
endothelial growth factor and many survival and trophic factors that, in some 
cases, slow down the progression of the degeneration, but do not effectively 
prevent it. The finding of stem cells (SC) in the eye has led to the proposal of cell 
replacement strategies for retina degeneration. Therapies using different types of 
SC, such as retinal progenitor cells (RPCs), embryonic SC, pluripotent SCs (PSCs), 
induced PSCs (iPSCs), and mesenchymal stromal cells, capable of self-renewal 
and of differentiating into multiple cell types, have gained ample support. 
Numerous preclinical studies have assessed transplantation of SC in animal 
models, with encouraging results. The aim of this work is to revise the different 
preclinical and clinical approaches, analyzing the SC type used, their efficacy, 
safety, cell attachment and integration, absence of tumor formation and 
immunorejection, in order to establish which were the most relevant and 
successful. In addition, we examine the questions and concerns still open in the 
field. The data demonstrate the existence of two main approaches, aimed at 
replacing either RPE cells or photoreceptors. Emerging evidence suggests that 
RPCs and iPSC are the best candidates, presenting no ethical concerns and a low 
risk of immunorejection. Clinical trials have already supported the safety and 
efficacy of SC treatments. Serious concerns are pending, such as the risk of tumor 
formation, lack of attachment or integration of transplanted cells into host retinas, 
immunorejection, cell death, and also ethical. However, the amazing progress in 
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the field in the last few years makes it possible to envisage safe and effective 
treatments to restore vision loss in a near future.

Key Words: Retina regeneration; Stem cells; Retina stem cell transplantation; Cancer stem 
cells; Photoreceptor replacement
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Core Tip: Retinal degeneration is a major cause of visual loss worldwide, having no 
cure or suitable treatments. Transplantation of stem cells into the eye to replace lost 
cells is being evaluated as a new therapeutic strategy. Establishing the most suitable 
source of stem cells and ethical and safety concerns still require to be solved. 
Preclinical studies and ongoing clinical trials support stem cells as a promising 
therapeutic approach to restore vision loss.
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INTRODUCTION
Stem cells (SC) are rather undifferentiated cells present in most tissues of nearly all 
multicellular organisms, from humans[1-3], to plants[4-6], having the amazing 
capacity to either activate self-renewal or differentiate into specific cell types[7]. 
Hence, they are potentially capable of regenerating whole tissues or organs subjected 
to ablations or damages. This capacity varies between species. It is particularly 
remarkable in Platyhelminthes, such as the planarian worms, which when beheaded 
can regenerate their entire bodies in just a few days[8-10]. Many cold-blooded species 
retain a considerable regenerative capacity; some teleosts, like zebrafish, can 
regenerate their limbs, spinal cord, retina, heart and brain. By contrary, regenerative 
capacity in mammals is quite restricted[11,12].

SC have attracted great attention due to their potential for regeneration and 
knowledge about them has increased enormously in the last few years. Most SC have a 
rather simple morphology, resembling undifferentiated cells, and essentially, they 
have the same organelles and molecular machinery present in most eukaryotic cells. 
However, embryonic pluripotent SCs (PSCs) are capable during development of an 
extraordinary feat, to give rise to nearly all the cell types present in the body. In 
addition, after ablations or injuries to a given tissue, they activate a complex response 
leading to their reentry into the cell cycle and, eventually, to the activation of a differ-
entiation pathway, acquiring the morphology and functions of the cells of the 
damaged tissue, thus being able to replace lost cells.

Based on their capacity for differentiation, SC can be classified either as unipotent, 
multipotent, pluripotent or totipotent. Whereas unipotent SC, such as epidermal or 
muscle SC, are able to generate only one type of cells upon differentiation[13,14], 
multipotent SC can generate a very limited amount of cell types, belonging to a closely 
related cell family[14], as usually is the case of adult SC. Müller glial SC in the retina 
belong to this group, as they potentially differentiate into just one or two retinal 
neuronal cell types and Müller glial cells (MGCs). PSCs, such as embryonic SC (ESCs) 
in the inner cell mass of the blastula, may differentiate into nearly all the cell types, 
while totipotent SC, like the zygote and the first few cells derived from it during 
zygote segmentation, have the highest capacity for differentiation and can give rise to 
all the cell types of an organism (Figure 1).

Based on their source, there are two main types of SC, ESC and adult (mature) SC. 
ESCs are included in a family of Stem/progenitor cells found in 3-5 d old embryos, 
which includes retinal progenitor cells (RPCs) and mesenchymal stromal cells. ESCs 
are pluripotent cells that can give rise to cells of the three embryonic germ layers: 
ectoderm, endoderm or mesoderm, and can generate all tissues in the body.

http://creativecommons.org/Licenses/by-nc/4.0/
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Figure 1 Origin of the different cell types from embryonic stem cells (ESCs) in the developing embryo. ESCs from the inner cell mass of a 
preimplantation embryo can give rise to all the cell types and to an entire organism.

A major breakthrough in SC research was achieved less than a decade ago; the 
introduction of a few SC specific genes, such as Myc, Sox2, Oct3/4 and Klf4, induced 
somatic cells to acquire the morphology, characteristics, and markers of SC, thus being 
defined as induced PSCs (iPSCs). Their transplantation in nude mice generates tumors 
exhibiting tissues from the three germ layers[15], suggesting they may be used for cell 
replacement therapies.

Mature SC are present in small amounts in adult, differentiated tissues; these 
multipotent cells can give rise to a few types of specialized cells[2]. Mature SC are also 
found in the umbilical cord and placenta after birth. They also include hematopoietic 
SC (HSC) from bone marrow (BM), peripheral blood or umbilical cord blood, and are 
commonly used for transplantation, one of their advantages being that they rarely 
generate unwanted cell types.

The most relevant features of SC are their ability for self-renewal and for giving rise 
to multiple cell types. A very active SC self-renewal occurs during the first stages of 
development, both in the morula and in the inner mass of the blastula to generate the 
new cells required for the developing organism (Figure 1). Later, SC can activate in 
damaged tissues, proliferating and then differentiating to replace lost cells. In addition 
to the “ready to use” pool of undifferentiated SC, some differentiated cells may 
eventually undergo a dedifferentiation process, reentering the cell cycle and becoming 
“active” SC. To regain the proliferating capacity, they repress genes required for cell 
differentiation, activating those required for a proliferative, undifferentiated state[16].

Noteworthy, SC are similar to cancer SC in their ability to self-renew and generate 
large populations of more differentiated descendants; they also share the phenotypic 
plasticity that allows them to enter or exit the cell cycle, an ability closely associated 
with the stemness properties and invasiveness of cancer cells[17]. These morphological 
and functional similarities compromise current therapeutic efforts, as SC 
transplantation very frequently leads to deregulation of the mitotic cell cycle and 
tumor formation[18,19].

The ability of SC to repair damaged tissues and regenerate lost cells has encouraged 
scientists and clinicians to explore their use to treat or cure different diseases. 
However, many issues have still to be unraveled before using SC safely in humans. 
The aim of this review is to analyze the characteristics and potential advantages of 
using SC for treating retina neurodegenerative diseases, and the risks that remain to be 
addressed before using these cells in the clinic.
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RETINAL DEGENERATIONS AND TREATMENTS
Contrary to early beliefs, nerve tissues in many animals, including mammals, have SC 
able to give rise to new neurons[20-23], sparking the hope for regenerative approaches 
to neurodegenerative diseases. However, at least presently, it seems nearly impossible 
to regenerate the brain as a whole. Humans have about 1011 neurons with different 
morphologies and multiple functions[24], which added to the complex interactions 
among the different neuronal types, and between neurons and other cell types (i.e., 
glial cells), imposes tremendous limitations for brain regeneration.

Retinal degeneration (RD) represents one of the most common causes of irreversible 
vision impairment leading to blindness worldwide. It comprises several eye diseases, 
including age-related macular degeneration (AMD), diabetic retinopathy, Stargardt’s 
disease and retinitis pigmentosa (RP). Among them, AMD is the leading cause of 
severe vision loss in people over 60 years old, with a global prevalence of 8.7 %, and it 
currently affects about 200 million persons in western world countries[25]. In spite of 
the numerous differences between these diseases, dysfunctions of RPE and photore-
ceptors (PHRs) are the major contributors to their pathogenesis[26].

The retina is part of the central nervous system (CNS); fortunately, its structure is 
simpler than that of the brain, making its regeneration more feasible. The retina is 
responsible for receiving light and transforming it into electrical signals that travel to 
the brain, where visual images are generated. It is a thin tissue of easy access, located 
in the back of the eye, with an ordered layered organization and a limited number of 
cells. These features make it possible to use SC to develop strategies for alleviating or, 
eventually curing, retinal neurodegenerative diseases.

Moreover, and in contrast to other organs of the body, the eye is a relatively 
immune privileged organ, which supports the likelihood of retina transplantation[27-
29]. The ocular immune privilege, which is intended to limit local immune and inflam-
matory responses, can also contribute to avoid the rejection of grafts placed in the 
anterior chamber of the eye and protect the eye from inflammatory insults[30,31]. 
However, this protection is not absolute and this must be taken into account in cell 
replacement strategies. Treatments using iPSCs may activate immune rejection, as they 
can upregulate genes that induce a T cell response, and thus lead to the rejection of 
transplanted cells. Since the molecular mechanisms involved in these processes are 
incompletely understood[32], many studies resort to immunosuppression to reduce 
the risk of rejection[33]. Increasing our knowledge of the molecular processes that 
inhibit immune rejection of transplants would contribute to elaborate new strategies to 
facilitate the acceptance of tissue allografts during retinal transplantation.

