
World Journal of Gastrointestinal Endoscopy

World J Gastrointest Endosc 2021 October 16; 13(10): 451-554

Contents

Monthly Volume 13 Number 10 October 16, 2021

OPINION REVIEW

Proposal of the term "gallstone cholangiopancreatitis" to specify gallstone pancreatitis that needs urgent 451 endoscopic retrograde cholangiopancreatography

Isogai M

MINIREVIEWS

Endoscopic ultrasonography-guided celiac plexus neurolysis in patients with unresectable pancreatic 460 cancer: An update

Pérez-Aguado G, de la Mata DMA, Valenciano CML, Sainz IFU

473 Tips and tricks for the diagnosis and management of biliary stenosis-state of the art review

Del Vecchio Blanco G, Mossa M, Troncone E, Argirò R, Anderloni A, Repici A, Paoluzi OA, Monteleone G

ORIGINAL ARTICLE

Retrospective Cohort Study

491 Clinical impact of gastrointestinal endoscopy on the early detection of pharyngeal squamous cell carcinoma: A retrospective cohort study

Miyamoto H, Naoe H, Morinaga J, Sakisaka K, Tayama S, Matsuno K, Gushima R, Tateyama M, Shono T, Imuta M, Miyamaru S, Murakami D, Orita Y, Tanaka Y

Retrospective Study

502 Follow-up outcomes in patients with negative initial colon capsule endoscopy findings

Nakaji K, Kumamoto M, Yodozawa M, Okahara K, Suzumura S, Nakae Y

510 Safety of upper endoscopy in patients with active cocaine use

Liyen Cartelle A, Nguyen A, Desai PM, Kotwal V, Makhija J, Yu J, Yap JEL

Observational Study

518 Association between mucosal surface pattern under near focus technology and Helicobacter pylori infection

Fiuza F, Maluf-Filho F, Ide E, Furuya Jr CK, Fylyk SN, Ruas JN, Stabach L, Araujo GA, Matuguma SE, Uemura RS, Sakai CM, Yamazaki K, Ueda SS, Sakai P, Martins BC

CASE REPORT

529 Endoscopic treatment of periampullary duodenal duplication cysts in children: Four case reports and review of the literature

Bulotta AL, Stern MV, Moneghini D, Parolini F, Bondioni MP, Missale G, Boroni G, Alberti D

543 Small bowel perforation from a migrated biliary stent: A case report and review of literature

Zorbas KA, Ashmeade S, Lois W, Farkas DT

WJGE | https://www.wjgnet.com

Contents

Monthly Volume 13 Number 10 October 16, 2021

ABOUT COVER

Editorial Board Member of World Journal of Gastrointestinal Endoscopy, Enrico Fiori, MD, Chief Doctor, Full Professor, Surgeon, Surgical Oncologist, Department of Surgery "Pietro Valdoni", Policlinico Umberto I Hospital, University of Rome "Sapienza", Rome 00161, Italy. enrico.fiori@uniroma1.it

AIMS AND SCOPE

The primary aim of World Journal of Gastrointestinal Endoscopy (WJGE, World J Gastrointest Endosc) is to provide scholars and readers from various fields of gastrointestinal endoscopy with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJGE mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal endoscopy and covering a wide range of topics including capsule endoscopy, colonoscopy, double-balloon enteroscopy, duodenoscopy, endoscopic retrograde cholangiopancreatography, endosonography, esophagoscopy, gastrointestinal endoscopy, gastroscopy, laparoscopy, natural orifice endoscopic surgery, proctoscopy, and sigmoidoscopy.

INDEXING/ABSTRACTING

The WJGE is now abstracted and indexed in Emerging Sources Citation Index (Web of Science), PubMed, PubMed Central, China National Knowledge Infrastructure (CNKI), and Superstar Journals Database. The 2021 edition of Journal Citation Reports® cites the 2020 Journal Citation Indicator (JCI) for WJGE as 0.36.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Xu Guo; Production Department Director: Yu-Jie Ma; Editorial Office Director: Jia-Ping Yan.

