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Abstract
BACKGROUND 
It remains unclear which factors, such as tumor volume and tumor invasion, 
influence circulating tumor DNA (ctDNA), and the origin of ctDNA in liquid 
biopsy is always problematic. To use liquid biopsies clinically, it will be very 
important to address these questions.

AIM 
To assess the origin of ctDNA, clarify the dynamics of ctDNA levels, assess 
ctDNA levels by using a xenograft mouse after treatment, and to determine 
whether tumor volume and invasion are related to ctDNA levels.

METHODS 
Tumor xenotransplants were established by inoculating BALB/c-nu/nu mice 
with the TE11 cell line. Groups of mice were injected with xenografts at two or 
four sites and sacrificed at the appropriate time point after xenotransplantation 
for ctDNA analysis. Analysis of ctDNA was performed by droplet digital PCR, 
using the human telomerase reverse transcriptase (hTERT) gene.

RESULTS 
Mice given two-site xenografts were sacrificed for ctDNA at week 4 and week 8. 
No hTERT was detected at week 4, but it was detected at week 8. However, in 
four-site xenograft mice, hTERT was detected both at week 4 and week 6. These 
experiments revealed that both tumor invasion and tumor volume were asso-

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v27.i41.7134
http://orcid.org/0000-0002-7623-2807
http://orcid.org/0000-0002-7623-2807
http://orcid.org/0000-0003-4887-1609
http://orcid.org/0000-0003-4887-1609
http://orcid.org/0000-0002-2018-0008
http://orcid.org/0000-0002-2018-0008
http://orcid.org/0000-0002-0319-1290
http://orcid.org/0000-0002-0319-1290
http://orcid.org/0000-0002-0319-1290
http://orcid.org/0000-0003-0023-0546
http://orcid.org/0000-0003-0023-0546
http://orcid.org/0000-0003-0023-0546
http://orcid.org/0000-0002-1509-5706
http://orcid.org/0000-0002-1509-5706
http://orcid.org/0000-0002-1509-5706
http://orcid.org/0000-0003-2921-454X
http://orcid.org/0000-0003-2921-454X
http://orcid.org/0000-0003-2814-7146
http://orcid.org/0000-0003-2814-7146
mailto:gyacy14@gmail.com


Terasawa et al. ctDNA dynamics in a xenograft model

WJG https://www.wjgnet.com 7135 November 7, 2021 Volume 27 Issue 41

were approved by the Ethical 
Committee of Okayama University 
Graduate School of Medicine, 
Dentistry and Pharmaceutical 
Sciences (OKU-2019276).

Conflict-of-interest statement: The 
authors declare that there are no 
conflicts of interest.

Data sharing statement: No 
additional data are available.

ARRIVE guidelines statement: The 
authors have read the ARRIVE 
guidelines, and the manuscript 
was prepared and revised 
according to the ARRIVE 
guidelines.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Specialty type: Gastroenterology 
and Hepatology

Country/Territory of origin: Japan

Peer-review report’s scientific 
quality classification
Grade A (Excellent): A 
Grade B (Very good): 0 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: May 14, 2021 
Peer-review started: May 14, 2021 
First decision: July 14, 2021 
Revised: July 21, 2021 
Accepted: August 30, 2021 
Article in press: August 30, 2021 
Published online: November 7, 
2021

P-Reviewer: Norčič G 
S-Editor: Wang LL 

ciated with the detection of ctDNA. In resection experiments, hTERT was detected 
at resection, but had decreased by 6 h, and was no longer detected 1 and 3 d after 
resection.

CONCLUSION 
We clarified the origin and dynamics of ctDNA, showing that tumor volume is an 
important factor. We also found that when the tumor was completely resected, 
ctDNA was absent after one or more days.

Key Words: Liquid biopsy; Circulating tumor DNA; Xenograft; Esophageal squamous cell 
carcinoma; Dynamics of circulating tumor DNA

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We clarified the origin and dynamics of circulating tumor DNA (ctDNA), 
showing that not only tumor invasion but also tumor volume was an important factor. 
The possibility of detecting ctDNA in early-stage cancers with shallow depth was 
demonstrated. Also, ctDNA could be measured at 1 d after tumor resection to evaluate 
the residuals, and the half-life of ctDNA was estimated to be 1.8-3.2 h.