SC therapy and neural regeneration
The initial efforts to treat RD were oriented to halt degenerative processes of the retina. 
The proposed therapies included a variety of medical compounds and treatments, 
including several neurotrophic factors, aimed at controlling oxidative stress and cell 
death[34,35] or anti-vascular endothelial growth factor agents, to prevent the 
formation of leaky blood vessels, mainly used to treat wet AMD[36]. However, these 
strategies pose diverse difficulties. In wet AMD, treatments to avoid or minimize 
choroidal neovascularization, very frequently cause complications, such as uveitis and 
vitreous hemorrhages, which compromise their effectiveness. On the other hand, the 
clinical efficacy of the neuroprotective strategies has not been firmly established. 
Furthermore, surgical interventions like laser therapies may not prevent the 
progression of the disease in patients with AMD or other RD and can cause inflam-
matory-related damages[37-39].

The finding of SC in the retina has provided additional tools to develop strategies 
for repairing the damaged retinas. Therapies using different types of SC, such as 
stem/progenitor cells, RPCs, PSCs, ESCs, iPSCs, and mesenchymal SCs (MSCs), 
capable of self-renewal and of differentiating into multiple cell types, have now gained 
ample consensus. Numerous preclinical studies using SC in several animal models of 
RD have been performed and their results are encouraging. Emerging evidence 
suggests that RPCs are among the best candidates for RD treatment; they do not 
present ethical concerns and they have a relatively low risk of tumorigenesis and 
immunorejection[40]. Moreover, increasing evidence suggests that the combination of 
SC therapies with the provision of survival molecules might provide the best strategy 
to treat RD.

Regeneration following retina damages might require the recapitulation of develop-
mental specification/differentiation programs. Following PHR damage, zebrafish 
retina evidences an increase in the expression of several developmental competence 
factors, required for generating ganglion, amacrine, and PHR cells[41]. Retinal injury 
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might turn on cell specification programs in neuronal progenitor cells, which 
recapitulate the temporal expression sequence occurring during retina development 
and hence provide precursors suitable for replacing lost cells. A critical question is, 
which are the features that characterize and distinguish SC from other cells present in 
the organism? Cumulative evidence indicates that their extraordinary capacities 
depend, in part, on complex interactions between cell surface proteins and a variety of 
external and internal signals that activate signaling pathways to regulate pluripotency. 
These external signals include LIF/STAT3, Wnt/β-catenin, FGF/ERK, TGF/SMAD, 
bone morphogenetic protein (BMPs), Sonic Hedgehog, and the Wnts and Notch 
proteins[42].

The internal regulatory system comprises many transcription factors, such as Oct4, 
Sox2 and Nanog, which interact with specific target genes that regulate self-renewal 
and pluripotency[43,44] (Figure 2). Oct4 (also known as Oct3 o Pou5f1) controls the 
Sox2 transcription factor, involved not only in self-renewal of SC, but also in embryo 
development. Sox2 maintains SC in an undifferentiated state, after concluding embryo 
development[45,46], being important also for regulating proliferation and differen-
tiation of neuronal SC progenitors[47,48]. In addition, both Sox2 and Oct4 interact 
upstream with the promoter of Nanog, another transcription factor, activating 
different genes that inhibit differentiation[49,50] (Figure 2). Nanog is involved in the 
self-renewal of ESC and is critical for maintaining pluripotent cells in an undifferen-
tiated state[51]. Interestingly, genetic deletion of Nanog in ESCs does not abolish 
pluripotency, although it reduces cell self-renewal activity. As a general rule, Nanog 
prevents SC differentiation, so it is considered a guardian of pluripotency[50].

In addition, epigenetical regulation of global changes in genetic expression control 
SC rate of mitosis, along with other morphological and physiological changes. 
Acetylation or methylation of H3 and H4 histones regulate the distribution of active 
and inactive forms of chromatin, and consequently genetic transcription in mouse 
pluripotent cells. Noteworthy, mouse ESCs have poised (bivalent) domains containing 
both active and inactive forms of chromatin; hence, poised chromatin has histone 
modifications associated with both gene activation and repression[52]. Most bivalent 
domains are associated with the so called, highly conserved noncoding elements, 
found in clusters around different genes, including many transcription factors 
implicated in the regulation of cell differentiation during development[53]. Some of 
these transcription factors are members of the Sox, Fox, Pax, Irx and Pou families. 
Bivalent domains in SC are thought to maintain stemness by equilibrating the 
expression of relevant genes involved in differentiation, whereas signals released 
during development give way to an irreversible differentiation process[54].

Sox2 binds to bivalently marked promoters of poised proneural genes in neural 
progenitor cells and a subset of other genes, to maintain the bivalent chromatin state, 
and prevent excessive polycomb repressive complex 2 activities. It decreases the tri-
methylation of H3 on lysine 27 (H3K27me3) through histone methyl transferase 
activity. H3K27me3 often interacts in bivalent domains with H3K4me3, another 
epigenetic modification to H3, which plays a significant role in SC fate determination 
and early embryo development. Thus, Sox2 maintains a permissive epigenetic state, 
enabling proper activation of the neuronal differentiation program under suitable 
neurogenic cues[55]. Therefore, Sox2 plays an essential role in preserving pluripotency 
of SC and its interplay with Oct4 and Nanog generates a network that preserves the 
pluripotent state of SC.

MicroRNAs (miRNAs) are also major regulators of self-renewal and differentiation, 
modulating the expression of genes involved in cell cycle progression and pluripo-
tential state. Several miRNAs have been proposed to target transcripts that, directly or 
indirectly, coordinate cell cycle progression in embryonic, somatic and cancer SC. 
Among these miRNAs, miRNA (MiR)-290-295, miR-302, miR-17-92, miR-106-b25 and 
miR-106a-363, together with members of the let-7 family, regulate ESC cell cycle, 
mostly by facilitating the G1/S transition[56,57].

MiRNAs also participate in regulating and promoting SC differentiation (Figure 3). 
miR-145 is important during hESCs differentiation, having the pluripotency factors 
Oct4, Sox2, and Klf4 as direct targets (Figure 3). Overexpression of miR-145 Leads to 
repression of the 3' untranslated regions of Oct4, Sox2, and Klf4, thus inhibiting self-
renewal and promoting differentiation. Interestingly, Oct4 binds to miR-145 promoter 
and inhibits its transcription in hESCs, acting as a negative loop[58].

MiR-145 promotes neuronal differentiation and regulates neural SC by repressing 
the expression of sex determining region Y-box2, and Sox2 (Figure 2), along with that 
of Lin28, a well-characterized RNA binding protein and a pluripotency promoter, 
which suppresses the biogenesis of let-7 miRNA. MiR-145 also upregulates let-7a and 
let-7b during neurogenesis[59]. In turn, the let-7 family inhibits proliferation by 
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Figure 2 Regulatory control of self-renewal and differentiation by transcription factors and microRNAs. Oct4, Sox2 and Nanog prevent 
microRNA-145 from blocking the self-renewal of SC. Conversely, microRNA-145 promotes cell differentiation by inhibiting expression of Oct4, Sox2 and Nanog. Let-
7, another microRNA, promotes differentiation by interfering with cell cycle regulators, and is regulated in turn by microRNA-145 and Lin 28.

interfering with cell cycle regulators such as RAS, Cyclin D, and CDC25. Pos-transcrip-
tional regulation of let-7 by Lin28 appears to be required for normal development. 
Moreover, let-7 might have a central role in the regulation of ‘stemness’, by repressing 
self-renewal and promoting differentiation, not only during normal development, but 
also in cancer cells[60,61].

Exogenous LIN28 expression has been shown to suppress Let-7 activity, thus 
reverting inhibition of cell proliferation in human neural progenitor cells[61-65] 
(Figure 2). Moreover, Sox2 is required for preserving the expression of physiological 
levels of Lin28 in the developing neural tube[61]. Sox2 binds to a promoter region of 
LIN28, and promotes acetylation, by interacting with the histone acetyltransferase 
complex[61]. Collectively, these data imply that miRNAs and several transcription 
factors regulate self-renewal in SC, interacting very precisely to decide whether they 
continue in the cell cycle or start their differentiation.

Wang et al[66] established an additional mechanism for regulation of pluripotency, 
involving a large intergenic noncoding RNA (lincRNA), the linc-regulator of 
reprogramming, or linc-ROR, which belongs to a larger group of non-coding RNA 
(ncRNA). While the vast majority of the mammalian genomic DNA is transcribed, the 
largest fraction are ncRNAs, as only a small fraction are protein-coding genes. In 
addition to the well-known transfer RNAs, ribosomal RNAs, and miRNAs, these 
ncRNAs include long ncRNAs (lncRNAs), which are longer than 200 nucleotides.

LincRNAs are transcribed from both strands of DNA in intergenic regions[67], and 
have both exons and introns. LncRNAs are shorter than lincRNAs, and they both have 
single-stranded sequences, able to form secondary structures[67]. LincRNA transcripts 
are generally found in the mammalian nucleus, while lncRNA transcripts are usually 
in the cytoplasmic region. LincRNAs regulate the transcription of neighboring genes 
by increasing or repressing transcriptional activation, and are believed to be involved 
in several pathologies. In contrast, the exact functions of lncRNAs are not fully 
established. Linc-ROR was the first identified linc-RNA; it promotes reprogramming 
of differentiated cells into iPSCs and maintains ESCs[68]. Noteworthy, linc-ROR 
interacts with several miRNAs and has been reported to be controlled by Oct4, Sox2 
and Nanog in iPSCs. The presence of binding sites for these pluripotency transcription 
factors in linc-ROR indicates they regulate its expression, and hence that of human 
ESC (hESC)[68]. In turn, linc-ROR has been shown to maintain hESC self-renewal by 
functioning as a “sponge”, trapping miR-145 and preventing miRNA-mediated 
suppression of the pluripotency factors Oct4, Nanog, and Sox2[66] (Figure 2).