NAME OF JOURNAL

World Journal of Gastrointestinal Endoscopy

ISSN 1948-5190 (online)

LAUNCH DATE

October 15, 2009

FREQUENCY

Monthly

EDITORS-IN-CHIEF

Anastasios Koulaouzidis, Bing Hu, Sang Chul Lee

EDITORIAL BOARD MEMBERS

https://www.wjgnet.com/1948-5190/editorialboard.htm

PUBLICATION DATE

October 16, 2021

COPYRIGHT

© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

https://www.wignet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION

https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

Submit a Manuscript: https://www.f6publishing.com

World J Gastrointest Endosc 2021 October 16; 13(10): 510-517

ISSN 1948-5190 (online) DOI: 10.4253/wjge.v13.i10.510

ORIGINAL ARTICLE

Retrospective Study

Safety of upper endoscopy in patients with active cocaine use

Anabel Liyen Cartelle, Alexander Nguyen, Parth M Desai, Vikram Kotwal, Jinal Makhija, Jie Yu, John Erikson L Yap

ORCID number: Anabel Liyen Cartelle 0000-0002-6006-2516; Alexander Nguyen 0000-0002-5538-0237; Parth M Desai 0000-0003-1231-1204; Vikram Kotwal 0000-0003-0188-8307; Jinal Makhija 0000-0002-6931-5188; Jie Yu 0000-0002-6413-0504; John Erikson L Yap 0000-0002-0441-3211.

Author contributions: Liyen Cartelle A, Nguyen A and Desai PM wrote the report; Nguyen A, Desai PM, Kotwal V, Yu J, and Yap JEL designed, performed the research; Kotwal V, Yu J, and Yap JEL supervised the report; Desai PM and Makhija J contributed to the analysis.

Institutional review board statement: This study was reviewed and approved by the Ethics Committee of the John H. Stroger, Jr. Hospital of Cook County

Informed consent statement:

Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement: We have no financial relationships to disclose.

Data sharing statement: No

Anabel Liyen Cartelle, Department of Medicine, Beth Israel Deaconess Hospital, Boston, MA 02215, United States

Alexander Nguyen, Jie Yu, Division of Gastroenterology and Hepatology, John H. Stroger, Jr. Hospital of Cook County, Chicago, IL 60612, United States

Parth M Desai, Internal Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, IL 60612. United States

Vikram Kotwal, Division of Digestive Diseases, Rush University, Chicago, IL 60612, United

Jinal Makhija, Division of Infectious Diseases, Rush University, Chicago, IL 60612, United

John Erikson L Yap, Division of Gastroenterology and Hepatology, Augusta University, Augusta, GA 30912, United States

Corresponding author: Anabel Liyen Cartelle, MD, Doctor, Department of Medicine, Beth Israel Deaconess Hospital, 330 Brookline Ave, Boston, MA 02215, United States. anabelliyencartelle@gmail.com

Abstract

BACKGROUND

Cocaine is a synthetic alkaloid initially viewed as a useful local anesthetic, but which eventually fell out of favor given its high addiction potential. Its predominantly sympathetic effects raise concern for cardiovascular, respiratory, and central nervous system complications in patients undergoing procedures. Periprocedural cocaine use, often detected via a positive urine toxicology test, has been mostly addressed in the surgical and obstetrical literature. However, there are no clear guidelines on how to effectively risk stratify patients found to be positive for cocaine in the pre-operative setting, often leading to costly procedure cancellations. Within the field of gastroenterology, there is no current data available regarding safety of performing esophagogastroduodenoscopy (EGD) in patients with recent cocaine use.

To compare the prevalence of EGD related complications between active (≤ 5 d) and remote (> 5 d) users of cocaine.

additional data are available.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: United

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C Grade D (Fair): 0 Grade E (Poor): 0

Received: May 26, 2021 Peer-review started: May 26, 2021 First decision: June 12, 2021 Revised: July 1, 2021 Accepted: August 24, 2021 Article in press: August 24, 2021 Published online: October 16, 2021

P-Reviewer: Xue M S-Editor: Liu M L-Editor: A P-Editor: Guo X

METHODS

In total, 48 patients who underwent an EGD at John H. Stroger, Jr. Hospital of Cook County from October 2016 to October 2018 were found to have a positive urine drug screen for cocaine (23 recent and 25 remote). Descriptive statistics were compiled for patient demographics. Statistical tests used to analyze patient characteristics, procedure details, and preprocedural adverse events included ttest, chi-square, Wilcoxon rank sum, and Fisher exact test.