Citation: Terasawa H, Kinugasa H, Nouso K, Yamamoto S, Hirai M, Tanaka T, Takaki A, 
Okada H. Circulating tumor DNA dynamics analysis in a xenograft mouse model with 
esophageal squamous cell carcinoma. World J Gastroenterol 2021; 27(41): 7134-7143
URL: https://www.wjgnet.com/1007-9327/full/v27/i41/7134.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i41.7134

INTRODUCTION
Liquid biopsy, a molecular biological diagnostic method for blood and body fluids, 
has progressed dramatically in recent years. Circulating tumor DNA (ctDNA), one of 
the targets of liquid biopsy, is expected to be a useful method for screening and 
detection of cancer, monitoring therapy, prediction of prognosis, and personalized 
medicine[1-3]. Therefore, in addition to direct biopsy, which is the basis of conven-
tional cancer diagnosis, a hybrid method, which includes non-invasive liquid biopsy, 
is becoming the mainstream.

Cell-free DNA (cfDNA), which includes ctDNA, is derived from apoptotic or 
necrotic cells[4,5]. Theoretically, it could be applied regardless of the stage. However, 
reports of its usefulness for early stages of cancer are controversial. Bettegowda et al[6] 
revealed that the rate of ctDNA detection is generally high in advanced stages of 
cancer, but ctDNA levels are generally lower in early stages of cancer. On the other 
hand, some reports indicated that ctDNA was useful for detecting early-stage cancers
[6-9]. It remains unclear which factors, such as tumor volume and tumor invasion, 
influence ctDNA, and the origin of ctDNA in liquid biopsy is always problematic. To 
use liquid biopsies clinically, it will be very important to address these questions.

In this study, we used a xenograft mouse model to assess the origin of ctDNA, 
clarify the dynamics of ctDNA levels, assess ctDNA levels after treatment, and to 
determine whether tumor volume and invasion are related to ctDNA levels.

MATERIALS AND METHODS
Cell Line
The human esophageal squamous cell carcinoma cell line TE11 was used because we 
established an experimental system for TE11 previously[10] and used it to show that 
liquid biopsy is useful in esophageal cancer cells as well as other gastrointestinal 
cancers. Cells were grown in RPMI 1640 (Thermo Fisher Scientific, Tokyo, Japan) 
containing 10% fetal bovine serum and 1% penicillin/streptomycin (Sigma-Aldrich, 
Tokyo, Japan) at 37.0 °C in a 5% CO2 atmosphere. Appropriate passages were made 
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such that confluency did not exceed 70% prior to xenotransplantation. A Countess 
Automated Cell Counter (Thermo Fisher Scientific, Tokyo, Japan) was used to count 
cells, and 0.2% Trypan blue dye was used to exclude dead cells.

Xenograft mouse model
Xenograft mouse experimental protocols were approved by the Ethical Committee of 
Okayama University (OKU-2019276). Six-week-old female nude mice (BALB/c-
nu/nu) (Charles River Laboratories, Japan) were used. Mice were raised in the animal 
facility of Okayama University and given food and water. The physical conditions of 
the mice, including the presence or absence of body movement or the availability of 
food and drink, were monitored daily. Mice were euthanized with isoflurane if mice 
stopped moving or eating.

Tumor xenotransplants were established in mice by inoculation in the shoulders or 
flanks with 1 × 106 TE11 cells suspended in 50 μL medium plus 50 μL Matrigel 
(Corning Product No. 356234). Inoculation was performed at two sites (i.e., both 
shoulders, two-site xenograft mouse group, 28 mice) or at four sites (i.e., both shoul-
ders and both flanks, four-site xenograft mouse group, 28 mice) in order to determine 
the effect of tumor volume as well as the degree of invasion (Figure 1).

Tumor formation was confirmed in all xenograft mice; although, the changes in size 
varied. Differences in tumor volume were evaluated over time. Two-site and four-site 
xenograft mouse groups were sacrificed for ctDNA analysis at the appropriate time 
point after xenotransplantation. To minimize the effects of differences in tumor size, 
four mice were used for each ctDNA time point analysis.

A sample size calculation using power analysis determined 24 mice were needed in 
xenograft experiments and 32 mice were needed in resection experiments.

Xenograft experiments
Twelve mice received two-site xenografts, and 12 received four-site xenografts. Tumor 
size was measured every week after xenotransplantation, and ctDNA was evaluated at 
two time points: 4 wk and 8 wk after xenotransplantation (Figure 1).