Linc-ROR has also been proposed to modulate the reprogramming of human iPSCs
[69]. LINC-ROR may also be oncogenic, having as a target the EF-hand calcium 
binding protein tescalcin, an oncogene significantly upregulated in ocular melanoma 
cell lines and animal models[70].
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Figure 3 microRNA-145 and transcription factors Sox2, Oct4 and Nanog regulate cell renewal and differentiation. Sox2, Oct4 and Nanog 
interact with microRNA-145 to regulate cell cycle and differentiation of stem cells.

Most of the above described regulatory signals and mechanisms are operative in the 
retina. Our knowledge on the mechanisms regulating SC function in this tissue has 
enormously increased during the last two decades. Growth factors and signaling 
pathways, such as fibroblast growth factor (FGF2), epidermal growth factor (EGF), 
insulin growth factor (IGF), ciliary neurotrophic factor (CNTF), Wnt/β-catenin, 
Notch–Delta, and others, regulate the regenerative response in the retina, supporting 
and maintaining the status of endogenous SC by activating proliferation and 
reprogramming cells to replace injured or dead retinal neurons. Some inhibitory 
extracellular matrix or cell adhesion molecules, along with Bmp4 and other signaling 
pathways, often have the opposite effect[71]. Other systemic factors such as hormones, 
growth factors, cells of the immune system and blood, are regulators of the 
regenerative behavior of endogenous retinal SC[72].

Substantial evidence underscores the role of trophic factors in regulating SC activity. 
Early work evidenced the relevance of trophic factors in activating SC after injuries; 
several trophic factors and other molecules, including FGF2, EGF, SC factor, 
erythropoietin, and brain derived trophic factor (BDNF) increase adult neurogenesis 
by stimulating generation of new neuronal cells or improving their survival[73]. 
Trophic factors usually contribute to improve the milieu in which SC proliferate; 
provision of an enriched environment to neural stem/progenitor cells promotes 
neurogenesis in the brain subventricular zone after inducing a cortical stroke[74]. 
Furthermore, SC appear to contribute to enrich their own environment by releasing 
trophic and survival molecules. MSC secrete many survival factors such as EGF, IGF-1, 
FGF2, BMP-7, TGF-b1, and interleukin-6 (IL-6), among other factors, which protect 
injured cells[75-77]. These factors might regulate SC proliferation, migration, differen-
tiation, and interactions after injuries. Interestingly, enriched environment has a 
neuroprotective effect in the retina in diverse animal models of pathological situations, 
such as glaucoma and ischemia reperfusion, preserving or increasing BDNF levels[78,
79]; whether it also impacts on SC regulation is a pending question that demands 
further research.
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Retina SC have profiles similar to those of RPCs at early stages of eye development. 
They respond to many well-known intracellular factors, including the transcription 
factors Pax6, Chx, Rx, Six, Sox, Prox, Pitx, and others[80-82]. Their regenerative 
potential is epigenetically regulated[83-85], and they are also influenced by trophic 
and survival factors. MGCs have been proposed as retina SC and our research group 
has established that trophic factors as glial-derived neurotrophic factor (GDNF), FGF2, 
insulin and IGF-1 increase their proliferation and expression of SC markers such as 
Pax6 and nestin. This implies that the intrinsic, but dormant proliferative capacity of 
these cells can be regulated by trophic factors and other environmental molecular cues
[86] (Figure 4).

Interestingly, dental pulp SC, which originate from the neural crest, are able to 
differentiate into neurons when supplemented with EGF, FGF2, and retinoic acid[87]. 
When transplanted intravitreally, they have been shown to secrete significant amounts 
of nerve growth factor, BDNF, neurotrophin-3, and GDNF, promoting neuroprotection 
and axon regeneration in retinal ganglion cells after axon injury[88-90]. Further 
research is required to identify the trophic factors required for preserving multipoten-
tiality and proliferation in retina SC.

Transcription factors and miRNAs have been shown to control the formation of new 
retinal neurons derived from endogenous SC. Particularly, miRNAs are involved in 
controlling the ability of MGCs in non-mammalian and mammalian vertebrates to 
generate new RPCs[91]. In zebrafish, which, as mentioned before, effectively 
regenerates the retina after injury[92], miR-216a regulates reprogramming in MGCs, 
maintaining them in a quiescent state in undamaged retina. miR-216a suppression is 
necessary and sufficient for MGC dedifferentiation and proliferation, having the 
disruptor of telomeric silencing-1-like (Dot1 L) as a target; this miR-216a/Dot1 L 
regulatory axis mediates the initiation of retina regeneration through the Wnt/β-
catenin pathway[93]. In addition, miR-9 has been recently identified in zebrafish MGC 
as a critical factor controlling retinal NSCs proliferation and fate[94], its depletion 
increasing the number of neural progenitors and neurons. miR-9 has different targets, 
including lin-28, which is necessary to promote the proliferation of retinal NSCs after 
injury[95], TLX and ONECUT mRNAs, which promote NSCs differentiation into 
neurons in both zebrafish and humans[94]. miR-9 might act as a negative regulator of 
the Sox2-Ascl1a/Atoh7-Lin-28 pathway to prevent MGC proliferation and as an 
activator of the TLX-ONECUT pathway for reprogramming endogenous MGC into 
functional retinal neurons[96]. Furthermore, miR-9 is involved in regulating mouse 
RSC differentiation through repression of polypyrimidine tract-binding protein 1 
(PTBP1) expression, which is a repressor for polypyrimidine tract-binding protein 2 
(PTBP2), during neuronal differentiation. Both proteins are highly expressed in the 
fetal stage and show lower transcript levels in the mature brain, retaining PTBT1 
expression in glial cells and that of PTBP2 mostly in neurons[97]. miR-9 promotes the 
differentiation of neuronal cells from mouse RSCs, reducing the expression of PTBP1 
and consequently increasing the expression of PTBP2[98]. Moreover, over-expression 
of miR-25 and miR-124, or let-7 antagonism induces the expression of proneural 
transcription factor Ascl1, a crucial regulator in retinal regeneration[99], and promotes 
the conversion of mature MGC into a neuronal/RPC phenotype[100].

In contrast to miRNA, most biological functions of lncRNAs are still poorly 
understood. They are believed to control key biological processes, including cell prolif-
eration, apoptosis, differentiation, oxidative stress and inflammation, and have been 
shown to regulate SC maintenance and neural SCs proliferation[101,102]. In the eye, 
lncRNAs also appear to regulate SC maintenance, cell lineage commitment, and 
cellular phenotype differentiation[103] and have been involved in several ocular 
pathological conditions, such as glaucoma, proliferative vitreoretinopathy, diabetic 
retinopathy, and ocular tumors[104-107]. Interestingly, a retina-specific lncRNA, 
Vax2os, is involved in cell cycle progression in PHR progenitor cells during 
development of the mammalian retina[108,109]. Other lncRNAs, such as RNCR2[110], 
MIAT[111], and Gomafu have been found in the developing retina[112]. MIAT plays a 
critical role in regulating mammalian retinal cell specification and is involved in 
several diseases leading to visual impairment as well[113]. Expression levels of the 
lncRNA MALAT1 are significantly upregulated in diabetic retinas and it has been 
suggested to regulate retinal neurodegeneration in several rodent models[114]. 
MALAT1 expression is upregulated in cultured MGCs and retinal ganglion cells 
following stress, while its suppression decreases reactive gliosis, suggesting that 
MALAT1 dysregulation leads to neurodegenerative processes[115].
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Figure 4 Stem cell properties of Müller glial cells. Photomicrographs of Müller glial cell cultures from rat retina in interphase (left) or mitosis (self-renewal) 
(right), showing nuclei labeled with the DNA probe DAPI, expression of the stem cell marker nestin (red) and of vimentin (green). Arrows indicate mitotic anaphases. 
The bar indicates 150 µm.

SC IN RD: CURRENT APPROACHES 
An advantage of SC therapies in the eye is that they may provide a tool for achieving 
cellular regeneration in diseases leading to the loss of particular cell types, as retinal 
ganglion cells are to be replaced in glaucoma, and PHRs or RPE cells in AMD or RP. 
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Noteworthy, the recovery of a particular cell type might also have a trophic role, 
restoring the provision of trophic factors released by that cell type. As stated above, 
the fact that the vitreous cavity is a relatively immune-privileged site also contributes 
to the feasibility of SC transplantation.

These advantages have prompted researchers to establish the most suitable sources 
of SC and define which protocols to apply for each particular situation. Two main 
approaches can be described; one of them takes into account the cell type contributing 
to the degeneration; thus, many studies focus in RPE cells, when their damage plays a 
pivotal role in the pathogenesis of the disease, such as AMD; a second approach aims 
to directly replace the retinal neurons affected in each disease.

In the first approach, the efforts have been directed mainly to transplanting SC-
derived RPE cells into the eye, either as a monolayer or as a cell suspension. 
Numerous protocols have been assayed, with different advantages and disadvantages; 
establishing the most suitable therapeutic strategy demands a careful analysis of all of 
them. A successful treatment would allow the replacement of the damaged RPE cells, 
thus preventing the progression of diseases such as AMD. A potential disadvantage is 
that in these diseases the initial degeneration of RPE cells is usually followed by the 
degeneration of neurons, mainly PHRs. Since most of the SC used are unipotent and 
will only generate new RPE cells, this approach has the limitation that it can only be 
useful at early stages of the disease, as no replacement of lost PHRs or other neuronal 
cells will be achieved when used at advanced stages.