RESULTS

Overall, 20 periprocedural events were recorded with no statistically significant difference in distribution between the two groups (12 active vs 8 remote, P = 0.09). Pre- and post-procedure hemodynamics demonstrated only a statistically, but not clinically significant drop in systolic blood pressure and increase in heart rate in the active user group, as well as drop in diastolic blood pressure and oxygen saturation in the remote group (P < 0.05). There were no significant differences in overall hemodynamics between both groups.

CONCLUSION

Our study found no significant difference in the rate of periprocedural adverse events during EGD in patients with recent vs remote use of cocaine. Interestingly, there were significantly more patients (30%) with active use of cocaine that required general anesthesia as compared to remote users (0%).

Key Words: Gastrointestinal endoscopy; Cocaine-related disorders; General anesthesia; Risk factors; Local anesthetics; Retrospective studies

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: There is no data available regarding safety of performing an esophagogastroduodenoscopy in patients with evidence of recent cocaine use. This study compared the prevalence of procedure complications between active and remote cocaine users and found no statistically significant difference between the two groups. Pre- and post-procedure hemodynamics demonstrated only statistically, but not clinically significant changes in blood pressure, heart rate, and oxygenation. Results suggest relative safety in performing this procedure on active cocaine users. Patients in the active group required more general anesthesia; however, given nature of study, the reasoning behind this sedation choice was difficult to determine.

Citation: Liyen Cartelle A, Nguyen A, Desai PM, Kotwal V, Makhija J, Yu J, Yap JEL. Safety of upper endoscopy in patients with active cocaine use. World J Gastrointest Endosc 2021; 13(10): 510-517

URL: https://www.wjgnet.com/1948-5190/full/v13/i10/510.htm

DOI: https://dx.doi.org/10.4253/wjge.v13.i10.510

INTRODUCTION

Illicit drug abuse remains an ongoing public health crisis in the United States. As of 2018, 11.7% of the population over the age of 12 were illegal drug users. Of these, 2% reported regular use of cocaine[1]. Given the self-reporting nature of these statistics, there is reasonable concern that these values may be a significant underestimation of the actual number of active cocaine users in the population[2]. In the medical literature, cocaine's predominantly sympathetic effects have been linked to a myriad of cardiovascular, respiratory, and central nervous system complications that may compromise patient stability when undergoing a procedure. Major cardiac abnormalities such as tachycardias, hypertension, myocardial ischemia or infarction, and various arrhythmias are at the forefront of concern[3]. Pulmonary edema, pulmonary hemorrhages, and pulmonary barotrauma have been attributed to the use of smoked "crack" cocaine[4]. Lastly, cocaine has also been implicated in several neurological complications including hemorrhage, stroke, seizures, and coma[5,6].

Table 1 Patient characteristics				
		Active cocaine users, n = 23	Remote cocaine users, <i>n</i> = 25	P value ³
Age, yr, n ²	(Avg. ± SD)	51.0 ± 9.5	54.8 ± 10.9	0.210 ⁴
Sex, n ¹	Male	19	11	0.006^{5}
	Female	4	14	
Ethnicity, n ¹	White	1	2	0.889 ⁶
	African American	17	19	
	Hispanic	5	4	
EKG, n ¹	Normal	8	9	0.757 ⁵
	Abnormal	14	13	
	No EKG	1	3	
Comorbidities, n^1	Pulmonary	8	8	0.838 ⁵
	Cardiac	4	4	1.000 ⁶
	Renal	1	3	0.610 ⁶
	Liver	4	12	0.025 ⁵
	Hypertension	7	12	0.214 ⁵
	Other drug abuse	12	17	0.263 ⁵
	Neurologic	0	1	1.000 ⁶
	Obesity	1	2	1.000 ⁶
	Infectious	1	13	0.0003^{5}
	Malignancy	1	3	0.610 ⁶
	Diabetes	1	3	0.610 ⁶
	Other	3	3	1.000 ⁶

¹Categorical value. Presented as frequency.