Resection experiments
Sixteen mice received two-site xenografts, and 16 mice received four-site xenografts. 
All tumors were resected at week 7 after xenotransplantation in the two-site xenograft 
group or at week 5 in the four-site xenograft group. cfDNA and ctDNA were evalu-
ated 6 h, 1 d, and 3 d after resection, or simultaneously with resection in the controls 
(Figure 1).

Blood and tumor tissue sample collection
For ctDNA analysis, whole blood was collected in BD Vacutainer tubes (Becton, 
Dickinson and Company, Franklin Lakes, NJ), and processed within 1 h after co-
llection. The samples were centrifuged at 3000 × g at 4 °C to separate plasma from 
peripheral blood cells, and stored at -80 °C. DNA was extracted from 1000 μL of blood 
and the final solution was 25 μL of DNA. Plasma ctDNA was extracted (25 μl) with the 
QIAamp Circulating Nucleic Acid Kit (Qiagen, Valencia, Calif), according to the 
manufacturer’s instructions. At sacrifice, tumors were collected and divided into two 
fragments. One tumor fragment was snap-frozen in liquid nitrogen and used for 
preparation of genomic DNA. The other fragment was formalin-fixed and paraffin-
embedded for histopathological diagnosis, morphological evaluation after hematoxy-
lin/eosin staining, and immunohistochemistry. Four slides were made from the largest 
diameter section, where it was easy to obtain information on invasion.

Telomerase reverse transcriptase assay
The wild-type telomerase reverse transcriptase (TERT) gene was analyzed by a mouse 
TERT (mTERT) assay (Thermo Fisher Scientific, Tokyo, Japan) or human TERT 
(hTERT) assay (Bio-Rad Laboratories, Hercules, CA, United States of America) to take 
advantage of the differences between mTERT and hTERT genes. The verification 
experiments using a droplet digital PCR (QX200 system; Bio-Rad Laboratories, 
Hercules, CA, United States of America) was performed.

Droplet digital polymerase chain reaction and data analysis
To evaluate ctDNA, hTERT was detected via droplet digital polymerase chain reaction 
(PCR) according to the following protocol. DNA eluent (5 μL) from plasma was 
combined with Droplet PCR Supermix (10 μL; Bio-Rad Laboratories, Hercules, CA, 
United States of America), primer/probe mixture (1 μL), 5M Betaine (2 μL), 80 
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Figure 1 Xenograft mouse model with TE11 cell. A: In the xenograft experiment, groups of 12 mice each were given two-site xenografts or four-site 
xenografts; B: In the resection experiment, groups of 16 mice each were given two- or four-site xenografts. All tumors were resected at week 7 after 
xenotransplantation in two-site xenograft mice, or at week 5 in for-site xenograft mice.

mmol/L EDTA (0.25 μL), CviQl enzyme (0.25 μL), and sterile DNase- and RNase-free 
water (3.5 μL). The mixture (22 μL) was added to Droplet Generation Oil (70 μL; Bio-
Rad Laboratories, Hercules, CA, United States of America) to produce droplets. 
Thermal cycling of the emulsion was as follows: an initial denaturation at 95 °C for 10 
min, followed by 50 cycles of 96 °C for 30 s and 62 °C for 1 min. After a final enzyme 
deactivation step of 98 °C for 10 min, the reaction mixtures were analyzed using a 
droplet reader (Bio-Rad Laboratories, Hercules, CA, United States of America). For 
quantification, the fluorescence signal was acquired with QuantaSoft software (Bio-
Rad Laboratories, Hercules, CA, United States of America). We set the threshold 
fluorescence intensity at 7500 (mTERT) or 2000 (hTERT), according to positive and 
negative controls in this study, i.e., plasma and tissue of healthy human, control 
mouse, or TE11 cell line.

Statistical analysis
We used JMP version 14.0 (SAS Institute, Cary, NC, United States of America) for 
statistical analysis and set the threshold of significance at P < 0.05. Continuous data 
were analyzed using the non-parametric Wilcoxon test, and categorical data were 
analyzed using a Chi-squared test.

RESULTS
Verification experiments
In verification experiments using a droplet digital PCR (QX200 system; Bio-Rad 
Laboratories, Hercules, CA, United States of America), we confirmed that the mTERT 
gene was detected in tissue and plasma of control mice, but not in TE11 genomic DNA, 
whereas the hTERT gene was detected in TE11 genomic DNA, but not in the tissue or 
plasma of control mice (Figure 2).