Using SC to replace retina neurons faces several obstacles. The first is the difficulty 
to achieve their differentiation into the required neuronal cell type. Even if this is 
surpassed, the integration of the newly generated cells into the host retina confronts 
numerous critical complications such as their engrafting onto Bruch’s membrane, 
achievement of their adequate polarization, reestablishing an adequate circuitry, and 
finally avoiding immune rejection[116,117].

PHR death is the cause of most RDs, excluding glaucoma. Hence, a second approach 
to treat most RDs is to directly replace PHRs. With this aim, several strategies have 
been evaluated. Early work showed that transplants of embryonic murine retinas into 
the anterior chamber of adult eyes survive and develop, resulting in the differentiation 
of both neurons and MGC, with few cases of graft rejection[118,119]. Subsequent 
strategies involve the reactivation of the dormant potential for regeneration of 
endogenous populations of cells within the retina to generate new PHRs or also to 
attempt retinal repair by transplantation of healthy PHRs into the vitreous or the 
subretinal space[120,121].

Therapeutic efficacy of different retina SC 
Since the expectation of recovering visual function by using SC emerged, there has 
been an active search to establish the most adequate SC sources. As occurs with other 
tissues in the body, the retina has several cell types that display properties of SC. This 
is evident in fish and amphibians during development and regeneration. During 
embryogenesis, most of the retina originates from the ciliary marginal zone, a ring of 
cells found at the periphery of the retina. In contrast, different sources might provide 
new neurons during regenerative responses. In the amphibian retina of urodeles, RPE 
cells play a critical role during retina regeneration; these cells dedifferentiate into 
retinal progenitors that have to recapitulate the normal development of the retina, first 
proliferating, and then differentiating into the different retinal cell types[122]. In 
zebrafish, MGCs are recruited following damage of the retina, and transiently de-
differentiate, express SC markers, and re-enter the cell cycle, to generate retinal 
progenitors that migrate to replace the lost neurons[92].

Consequently, cumulative evidence has shown that the ciliary margin zone, the RPE 
cells, the iris, and MGCs are the major sources of SC in the eye[71,120,123-125]. Some 
of these cells are represented by stem and low-differentiated cells and others by latent, 
differentiated progenitors[71,120,123-125]. In spite of their different origin, all of them 
share the essential requisites of SC, namely, the capacity for unlimited self-renewal 
and the ability to differentiate into different cell lineages. These traits turn them into 
ideal sources for recovering the different cell types lost in diverse retina degenerative 
diseases, thus repairing the retina and restoring vision. The feasibility of 
reprogramming resident, non-neuronal cell types into neurons in vivo[126] has led to 
include them as well among the SC types apt to contribute to neuronal regeneration in 
the retina.

We will now describe briefly the most explored candidates for cell replacement in 
the retina and the research, including clinical trials, that support their use.
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RPCs are among the most promising SC type for treating RDs (Table 1). All cells in 
the retina derive from them, making these cells, obtained from human fetal retinas, an 
attractive source of SC for retina repairing. The evolutionary conserved, temporal 
organization of the genesis of each cell type, and even of particular subtypes, during 
development of the retina is well established[127]. RPCs proliferate actively, are 
generally multipotent and have been shown to produce a specific repertoire of cell 
types at defined developmental stages, suggesting they exhibit intrinsic changes in 
their state of competence along development[128]. Noteworthy, RPCs are very hetero-
geneous regarding their gene expression[129]. Although intrinsic cues play a central 
role in defining cell fate, this fate is not strictly determined and the context, i.e., 
regulatory and transcription factors, miRNAs, active/inactive signaling pathways, 
influences the cell response to a certain perturbation[127]. In addition, extrinsic cues 
may contribute to modulating the temporal progression of cell fate acquisition; soluble 
factors released by ganglion or amacrine cells can limit the generation of the respective 
cell type[129,130], implying their involvement in feedback inhibition.

SC-derived RPCs (SC-RPCs) obtained from embryos are a possible source of cells 
for retina cell replacement strategies[131]. These multipotent cells display markers 
indicative of retinal SC fate, such as Pax6, Vsx2, Lhx2, Six3, Rax, and can differentiate 
into MGCs and the six types of retinal neurons[132-136]. Establishing the strategies 
required for achieving the differentiation of SC-RPCs into the multiple cell types that 
constitute the retina and drawing a more precise roadmap of the cues involved is 
crucial for their successful use in regeneration schemes.

Initially, the feasibility of expanding these cells in order to achieve a sufficient 
amount for transplantation, while simultaneously preserving their multipotency was a 
limiting factor for using RPCs isolated from the fetal neural retina. Promising in vitro 
and in vivo studies have shown that SC isolated from embryonic or fetal retina can be 
expanded in vitro[12], under particular conditions, such as low-oxygen culture 
conditions[137], paving the way for their use.

The ability of human or mouse fetal RPCs to repair retinal damages has been 
analyzed in multiple sub-retinal transplantation studies, which have evidenced they 
can rescue PHRs, preserving rhodopsin expression and visual function[18,138-141].

Human RPCs are able to differentiate into specific retinal cell types, including 
PHRs, preserving vision in rats[132,137,142-144]. RPCs isolated from retinas of 
postnatal day 1 mice, expanded in culture and grafted in the degenerating retina of RD 
or rho-/- mice differentiate and express PHR markers; in rho-/- mice, RPCs integrate in 
different retina layers, increasing outer nuclear layer thickness and improving light-
mediated behavior[12]. Transplantation of RPCs in the subretinal space has been 
proved feasible; mice retinal progenitors obtained from postnatal day 1 retinas and 
injected into the subretinal space of different adult mouse models of retina 
degeneration can integrate, differentiate as PHRs and improve visual function[132,
145]. Transplantation of human RPCs into Royal College of Surgeons (RCS) rats, an 
animal model in which a mutation in RPE cells leads to PHR degeneration, preserves 
the outer nuclear layer thickness and cell count and prevents visual loss[138]. 
Preclinical studies have also used RPCs obtained from human fetal retinas, between 14 
wk and 20 wk of gestation, a time point at which PHR progenitors are exiting the cell 
cycle and initiating their differentiation[146]. Delivery of human RPCs by intravitreal 
transplantation has also been proved effective; injecting human RPCs, obtained from 
retinas of 16 wk to 18 wk’ gestational age, in the vitreal cavity of RCS rats has no 
adverse effects, and preserves PHR cell nuclei in the outer nuclear layer and visual 
function for 8 wk, decreasing afterwards[40]. However, the low efficiency of 
integration of RPCs in these studies, usually restricted to areas near the injection site, 
with few cells achieving differentiation are significant drawbacks still to be overcome.

Fetal RPCs have been used to repair atrophied retina areas in patients with RP or 
AMD[147-149] (Table 1). Intravitreal and subretinal delivery of allogeneic RPCs for RP 
treatment are still under evaluation in clinical trials. A sole intravitreal injection of 
human RPCs has been associated to an improvement in visual acuity in treated vs non-
treated eyes, after a 12-month follow-up in phase I/IIa RP patients[151] and a phase IIa 
trial has been initiated[152] to evaluate safety.

Although RPCs emerge as a promising source of SC to achieve PHRs and retina 
regeneration, further knowledge is necessary to improve the efficiency of their 
integration, and control their differentiation into the required cell type, the extent of 
their reparative effect and, when allogeneic conditions are used, the magnitude of 
potential immune-derived damage.

PSCs are another potential source of cells to treat RDs. These cells were initially 
restricted to ESCs deriving from the inner cell mass of preimplantation embryos, and 
can be indefinitely maintained in the pluripotent state (Figure 1). This pluripotent state 
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Table 1 Stem cells in retinal diseases

Retinal disease Type of SC used Type of intervention Clinical trial 
status Results: Advantages and disadvantages Ethical concerns 

RP, AMD Fetal RPCs[33,147-150] Subretinal or intravitreal transplantation Yes[40,151] Rescue of PHRs and low risk of tumorigenesis.  Able to differentiate into MGCs and retinal 
neurons; improvement of retinal sensitivity. Adverse effects: limited amount of cells and low 
tissue integration. Promising therapeutic treatment.

Little 

Potential replacement of damaged retinal cells. Low immunogenicity. Adverse effects: risk of 
teratoma development[40,50,156,160-163]. 

RP, AMD, most retinal 
degenerations

PSCs and iPSCs Reprogramed to iPSC[40] Yes[40,200,
293]

Genomic instability in iPSC. Further research still needed.

Little or none

Substantial rescue of PHRs. Visual improvement[147,148].

Little or no evidences of draft rejection[33,203,204,281,285].

AMD, retinal 
degenerations

RPE Transplantation of RPE sheets from human fetal 
eyes in AMD patients

Yes[204,283]

Adverse effects: unwanted cell aggregation; lack of attachment; cases of anoikis[162,163].

Concerns about 
using human tissues

Cells form monolayers and display typical RPE features[171-173]. 

Improvement of visual acuity. No tumorigenicity or rejection after 4 years[187].

AMD, stargardt disease Human ESC-RPE Injection of differentiated ESC-RPE cells in 
subretinal space[238] 

Yes phase 
1/2a trial[175,
176]

Cell sheets preserve RPE characteristics better than cell suspension[175-178]. Absence of 
serious adverse effects[131,188]. Effectiveness still uncertain.

Concerns about 
using human tissues

Preservation of main RPE features.

Long term survival of transplanted iPSC-RPE cells[196,199,200]. Visual acuity stable for 4 
years[197,198].