EKG: Electrocardiogram

Jeffcoat et al[7] published one of the first studies exploring the differences in common routes of administration of cocaine including intravenous injection, nasal insufflation, and smoke inhalation. From this paper, the elimination half-life of cocaine was calculated to range between 69-78 min depending on the mode of administration. Using more modern laboratory assays for detection, the plasma half-life of cocaine has been determined to range between 0.7-1.5 h while the urine detection window is typically less than 1 d[8]. Cocaine's main inactive metabolite, benzoylecgonine, has a plasma half-life of 5.5-7.5 h and a urine drug screen (UDS) window of 1-2 d[9]. These values can vary depending on differences in renal function, and frequency of cocaine use. In fact, benzoylecgonine has been detected in the urine up to 10-14 d after heavy cocaine use[10].

Pre-procedural management of a patient with recent cocaine use, typically determined via a positive urine toxicology test detecting benzoylecgonine, has been mostly addressed in the surgical and obstetrical literature. Within these fields, only a handful of cases have been published reporting cardiac arrhythmias, hypertension, and myocardial ischemia while intoxicated with cocaine and under general anesthesia [11]. In the setting of elective surgeries, larger studies such as Hill et al[12] demonstrated no greater risk for intraprocedural complications for non-toxic cocaine users when compared to drug-free patients. Baxter and Alexandrov[13] showed statistically significantly higher baseline systolic pressure, mean arterial pressure, and heart rate differences in the cocaine-positive cohort, but ultimately these were not deemed

²Continuous variables. Presented as mean value and standard deviation.

³Compared to alpha value < 0.05 for significance.

⁴t-test.

⁵chi-SQ.

⁶Fisher exact test.

clinically significant values. More recently, Moon et al[14] determined that cocaine positive patients did not demonstrate significantly different medication requirements as compared to cocaine-negative patients.

Despite the existence of this data, there remains no standard for practice on how to proceed with procedures this patient population. As such, practitioner preference is often used to determine the main course of action, leading to same day cancellations of procedures, resulting in waste of clinical time and resources[15]. There have been no direct published works addressing complications encountered during gastrointestinal endoscopies in patients with positive cocaine drug screens. This retrospective, singlecenter study aims to determine the safety of EGD with anesthesia support in patients who abuse cocaine, both actively and remotely.

MATERIALS AND METHODS

Records were reviewed from patients who underwent EGD at John H. Stroger, Jr. Hospital of Cook County from October 2016 to October 2018. Those with a cocaine positive UDS within less than 6 mo were identified. Remote cocaine users were classified as individuals with positive cocaine screen > 5 d, up to 6 mo from procedure, while active cocaine users had a positive UDS within 5 d. The study was approved by the institutional review board.

Demographic data including age, ethnicity, and comorbidities (pulmonary, cardiac, renal, liver, hypertension, other drug abuse, neurologic, obesity, infectious disease, malignancy, diabetes, and other medical conditions) were recorded. Procedural details such as American Society of Anesthesiologists Classification (ASA class), urgency level of procedure, type of anesthesia, location (inpatient vs outpatient), and length of stay, were also collected. Periprocedural adverse events such as hypotension, tachycardia, nausea/vomiting, and oxygen desaturation were recorded. The outcomes measured included hemodynamic changes in blood pressure, heart rate, respiratory rate, and oxygen saturation, pre- and post-procedure.

All patient data was analyzed using STATA/SE 12.0 and Excel version 365 (Microsoft). Several statistical tests were used to analyze patient characteristics, procedure details, and preprocedural adverse events including t-test, chi-square, Wilcoxon rank sum, and Fisher exact test. All P-values < 0.05 were considered statistically significant.