Xenograft experiments 
Xenograft experiments were designed to reveal the origin of ctDNA and factors 
contributing to ctDNA increase. Average tumor sizes measured in the two-site 
xenograft group 1, 2, 3, 4, 5, 6, 7, and 8 wk after xenotransplantation were 1.8, 3.2, 4.6, 
6.0, 6.8, 8.0, 8.5, and 12.5 mm, respectively. Two-site xenograft mice were sacrificed 4 
or 8 wk after xenotransplantation to evaluate ctDNA. No hTERT was detected at week 
4, but hTERT was detected at week 8 (Figure 3). These results indicated that ctDNA 
was associated with tumor growth.
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Figure 2 Telomerase reverse transcriptase assay by droplet digital polymerase chain reaction for mouse plasma, liver tissue, TE11 cell 
and water. The presence of mouse telomerase reverse transcriptase (mTERT) and human TERT (hTERT) forms of the wild type TERT was analyzed by droplet 
digital polymerase chain reaction. A: The assay correctly detected mTERT in mouse plasma and liver tissue; B: hTERT was detected in the TE11 cell line. Neither 
mTERT nor hTERT was detected in water.

Figure 3 The dynamics of circulating tumor DNA in xenograft experiments. A: Two-site and four-site xenograft mice were sacrificed for circulating 
tumor DNA (ctDNA) at week 4. Human telomerase reverse transcriptase (hTERT) was detected only in four-site xenograft mice, not in two-site xenograft mice; B: In 
both two-site xenograft mice sacrificed for ctDNA at week 8 and four-site xenograft mice sacrificed at week 6, hTERT was detected.

In four-site xenograft mice, the average tumor sizes at week 1, 2, 3, 4, 5, and 6 after 
xenotransplantation were 1.8, 4.0, 5.9, 7.1, 8.9, and 10.2 mm. The 8 wk evaluation 
planned for this group was revised to occur at week 6, because the tumor in one 
mouse had grown rapidly to cause thoracic invasion, and it was unlikely to survive to 
week 8. Four-site xenograft mice were sacrificed for ctDNA at week 4 and week 6. 
hTERT was detected both at week 4 and at week 6 in this group (Figure 3). These 
results indicated that ctDNA was associated with tumor growth as well as those of 
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two-site xenograft mice. There were no other unexpected adverse events.
Histopathology of tumors at week 4 showed no invasion in either the two-site or 

four-site xenograft group, while tumors showed invasion into muscle both at week 8 
in the two-site xenograft mice (P = 0.02) and at week 6 in the four-site xenograft mice 
(Figure 4; P = 0.03). These results indicated that ctDNA was associated with tumor 
invasion.

The rates of tumor size increase were similar between the two-site xenograft group 
and the four-site group. Interestingly, the two groups showed similar tumor diameters 
(P = 0.25) and invasion at week 4 (Figures 3 and 4), but a clear difference in the ctDNA 
detection rate (Figure 3; P = 0.02). These findings showed that not only invasion but 
also tumor volume might be related to the rate of ctDNA detection.

Resection experiments
Resection experiments were designed to clarify responses of ctDNA to tumor re-
section. Tumors in the two-site and four-site xenograft groups were resected when the 
diameter exceeded 10 mm. cfDNA and ctDNA were examined at sacrifice. In these 
resection experiments, two mice were excluded from the evaluation: one mouse with 
rapid tumor growth and a tendency toward paraplegia before resection, and another 
mouse with high invasion who died after tumor resection and before evaluation.

In two-site xenograft mice, tumor resection was performed at week 7. The average 
tumor size in the control group was 10.3 mm at the time of resection, and the average 
tumor sizes measured 6 h, 1 d, or 3 d at the time of resection were 10.1, 10.3, and 10.2 
mm, respectively (P = 0.98). We detected hTERT at resection (control), but hTERT had 
decreased by 6 h, and was undetectable 1 d or 3 d after resection (Figure 5). The 
control cfDNA concentration was 1.1 μg/mL at the time of resection, and was 1.2, 1.3, 
and 1.4 μg/mL measured 6 h, 1 d, and 3 d after resection. Pathological autopsy 
confirmed the absence of macroscopic residual tumor at each evaluation in this 
experiment. Using data for the number of positive droplets measured 0 and 6 h after 
tumor resection in the two-site xenograft resection experiment, the half-life of ctDNA 
may be calculated from y = 155e - 0.368x. In our study, the half-life of ctDNA was 
estimated to be 1.8–3.2 h (Figure 6).