Presence of mutations in iPSCs[199]. Little immune rejection[202]. Adverse effects: Risk of 
tumorigenesis.

AMD iPSC-RPE Autologous transplantation into an AMD patient 
of cell-sheets of RPE, differentiated from iPSC 
obtained from the skin’s patient[195]

Yes[195,199,
200]

Still pending to establish the adequate iPSC-RPE cells and the effectiveness of 
transplantation.

Important concerns 
about safety

AMD, stargardt macular 
distrophy

human fetal SC Transplantation of human fetal RPE cells into 
subretinal space

Yes[176,203] Improvement of visual parameters.No immunosuppression; No restoring of retinal 
morphology; no expression of retinal markers[169,208]. Adverse effects: little graft rejection in 
patients with AMD.Further research still required to provide effective and safe treatments.

Concerns about 
using aborted human 
fetuses

Retinal degeneration MGCs Not established No Express most SC markers; potentially capable of retinal regeneration after reprogramming. 
Obstacles: gliosis, low regenerative potential.

Not determined

Retinal degeneration, 
retinal injuries and 
uveitis

Bone marrow (MSC) 
and hematopoietic SC

Intravitreal injection (in mouse models of RP) No Promote regeneration of different retinal cells[238,246-248]. Safety not determined. Not determined

The use of different stem cells for treating retinal degenerations, such as retinal pigment or AMD, entails many advantages but also disadvantages and ethical concerns. SC: Stem cells; RP: Retinal pigment; AMD: Age-related macular 
degeneration; PHRs: Photoreceptors; MGCs: Müller glial cells; PSCs: Pluripotent stem cells; iPSCs: Induced pluripotent stem cells; RPE: Retinal pigment epithelial; ESC: Embryonic stem cells; MSC: Mesenchymal stem cells.
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is preserved by a complex and coordinated gene network, along with several signaling 
pathways activated by environmental cues that start in blastocysts (in the blastula 
stage) and persist until gastrulation; at this time point, levels of Oct4 and Nanog 
decrease, and pluripotency can no longer be preserved[152-155]. However, a major 
step forward for SC-based therapies came from the in vitro technology developed by 
Takahashi and Yamanaka[15], and Takahashi et al[156], that allowed to obtain PSCs by 
inducing dedifferentiation of adult somatic cells through their reprogramming to a 
pluripotent state, thus generating iPSCs. As ESCs, iPSCs cells can be expanded 
indefinitely, preserving an undifferentiated state and, eventually, can differentiate into 
cells of the three germ layers: ectoderm, mesoderm and endoderm[157].

Numerous in vitro studies have now evaluated the capacity of IPSCs for retina cell 
replacement. Addition of low molecular-mass compounds to iPSC cultures leads to 
their differentiation into retinal progenitors, RPE cells and PHRs[158]. In a recent 
work, Fligor et al[159] demonstrated that three-dimensional retinal organoids derived 
from human iPSCs can recapitulate retina differentiation  and are useful models to 
investigate guidance of developing neurites toward their targets.

The ability of human iPSCs to differentiate into a wide range of cell types turns 
them into a suitable and attractive alternative to ESCs, avoiding the ethical issues 
associated to the later. Hence, human iPSCs appear as likely candidates to be 
successfully used in the near future, providing better models for studying, treating, 
and eventually curing retinal degenerative diseases. Nonetheless, a crucial problem 
precluding their use is that they have been shown to give rise to teratomas when 
injected into immune-deficient mice[160,156,161-163].

Further research on the mechanisms underlying self-renewal properties, and safety 
of human PSCs are still needed to solve the pending questions associated with their 
therapeutic possibilities[164] (Table 1).

Ciliary-derived cells and RPE cells have also been reported as a potential source of 
progenitor cells that can be mobilized to the injured retina[165]. RPE cells form a 
monolayer between the PHRs and the choroidal vasculature. They transport ions, 
water and metabolic end products from the subretinal space to the blood, they 
represent the only blood supply for the outer retina and have the critical function of 
constantly clearing shed PHR outer segments by phagocytosis. Their interactions with 
the Bruch’s membrane and the choriocapillaris constitute a barrier that regulates 
exchange of substances between the neural retina and the circulation. To perform these 
functions adequately, RPE cells must maintain a polarized structure, which is crucial 
for the homeostasis of the outer retina, the disruption of which leads to degenerative 
retinopathies[166].

Transplantation of SC-derived RPE cells has been in the spotlight for over 10 years 
as a cell replacement strategy, particularly for patients with macular disorders, in 
which the early loss of RPE cells leads to the subsequent death of PHRs. A huge 
amount of information has been accumulated regarding their efficacy and safety, and 
clinical trials are already on course.

RPE cells were among the first candidates evaluated for subretinal transplantation 
since they can be easily obtained from patients, for autologous replacement therapies, 
or even from corpses, and can be maintained in vitro for long periods. Autologous RPE 
cells have been used in patients with RP or AMD, transplanting patches of RPE cells 
into the damaged areas of the retina[147-149]. A weakness to the therapeutic possib-
ilities of adult RPE cells is that the normal functions of RPE cells are not fully reestab-
lished after these procedures, and they may retain some aging features[117].

Transplantation of RPE cells has many advantages, appearing as a suitable strategy 
to treat inherited diseases, such as AMD. The possibility of differentiating RPE cells 
from hESC (hESC-RPE) and from iPSC (iPSC-RPE) has paved the way for their use, 
since it provides a potentially unlimited source for the replacement of affected or dead 
RPE cells[167]. hESC-RPE cells can be obtained by culturing ESC colonies, in which 
cells spontaneously differentiate into RPE cells after removal of FGF. Sheets of RPE 
cells can be obtained from cultures of either ESCs, or iPSCs, and they can form 
confluent monolayers, reproducing many of the functions of RPE cells[168-170].  They 
not only form monolayers, but also display the typical RPE microvilli and pigment-
containing melanosome granules, and express RPE markers, such as Na+K+ATPase, 
Pax6, and RPE65, together with proteins associated with tight junctions and involved 
in retinol cycling[163-171]. hESC-RPE cells have also been shown to express and 
release pigment epithelial derived factor from their apical surface[174]. Following their 
transplantation into RCS dystrophic rats, hESC-RPE cells survive in the subretinal 
space, expressing low levels of RPE65 and downregulating the cell cycle and Pax6 
expression, while maintaining expression of other markers[172].
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The efficacy of transplanting these cells as either a cell suspension or as sheets is a 
matter of extensive analysis. ESC-derived RPE cell suspensions were safely used in a 
phase I/IIa trial for treating AMD and Stargardt disease patients[175,176] (Table 1). 
However, the effectiveness of this strategy is still uncertain as these suspension are 
unable to form the typical RPE monolayers and to survive long periods of time[177,
178]. Animal studies evidence the feasibility of subretinal transplantation of a hESC-
RPE monolayer re-grown in a biocompatible membrane, which shows a normal 
implantation[179,180]. Current evidence suggests that cell sheets, rather than cell 
suspensions, might be more effective for preserving morphology, polarization, 
survival and physiology of RPE cells[177].

Different materials have been used to support RPE monolayers, with or without 
artificial scaffolds, as these materials may influence inflammation, adequate insertion 
and interaction of RPE cells with other cell types in the retina[181]. These patches 
allow the formation of tight junctions, required to acquire a fully polarized 
morphology, which, as stated above, is critical for RPE cells functions and for their 
interaction with PHR segments[182]. However, the survival of these patches after 
transplantation is a significant problem to deal with (Table 1).

The transplantation site is also still subject of considerable research. The subretinal 
space, a frequent transplantation site, is a relatively immune privileged site, and RPE 
cells located in this space have immunosuppressive functions. However, transplanted 
RPE grafts can be eventually rejected, as they can be attacked by immune cells due to 
their immunogenicity[181,183] (Table 1).  Initial studies to evaluate the efficacy and 
safety of RPE cells for retina regeneration therapies were performed in animals, and 
most of them involved immunosuppression. Transplantation of RPE sheets prepared 
from human fetal eyes in RCS rat eyes indicates a substantial rescue of PHRs in the 
area of the RPE patches, with no evidence of draft rejection[33]. Later work evidenced 
that subretinal transplantation of hESC-RPE in RCS rat eyes leads to PHR rescue and 
improvement in visual performance; donor hESC-RPE localized adjacent to the RPE 
layer show no uncontrolled proliferation or evidence of tumor formation[171]. 
Similarly, long-term functional rescue is observed after subretinal injection of ESC-RPE 
in animal models of AMD and Stargardt disease, diseases in which RPE degeneration 
leads to PHR loss and visual deficiency; the retinas preserve PHR integrity and 
function, without evidence of teratomas or pathological changes[184].

Some problems still remain. Cell transplantations of RPE in the retina frequently 
causes unwanted cell aggregation or lack of attachment onto the Bruch´s membrane
[185], with RPE cells tending to form aggregates (rosettes) instead of functional 
monolayers[172] or undergoing anoikis when dissociated from their usual 
extracellular matrix[186] (Table 1).

Further studies are required to solve these pending issues; nevertheless, cumulative 
information support ESC-RPE as a potentially useful and inexhaustible source of SC 
for treating retina degeneration.

The first clinical study evaluating the feasibility of transplantation of hESC-RPE 
cells to human patients was reported by Schwartz and colleagues in 2012[175]. These 
researchers injected differentiated hESC-RPE cells in the subretinal space of patients 
having macular degeneration. The cells integrated in the host RPE layer, forming 
monolayers, and improved visual acuity in over half of the patients, with no visible 
hyperproliferation, tumorigenicity or rejection-related inflammation even after 4 years
[187]. A similar study evidenced an improvement in visual acuity and the absence of 
serious adverse effects[188]. In a Phase I trial, hESC-RPE cells on a coated, synthetic 
basement membrane transplanted in two patients with severe exudative AMD 
successfully survived for a year and increased visual acuity[189]. Therefore, retinal 
implants of ESC-RPE cells appear as a promising therapeutic tool to treat retinal 
diseases (Table 1).

iPSC-RPE are also a promising source of RPE cells for transplantation as they 
provide a virtually unlimited number of RPE cells, in a non-invasive manner (Table 1). 
iPSC-RPE cells have the same genetic background, and display morphological and 
functional characteristics of mature RPE cells, which they retain after their 
transplantation in the rodent retina[190-193]. iPSC-RPE cells have been established 
from mouse, monkey and human, using different methods to obtain the iPSCs and 
then induce their differentiation into RPE cells[194-196]. These cells preserve key RPE 
features; Carr et al[191] showed that following their transplantation into the RCS 
dystrophic rat, iPSC-RPE phagocyte PHR material, both in vitro and in vivo.

Several studies have reported that human iPSC-RPE cells also exhibit native RPE 
features, such as gene expression and cellular functions, and have immunosuppressive 
properties, suppressing T-cell activation in vitro[181].
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Ensuring safety and efficacy are major concerns for their clinical applications. 
Tumorigenesis is a major risk, due to the reprogramming methods used and their 
possible contamination with iPSCs, which might contribute to formation of teratomas
[181].

The potential use of iPSC-RPE cells has been tested in fewer clinical trials than ESC-
RPE cells. The first human pilot trial was conducted by Mandai et al[197] and 
generated great public attention. iPSCs were induced from the patient´s skin cells by 
introducing reprogramming factors and then differentiated into RPE cells; an 
autologous RPE sheet was then prepared and transplanted into a patient with 
neovascular AMD[197]. The graft remained stable, with no signs of rejection or 
increased proliferation, and the patient´s visual acuity remained constant for four 
years[197,198]. A further trial was suspended due to the presence of mutations in 
iPSCs from another subject[199]. Takahashi´s group is currently evaluating the use of 
allogeneic iPSC-RPE cell grafts, which would be faster to prepare and easier to control 
genomic stability; their use requires to take into account the different factors leading to 
a higher risk of immune rejection.

In an early clinical study, Sugita et al[200] used iPSC-RPE cells derived from major 
histocompatibility complex (MHC) homozygous donors; after being transplanted into 
patients with exudative AMD having a matched MHC, the graft cells remained stable 
for one year, showing no abnormal growth. Although the patients experienced many 
moderate adverse events, such as corneal damages, retinal edema, elevated intraocular 
pressure, endophthalmitis, and mild immune rejection in the eye, this trial 
demonstrates long term survival and safety of transplanted iPSC-RPE cells[196,200,
201]. Ongoing clinical studies in five patients with neovascular AMD have safety as 
their main concern and report the survival of the transplanted grafts and only one case 
of immune rejection[202]. Once the safety of their use is established, further clinical 
trials will be required to determine which iPSC-RPE cells are the most adequate and 
whether their transplantation is effective to improve visual function. Of note, 
treatments with iPSC-derived RPE cells are limited to early stages of RDs; they may be 
ineffective in patients with an irreversible PHR loss.

Fetal RPE cells provide another source of RPE cells for transplantation. In an early 
work, Algvere et al[203] transplanted human fetal RPE cells into the subretinal space in 
AMD patients, with no immunosuppression; although patients with exudative lesions 
showed graft rejection, patients with geographic atrophy of dry AMD presented little 
evidence of rejection (Table 1). Even when alerting about the risk of rejection, they 
concluded that it is feasible to transplant human RPE into the submacular space of 
nonexudative AMD patients without adversely affecting visual function. Further 
clinical trials show that subretinal human RPE allografts transplanted into eyes of 
AMD patients, without immunosuppression, exhibit high rejection rates after 2 years, 
probably through a disruption in the blood retinal barrier; on the other hand, small 
extrafoveal transplants remain essentially unchanged for over 2 years in non-
exudative AMD without immunosuppression[204]. Interestingly, transplants of fetal 
retinal tissues as intact sheets, or even as aggregates, in the sub retinal space in rats 
have been shown to survive, adhered to the host RPE sheets[116,205,206]. In these 
cases, the occurrence of a pre-existing RPE sheet in the transplanted recipient provides 
paracrine trophic support for the grafted tissue, preventing cell death[205,206].

Human fetal neural SC are another possible source of SC. These cells, obtained from 
aborted fetuses, were identified by the expression of the cell-surface marker CD133, 
and cultured under conditions that induce rosette formation. After injection into the 
subretinal space in RCS rats, these cells survived away from the injection site and 
improved visual parameters, even when they neither restored retinal morphology, nor 
expressed retinal markers[207,208] (Table 1).

Taken as a whole, the above findings imply that transplantation of fetal cells is a 
promising approach, still requiring further research to provide an effective and safe 
treatment.

MGCs emerge as a further promising source of SC for retina regeneration. MGCs 
are the principal glial cells in the retina and play crucial roles in the preservation of 
retinal structure and function[209]. They provide the main trophic and metabolic 
support for retinal neurons, playing a major role in the preservation of homeostasis, 
the regulation of nerve signal transduction, and the formation of synaptic structures in 
the retina. Emerging evidences suggest that MGCs are dormant stem-like cells present 
throughout the retina that serve as a source of progenitor cells to regenerate retinal 
neurons after injury[209,210]. In teleost fish, MGCs are a major source of progenitors 
for retina regeneration after injury. In the damaged zebrafish retina, the activation of a 
reprogramming process in MGCs leads to their de-differentiation to generate neuronal 
progenitor cells, which proliferate and finally differentiate into all the cell types 
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forming the retina[92]. This remarkable regeneration capacity is much diminished in 
vertebrates; although vertebrate MGCs have been established as retina SC, they have a 
very limited capacity to achieve retina regeneration upon damage. In spite of this 
limitation, MGCs would provide an intrinsic source of SC, in contrast to ESCs, iPSCs, 
or embryonic fetal RPCs, for regenerative purposes. A further complication is that 
injuries to the mammalian retina turn on a reactive process in MGCs, termed “gliosis”, 
through which MGCs initially orchestrate a neuroprotective response and then, if the 
injury persists, turn on a pro-inflammatory response that further impairs neuronal 
function and tissue repair (Figure 5). This gliotic process is common to other glial SC in 
the CNS; following injuries to nerve tissues, astrocyte-like cells with SC properties 
activate a reactive gliotic response that interferes with neurogenesis, turning gliosis 
into a considerable obstacle for regenerative processes[211] (Table 1).

During this gliotic response MGCs up-regulate the expression of intermediate 
filaments and recruit macrophages. Reactive gliosis following transplantation also 
occurs in response to many other donor cell types, including neuronal cells, iPSCs, and 
PHR precursors, when transplanted either into the vitreous or in the subretinal space. 
This suggests gliosis is independent of the type and origin of transplanted SC. Intravit-
really transplanted cells secrete CNTF and IL-6, among other factors, that activate the 
JAK2/STAT3 cascade, and STAT3 mediates glial fibrillary acidic protein (GFAP) 
upregulation (Figure 5). Noteworthy, pharmacological inhibition of STAT3 in BM MSC 
reduces GFAP expression and improves their retinal engraftment[212]. Moreover, 
activation of JAK/STAT signaling cascades is required for increasing proliferation of 
MGC-derived progenitors in NMDA-injured chicken retinas[213].

In spite of eliciting gliotic responses and scar formation in damaged retinas, that 
prevent neurite elongation and cell migration, MGCs still retain regenerative 
capabilities. Several studies have shown that a reduced amount of vertebrate MGC de-
differentiates and re-enters the cell cycle, after different injuries, and eventually differ-
entiate as retinal neurons[214].

MGCs have been shown to replace some or all retinal cell types in various species
[215]. In response to damage, or when exposed to a combination of insulin and FGF2, 
MGCs in the chick retina can de-differentiate into proliferating progenitor cells, re-
enter the cell cycle and express neuronal transcription factors such as CASH-1, PAX6 
and CHX10[210,216]. However, their neurogenic competence is limited and they can 
only generate a few amacrine and bipolar cells[216-218].

In the mouse retina, neurotoxic injury activates proliferation and the expression of 
progenitor markers in MGCs[219], which can then differentiate into specific neuronal 
types[220,221]. Our work has shown that oxidative stress induces the de-differen-
tiation and increases the proliferation of rat cultured MGCs[222]. Moreover, in mixed 
neuro-glial cultures, MGCs preserve the proliferative potential and SC characteristics 
of retina progenitor cells, even after successive reseedings, and also stimulate their 
differentiation as PHRs, increasing opsin expression and markers of PHR function, 
such as glutamate uptake and light-dependent cGMP degradation[223]. Interestingly, 
MGCs from the rd1 mice retina fail to preserve their proliferative capacity and the 
expression of SC markers, such as Sox2 and Nestin, in mixed rd1 neuron-glial cultures. 
Nestin expression is recovered when rd1 MGCs are co-cultured with wild type 
neurons and, conversely, it decreases in wild type MGCs co-cultured with rd1 
neurons; this suggests that an active crosstalk between MGCs and PHRs is essential for 
the preservation of the regenerative potential of MGCs[224].