In four-site xenograft mice, tumor resection was performed at week 5. The average 
tumor size in the control group was 9.7 mm at the time of resection, while average 
tumor sizes measured 6 h, 1 d, or 3 d at the time of resection were 11.4, 10.6, and 10.2 
mm, respectively (P = 0.34). In this experiment, hTERT was detected in all groups 
(Figure 5). The control cfDNA concentration was 1.3 μg/mL at resection and 1.2, 1.5, 
and 1.7 μg/mL measured 6 h, 1 d, and 3 d, respectively, after resection. Here, 
pathological autopsy revealed the presence of macroscopic residual tumor at each 
resection evaluation, with tumor invasion and intrathoracic metastasis in all mice. This 
experiment revealed that residual ctDNA was associated with incomplete resection 
and metastasis.

DISCUSSION
Because the TERT gene sequence differs between human and mouse, we were able to 
determine the origin and dynamics of ctDNA in a xenograft mouse model in which 
human-derived esophageal cancer cells were injected into the epidermis of mice. This 
model allowed assessment of ctDNA, which has traditionally been difficult to assess in 
the human body, due to tumor heterogeneity and the influence of other cells. In our 
experiment, tumor volume was involved in increases or decreases in ctDNA. In 
addition, if ctDNA was present over 1 d after resection, the presence of residual tumor 
is suspected.

Although studies of liquid biopsy using xenograft mouse model have been reported 
mainly in circulating tumor cells [11], we focused on ctDNA in this study. This model 
seems to be an ideal method because clinical samples contain a variety of cellular 
information as well as limitations such as ethical issues. Our report is also extremely 
valuable in providing direct evidence of the origin of plasma ctDNA, which we 
assessed in the xenograft mouse model by assaying mTERT and hTERT. Based on this 
ctDNA confirmation, other factors affecting ctDNA dynamics were examined. In our 
xenograft experiments, the average tumor sizes 4 wk after two-site and four-site 
xenografts were very similar (5.6 mm and 6.5 mm), and histology showed similar 
degrees of tumor invasion (Figure 4). However, ctDNA was detected in four-site 
xenograft mice but not in two-site xenograft mice. These findings revealed that tumor 
volume may influence ctDNA detection. In both groups, increasing ctDNA with tumor 
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Figure 4 Histopathology of xenograft mouse with TE11. A: Histopathology showed absence of invasion in tumors at week 4 in mice with two-site or four-
site xenografts; B: Muscle invasions were observed in tumors at week 8 in two-site xenograft mice, and at week 6 in four-site xenograft mice.

Figure 5 The dynamics of circulating tumor DNA in resection experiments. A: Tumor resection was performed when tumor diameter xenograft mice 
exceeded 10 mm, at week 7 in two-site xenograft mice, or at week 5 in four-site xenograft mice. Human telomerase reverse transcriptase (hTERT) circulating tumor 
DNA (ctDNA) was detected at resection (control), had decreased by 6 h, and was undetectable 1 d and 3 d after resection; B: On the other hand, in four-site 
xenograft mice, hTERT (ctDNA) was detected at resection (control), 6 h, 1 d, and 3 d after resection. cfDNA: Cell-free DNA.

progression was confirmed at week 8 and week 6. The amount and detection rate of 
ctDNA correlated with tumor progression in a previous clinical study[6], and our 
results may support that finding. Although detailed studies on the association 
between tumor volume or invasion and ctDNA have not been conducted, ctDNA is 
assumed to be detectable in early cancer once the tumor reaches a certain volume.

The presence of ctDNA after surgical resection is observed in clinical samples from 
cancer patients, and evaluation during the perioperative period is useful for prediction 
of prognosis[12-14]. Detection of ctDNA after surgery suggests some residual disease
[15]. However, these clinical studies may inevitably detect circulating DNA from 



Terasawa et al. ctDNA dynamics in a xenograft model

WJG https://www.wjgnet.com 7141 November 7, 2021 Volume 27 Issue 41

Figure 6 The half-life of circulating tumor DNA in resection experiments. To estimate half-life of circulating tumor DNA in two-site xenograft mice in the 
resection experiment, the number of positive droplets vs time after resection was fit to an exponential curve, y = 155e - 0.368x.

sources other than tumor cells, and there have been no reports to indicate when liquid 
biopsy should be used. Regarding this point, our resection experiments demonstrated 
reduced hTERT at 6 h and its absence 1 to 3 d after resection, indicating that ctDNA 
evaluation 1 d after resection might be useful to detect residual tumor in clinical cases. 
These experiments also revealed tumor volume was involved in the increase or 
decrease of ctDNA and that post-tumor resection evaluation requires an interval of 
one day or more after resection.

The half-life of ctDNA was reported as approximately 2 h in one study[16], but 
another study found the half-life to be 16 min[17]. The metabolism and excretion of 
cfDNA is affected by liver and kidney function[18], and ctDNA levels might be re-
gulated by the same mechanism. In our study, we estimated the half-life of ctDNA 
1.8–3.2 h, based on ctDNA levels measured 0 and 6 h after resection (Figure 6), which 
was similar to data from previous reports. Assuming a half-life of 3 h, ctDNA will 
decline by a factor of 28 after 1 d, and postoperative assessment of ctDNA should be 
evaluated after 1 d.

cfDNA is derived from apoptotic or necrotic cells[19,20], and its increase is con-
sidered to be caused by surgical manipulation, or perhaps cytokines, or cell prolif-
eration in response to invasive therapy. Our results are consistent with these reports, 
indicating ctDNA decreased after complete resection, while cfDNA increased after 
resection.

Carcinoembryonic antigen (CEA) and squamous cell carcinoma antigen (SCC-Ag) 
are biomarkers for esophageal cancer. However, the usefulness of these biomarkers in 
the early diagnosis of esophageal cancer has not been established. Currently, upper 
endoscopy is the most useful examination to pick up early-stage esophageal cancer. 
However, since this examination is invasive, the development of non-invasive me-
thods such as liquid biopsy is eagerly awaited. The combination of this method with 
conventional methods may lead to the next generation of diagnosis.

Our study had the following limitations. First, the artificial implantation of tumor 
under the skin in the xenograft model differs from the physiology of actual tumor 
development. Second, individual mice exhibit differences in tumor growth rates, and 
therefore, our comparative analyses in the present study used the average values for 
four animals per group. Third, regarding residual tumor, although pathological 
autopsies were performed on all mice, complete certainty with respect to residual 
disease is impossible. Forth, TE11 cell line alone is not necessarily sufficient, other cell 
lines should be examined as well. Fifth, comparison with conventional biomarkers 
such as CEA and SCC-Ag needs to be shown.

CONCLUSION
We clarified the origin and dynamics of ctDNA in the xenograft mouse model. We 
showed that tumor volume was an important factor in ctDNA, and that if the tumor 
volume was sufficiently large, ctDNA can be detected even in early-stage or superficial 
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cancers. We also found that, upon complete tumor resection, ctDNA disappeared after 
at least 1 d, unless residual tumor remained. These findings may indicate future 
clinical uses of liquid biopsy.

ARTICLE HIGHLIGHTS
Research background
The clinical application of liquid biopsy is becoming more widespread. However, it 
remains unclear which factors, such as tumor volume and tumor invasion, influence 
circulating tumor DNA (ctDNA), and the origin of ctDNA in liquid biopsy is always 
problematic.

Research motivation
It will be very important to address the origin and dynamics of ctDNA for further 
clinical application of liquid biopsy.

Research objectives
A xenograft mouse model was used to assess the origin of ctDNA, clarify the dy-
namics of ctDNA levels, assess ctDNA levels after treatment, and determine whether 
tumor volume and invasion are related to ctDNA levels.

Research methods
Tumor xenotransplants were established by inoculating BALB/c-nu/nu mice with the 
TE11 cell line (esophageal squamous cell carcinoma). Analysis of ctDNA was per-
formed by droplet digital polymerase chain reaction, using the human telomerase 
reverse transcriptase (hTERT) gene.

Research results
Mice given two-site xenografts were sacrificed for ctDNA at week 4 and week 8. No 
hTERT was detected at week 4, but it was detected at week 8. However, in four-site 
xenograft mice, hTERT was detected both at week 4 and week 6. These experiments 
revealed that both tumor invasion and tumor volume were associated with the 
detection of ctDNA. In resection experiments, hTERT was detected at resection, but 
had decreased by 6 h, and was no longer detected 1 and 3 d after resection. The half-
life of ctDNA was estimated to be 1.8-3.2 h.

Research conclusions
We clarified the origin and dynamics of ctDNA, showing that not only tumor invasion 
but also tumor volume was an important factor. Also, ctDNA could be measured at 1 
d after tumor resection to evaluate the residuals.

Research perspectives
In the clinical application of liquid biopsy, early-stage cancers could be targeted, and 
post-treatment monitoring should be performed 1 d after treatment.
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