A recent work shows that culturing of human surgical retinal explants obtained 
from the equatorial retina reveals spontaneously migrating cells that express ESC 
markers, as Pax6, Sox2, Nestin and also MGC markers, such as GFAP and glutamine 
synthetase. This implies that following injury, this area of the retina might provide a 
source of RPCs, since it generates cells that possess the potential for regeneration, with 
markers consistent with Müller cell lineage[225].

As a whole, these findings imply that although with a restricted capacity, MGCs 
have the potential for neuronal regeneration. Understanding the mechanisms that 
limit this regenerative capacity and how to unleash it would allow reprogramming of 
MGCs as a source of progenitors for retina regeneration. Furthermore, given the 
undesired long-term effects of reactive gliosis, a better comprehension of the 
mechanisms of gliosis is essential before considering the use of MGCs for 
transplantation therapies.

A recent promising strategy has been successfully applied to unleash SC features in 
MGCs, through the transfer of cytoplasmic materials between transplanted and 
recipient cells. This transfer, by membrane fusion, exosome delivery or other methods 
of intercellular trafficking has been shown as an efficient tool for reprogramming cells
[226,228]. Endogenous hematopoietic stem and progenitor cells transplanted into 
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Figure 5 Activation of gliosis by the JAK2/STAT3 signaling cascade.  Jak/Stat signaling cascade is activated by ciliary neurotrophic factor and other 
factors, generating phosphorylated STAT3 intermediates, which turn on glial fibrillary acidic protein promoter gene to induce gliosis. CNTF: Cliary neurotrophic factor; 
GFAP: Glial fibrillary acidic protein.

retinas of genetic and drug-induced mouse models of retina degeneration efficiently 
fuse with retinal MGCs in vivo, reprogramming them back to a neural progenitor-like 
state, to finally differentiate into PHRs, improving the electrophysiological response 
and the regeneration of the retina[228]. This supports transfer of intracellular material 
from SC as a new tool for turning on regenerative programs in MGCs.

Although this transfer appears as a promising strategy, understanding the 
molecular mechanisms involved is crucial for improving effectiveness of MGCs 
reprogramming. Extensive research has been devoted to uncover the diverse signaling 
pathways and the genetic network leading to MGCs reprogramming[229]. In 
zebrafish, this reprogramming involves the activation of different injury-induced 
genes that regulate neurogenic competence; among them, the proneural transcription 
factor ascl1a emerges as a crucial regulator in retinal regeneration[99]. Overexpressing 
Ascl1 and modifying MGCs epigenome, with a histone deacetylase inhibitor, promotes 
the generation of inner retina neurons from MGCs in adult mice after retinal damage
[230]; this implies Ascl1 activation and epigenetic regulation are required for MGCs 
reprogramming. In contrast, the Hippo pathway repression of the transcription 
cofactor YAP blocks the ability of MGCs to adopt a proliferative, progenitor-like 
identity[231]. Exciting new data uncovers the genetic networks that control the 
regenerative capacity of MGCs in zebrafish and mice[232]. Retina injury triggers a 
reactive state in MGCs in zebrafish and mouse; however, while most zebrafish MGCs 
then adopt a progenitor fate, a dedicated gene regulatory network, which includes 
upregulation of nuclear factors I (NFI) factors, restore reactive mice MGCs to 
quiescence. Deletion of NFI factors in mice MGCs allows the generation of MGC-
derived inner retina neurons, implying these factors are crucial to suppress 
neurogenesis from MGCs[232]. Although many questions remain to be answered, 
these findings suggest MGC reprogramming is a promising tool to unleash the SC 
potential of MGCs, which would contribute to human retina regeneration (Table 1).

As regardless of their source, most SC have the capacity to differentiate into nearly 
all of the cell types occurring in the human body, SC types like those from umbilical or 
placental tissues, have been evaluated in animal studies and in clinical trials for their 
therapeutic use in the eye. Umbilical tissues contain adult MSC, and other non-ocular 
cell types, such as placental cells and bone-marrow derived MSCs are also available
[117,233-235]. An early study compared the efficacy of these three human-derived 
types of SC injected at early stages of RD in the subretinal space in RCS rats. Cells 
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obtained from human umbilical cords were the most effective, rescuing larger areas of 
PHRs and preserving visual function, with no sign of tumor formation[236]. These 
cells were found to rescue phagocytic dysfunction in RCS-derived RPE cells in culture, 
by releasing trophic factors such as BDNF, GDNF, hepatocyte growth factor, and 
bridge molecules that bind to PHR outer segments and facilitate RPE phagocytosis
[237] (Table 1). Adipose, BM and umbilical MSCs have been shown to secrete 
multifunctional exosomes with low risk of toxicity and immunological rejection[238]. 
In a clinical trial evaluating the safety and tolerability of the subretinal injection of 
human umbilical cord tissue-derived cells in patients with visual impairment due to 
geographic atrophy[239], patients showed a variable and consistent increase in visual 
acuity after 12 months, with no rejection or tumor formation[240]. Umbilical cord cells 
might thus provide a potential source of SC, able to contribute to PHR survival and 
function.

The use of BM SC has also gained relevance, given the evidences that these cells can 
rescue degenerating and ischemic retina[238]. Studies injecting BM SC subretinally in 
mouse models of RP show improvements in visual parameters and in the structure 
and function of RPE cells and PHRs[241,242] (Table 1).

BM SCs comprise MSC and HSC. MSC are easily accessible primary cells, with 
various biological functions and properties such as multi-lineage differentiation, anti-
inflammation, immune suppression, and neuroprotection. They express specific cell 
surface markers including CD105, CD73, CD44, CD90, CD166, CD146 CD54, and 
CD49. HSC are capable of self-renewal, and can be identified by cell surface markers, 
like CD34+ in humans[243]. They have been used for transplantation treatments in 
retinal diseases, as in mice models of diabetic retinopathy or in ischemia-reperfusion 
injury[244].

BM SCs have generated great expectations for treating several RDs, including 
retinal injury, and autoimmune uveitis. Their intravenous injection reduces laser-
induced damage in the retina, by inhibiting apoptosis and inflammatory responses, 
even when they do not migrate to the injured retina[245]. These cells release many 
soluble factors and exosomes; interestingly, exosome administration prevents the 
potential risks caused by MSC transplantation, mainly allogeneic and xenogeneic 
immunological rejection, and malignant transformation. MSCs can also be 
incorporated intravitreally into the damaged retinas, releasing molecules that activate 
the cell cycle, thus promoting regeneration of different retinal cells[238,246-248]. 
Although promising, the safety of these treatments remains to be established.

ESCs are pluripotent cells, with the ability to differentiate into any cell type in the 
body; hence, in addition to giving rise to ESC-RPE cells they represent an attractive 
source for replacement of retinal neurons. ESCs have been cultured with Wnt and 
nodal antagonists, involved in patterning the embryo and in the maintenance of 
pluripotency and carcinogenesis[249], and then with activin to induce retinal fate, thus 
generating cells with a PHR phenotype, expressing Rhodopsin and recoverin[250]. 
Using a combination of noggin, Dickkopf (dkk1), an inhibitor of Wnt signaling 
pathway, and IGF-1, Lamba et al[251] generated retinal progenitors from human ESCs, 
which integrate into degenerating retinas, increasing PHR differentiation.

ESCs emerge as a promising source of cells for retinal replacement. Nevertheless, 
extensive research is still necessary to identify the signals that promote retinal fate, 
allowing ESC differentiation into particular neuronal types, and to establish whether 
neurons derived from ESCs can be functionally integrated in human host retinas.

Moreover, taking advantage of the ability of ESCs for differentiating into multiple 
cell types is challenged by ethical questions, since human embryos have to be used as 
donors to obtain them. In contrast, as discussed for RPE cells, iPSCs represent a source 
to generate ESC-like cells that do not require a human embryonic cell donor, posing no 
ethical objections. However, transforming donor cells into iPSCs still has the potential 
risk of developing tumors or cancer cells[116,252] (Table 1).

iPSCs are similar to human ESCs in their morphology, proliferation, surface 
antigens, gene expression, epigenetic status of pluripotent cell-specific genes, and 
telomerase activity. The successful reprogramming of adult somatic cells (i.e., skin, or 
blood cells) into iPSCs by introducing the so called Yamanaka´s factors (Oct3/4, Sox2, 
Klf4 and c-Myc)[15], allows the generation of essentially all kind of tissues, including 
human dermal fibroblasts[15,156,253-255], as these iPSCs can differentiate into cell 
types from the three germinal layers in vitro[256]. One of the main difficulties of this 
approach is the requirement for c-Myc, a proto-oncogene capable of transforming 
iPSCs into cancer cells; to avoid it, a combination of Oct4, Sox2, Nanog and Lin28 has 
been used[257]. Human iPSCs have been shown to generate several types of neurons 
and even brain organoids, showing both excitatory and inhibitory synapses and 
exhibiting functional synaptic activity[258] and demonstrating an extraordinary 
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capacity to emulate human fetal synapses[259]. An amazing finding was that cultured 
human iPSCs release intrinsic cues that allow them to recapitulate the main steps of 
retinal development, leading to the formation of three-dimensional retinal tissue 
exhibiting rather differentiated, photosensitive PHRs. Thus, iPSCs cells have proved to 
be very effective in developing organoids of three-dimensional tissues, containing 
mini optic vesicles, with characteristics similar to those of tissues and organs 
developed in vivo[18,260,261]. These organoids are useful to investigate the 
pathophysiology of various diseases and to evaluate therapeutic strategies[262].

While this approach is very promising, several safety concerns should be dealt with 
before using iPSCs for treating degenerative retina diseases. A troublesome finding is 
the report that iPSCs retain an epigenetic memory, since the pluripotent cells obtained 
by these reprogramming methods preserve residual DNA methylation signatures, 
characteristic of their original donor cell types[263]. Alteration of the genome due to in 
vitro manipulation, leading to oncogene mutations, is another major concern[18,262,
264]. Due to the reprogramming process and their active cell division, iPSCs can 
accumulate mutations with a high risk of developing cancer cells[265]. This is a shared 
feature of many SC, which harbor malignant SC in their niches, able to maintain an 
active self-renewal while generating differentiated cells[266]. Although embryonic and 
adult iPSCs have the capacity of preventing the accumulation of genetic damages and 
avoid their propagation to daughter cells, this capacity is hampered by mutations 
occurred during their life span. Many critical functions of SC, like self-renewal, 
survival, proliferation, and differentiation are regulated by Jak/STAT kinase, 
phosphatidylinositol 3-kinase/phosphatase, NF-κB, and other signaling pathways, the 
dysregulation of which could lead to cancer development[267].

Cancer SC are particularly tolerant to DNA damages and fail to undergo senescence 
or regulated cell death. In spite of the accumulation of genetic lesions, they remain 
proliferating, contributing to form tumors and resisting chemo- and radio-therapy
[266]. Since the risk of different cancer types correlates strongly with the amount of 
mitotic cycles of the normal self-renewing cells, SC are believed to be particularly 
prone to generating cancer cells and tumors[268], a feature that threatens their use in 
regenerative medicine.

The versatility of iPSC-derived organoids described above and their similarity to 
specific tissues and organs turn them into effective tools to evaluate the progression of 
multiple diseases and the effectiveness of new drugs. This has become apparent 
during the coronavirus disease 2019 (COVID-19) pandemic. This disease is caused by 
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified in 
Wuhan, China, in December 2019. The respiratory system is the primary infected 
organ, but several other organs, including the CNS, the eyes and the retina may also be 
infected[269,270].

The angiotensin-converting enzyme 2 (ACE2) is the main host cell receptor for the 
entry of SARS-CoV-2. The eye expresses ACE2, and this expression is present in its 
inner part, including the retina[271-273]. Furthermore, SARS-CoV-2 is detected in post 
mortem retinas of COVID-19 patients[274]. As human iPSC-derived retinal organoids 
have been used to investigate disease progression, and for drug testing[275], the onset 
of the COVID-19 pandemic led researchers to use iPSC-derived organoids to 
investigate both SARS-CoV-2 pathogenesis and the effectiveness of antiviral drugs
[276]. iPSC-derived human neuronal progenitor cells, neurospheres and brain 
organoids are permissive to SARS-CoV-2[277], suggesting SARS-CoV-2 can 
productively infect the brain and might thus be involved in the neurological 
symptoms observed in the disease. As ACE2 is expressed in human iPSC-derived 
retinal organoids and monolayer cultures derived from their dissociation and both 
platforms can be infected by a GFP-expressing lentivirus with a SARS-CoV-2 spike (S) 
protein[278], these platforms appear as suitable models to investigate SARS-CoV-2 
pathogenesis and evaluate drug efficacy.

In addition, to using SC for cell replacement strategies, the feasibility of 
transplanting PHR cells into the damaged retinas has been a subject of extensive study. 
Using these cells presents particular advantages and difficulties. Their position as a 
layer in the retina makes their transplantation feasible; however, since PHRs do not 
divide, how to reach a critical mass of replacement cells, sufficient to lead to vision 
improvement is a pending, imperative question that remains to be answered[116,169].

On the other hand, regeneration of PHRs faces less complications that of brain 
neurons. The short single axons of PHRs would allow an easier reestablishment of the 
appropriate contacts and connections, when compared to the complex neuronal 
circuitries found in other regions of the CNS. Axonal growth would be further 
facilitated since the myelin components that bind to the Nogo 66 receptor, inhibiting 
this growth in the brain, are relatively absent in the retina[116,279].
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Early work evidenced that when PHR sheets or dissociated cells are transplanted 
into the subretinal space of rd (C3H rd/rd) mice, the transplanted PHRs survive for one 
month, developing outer segment-like processes, and synaptic terminals[141,280]. 
Transplantation of PHRs as a cell suspension in rd1 (C3H/HeNHsd rd1) mice 
regenerates a functional outer nuclear layer[281,282]. Even if no host rod cells are left 
in the degenerating retina, the transplanted PHRs reestablish the outer nuclear layer, 
preserve their appropriate polarization, and adequately reconnect their axons with the 
host neurons.

In an early clinical trial, subretinal transplantation of a sheet of PHR cells obtained 
from corpses to two advanced RP patients, without immunosuppression, showed no 
evidence of rejection. Although no improvement in visual acuity was observed, this 
trial demonstrated that PHRs can be harvested from human cadaveric eyes and safely 
transplanted to patients with RP[283]. Subretinal transplantation of human fetal retinal 
micro-aggregates in patients with RP and neovascular AMD evidences an apparent 
high tolerance for graft tissue, even when no positive effect on visual function has 
been observed. Interestingly, the transplantation of retinal micro-aggregate 
suspensions or retinal sheets from human fetuses in patients with RP and wet AMD 
leads to a transient improvement of light sensitivity in about 30% of the patients[284]. 
Similarly, subretinal transplantation of fetal retinal sheets in RP and AMD patients 
improves their visual acuity, supporting the efficacy of these therapies[281,285,286].

Other clinical trials are currently taking place. Many variables occurring during 
PHR transplants still require to be defined before successfully using these transplants 
in RD patients.

Regulation of SC death is a further critical problem that most regenerative processes 
still face.  Thus, the initial exacerbation of the cell cycle in ESC, required for replen-
ishing the cell loss occurring during degeneration, leads to a progressive accumulation 
of DNA damages, to which ESCs are very sensitive[287-289], and leads them to trigger 
apoptosis even after low damage doses[290]. The reason for this sensitivity remains 
unclear, as, in contrast, adult SC evidence a variable sensitivity to damage. 
Deregulated proliferation of SC increases the risk of mutations associated with cancer 
development. Thus, ESCs have to choose between cell death resistance, which may 
lead to the accumulation of mutations and cancer, or a high sensitivity to DNA 
damage, which may cause SC depletion, and regeneration failure[290], due to the 
activation of cell death response to preserve genetic stability[291].

In addition, PHR death is intrinsically generated in several retina degenerative 
diseases, such as RP, due to genetic causes. These causes will persist, even when 
allogenic therapies with human iPSCs allow a successful transplantation. Therefore, 
the combination of cell replacement therapies with new strategies aimed at inhibiting 
cell death will be essential to prevent the death of the newly generated PHRs.

Finally, it is important to mention the risks regarding the inadequate use of SC 
therapies. Attracted by the big economic benefits, a growing “stem cell” industry is 
developing[292]. The excitement regarding the therapeutic possibilities of SC and their 
potential capacity for regenerating most damaged tissues has led to the emergence of 
many unauthorized “Stem cell clinics” around the world, proposing treatments that 
lack carefully tested protocols, thus exposing desperate patients to high risks. Due to 
the relatively easy anatomic access and physiological monitoring of the retina, SC 
therapies for many ocular conditions are already being offered for improving or curing 
eye degenerative diseases without providing solid scientific data. Usually the efficacy 
of the treatments is exaggerated, and the potentially serious health risks of the 
untested “stem cell therapies” underestimated. It is important to remark that, up to 
now, only few SC therapies have been approved by the United States Food and Drug 
Administration[117]. Our knowledge on SC therapies develops much faster than the 
regulations supervising the ethical and legal concerns related to their clinical use. 
Hence, governmental offices around the world have neither approved nor 
disapproved numerous SC treatments offered in multiple websites. In spite of the 
warnings regarding the risks of undergoing non-approved stem-cell based, ocular 
treatments, such as that of the American Academy of Ophthalmology (2016), many 
vulnerable patients throughout the world have been deceived into believing that they 
are under safe, legal, which instead have repeatedly resulted in severe vision loss 
(American Academy of Ophthalmology, 2016. Intraocular Stem Cell Therapy).

CONCLUSION
Degeneration of RPE and PHR are the main pivotal causes of RD, a major cause of 
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blindness around the world. The finding of SC in the retina, potentially able to restore 
the lost cells and repair this degeneration, has opened a new era toward more effective 
treatments or eventually cures for these diseases. Most SC types like the iPSCs, RPE, 
and RPCs, are potentially able to replenish the cell loss. Up to now, RPE and RPCs, 
derived from multiple sources, emerge as the best candidates for treating RD and 
several “proof of concept” studies support their use. However, none of the proposed 
SC fulfill yet all the requirements to successfully restore vision and significant 
problems remain to be addressed before using them safely in the clinic.  The list of 
difficulties is significantly large; while some SC do not attach adequately to their 
substrata, others are immune-rejected, only survive for short periods of time, fail to 
integrate into the host retina or do not improve visual function[116]. How to avoid the 
risk of tumor development, and to address ethical issues are questions still 
unanswered and a careful balance of benefits and potential harms is required to 
choose an effective strategy for transplanting SC in the retina.

Additional pending difficulties are how to control the migration of the new cells in 
the host retina, their differentiation into the required cell types and their reestab-
lishment of synaptic connectivity. Since our knowledge regarding the mechanisms 
underlying these processes are in their infancy, clinicians strongly rely in the capacity 
of the tissues surrounding the implanted grafts to provide the cues for the successful 
integration and function of the newly generated cells.

In spite of these enormous obstacles, outstanding progress has been made around 
the world to uncover the molecular mechanisms and understand the pathways that 
control SC potential. This progress allows us to hope that, in a near future these 
obstacles will be overcome, thus paving the road toward the treatment or eventual 
cure of RD by using SC.
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