RESULTS

A total of 2122 patients were identified during the study period; 129 patients had a positive drug screen of which 48 were positive for cocaine. Active users (23) were predominately male (83%) and African American (74%). Remote users (25) were 44% female and predominantly African American (76%). There was a significant difference male gender predominance in the active group compared to the remote (P = 0.006). A substantial number of patients in both groups had abnormal admitting electrocardiogram (14 active vs 13 remote) and both were found to have concurrent drug abuse (12 active vs 17 remote) as their most prevalent comorbidity (Table 1). There was no significant difference between groups for both categories, although liver and infectious comorbidities were more prevalent in the remote group (P = 0.025, 0.0003).

Patients in both groups underwent urgent procedures (17 active vs 14 remote) with no statistical difference (P = 0.195); although the active group was treated more often in the inpatient setting (P = 0.024). ASA class III was most prevalent among the two groups (14 active vs 21 remote) although more predominant in the remote group (P = vs0.046). Monitored anesthesia care (MAC) sedation was the preferred anesthesia support over general anesthesia (16 active vs 25 remote) (P = 0.003). Hospitalizations were longer for remote vs active patients (P = 0.003), (Table 2). Overall, 20 periprocedural adverse events occurred among the 48 patients. Although not statistically significant, active users had more events compared to remote users (12 vs 8, P = 0.09) defined as documented oxygen desaturation during the procedure, use of vasopressor, rate-controlling, or anti-nausea medications (Table 3).

Pre- and post-procedure hemodynamics demonstrated a statistically significant, but not clinically significant, drop in systolic blood pressure (136/77 pre-procedure vs 129/76 post-procedure, P = 0.03/0.64), as well as an increase in heart rate (73 preprocedure vs 76 post-procedure, P = 0.04) in the active user group. In the remote user group, there was also a statistically significant, but not clinically significant, drop in

Table 2 Procedure details					
		Active cocaine users, <i>n</i> = 23	Remote cocaine users, <i>n</i> = 25	P value ³	
Urgency, n ¹	Non-urgent	6	11	0.195 ⁴	
	Urgent	17	14		
Location, n ¹	Inpatient	22	17	0.024 ⁵	
	Outpatient	1	8		
ASA Class, n ¹	Class II	9	3	0.046 ⁵	
	Class III	14	21		
	Class IV	0	1		
LOS, n2	(Avg day ± SD)	5.4 ± 3.6	5.6 ± 11.9	0.018 ⁶	
Type of Anesthesia,	MAC	16	25	0.003 ⁵	
n^{1}	General	7	0		

¹Categorical value. Presented as frequency.

ASA Class: American Society of Anesthesiologists Classification; LOS: Length of stay; MAC: Monitored anesthesia care.

Table 3 Periprocedural adverse events				
	Active cocaine users, <i>n</i> = 23	Remote cocaine users, <i>n</i> = 25	P value ²	
Cumulative complications, n ¹	12	8	0.09	
Oxygen desaturation, n ¹	1	2	1.000 ³	
Nausea/vomiting, n ¹	7	2	0.068 ³	
Hypotension, n ¹	4	4	1.000 ³	
Tachycardia, n ¹	0	0	NA	

¹Categorical value. Presented as frequency.

diastolic blood pressure (130/80 pre-procedure vs 124/74 post-procedure, P = 0.34/0.01) and oxygen saturation (98 pre-procedure vs 97 post-procedure, P = 0.04). There were no significant differences in overall hemodynamics between both groups when compared via two-sample t-test (Table 4).

DISCUSSION

To the best of our knowledge, our project is the first retrospective, single-center study aimed at determining the safety of EGD under anesthesia in patients who have recently abused cocaine with comparison to remote users. Although cumulatively there were more reported periprocedural adverse events in patients with active cocaine use compared to patients with remote cocaine use undergoing endoscopy, the primary result of this study was that ultimately this difference was statistically insignificant. Moreover, the statistically significant differences in preprocedural and postprocedural hemodynamics both within and across groups were, much like in the Baxter et al[13] study, not deemed clinically significant[14]. There was no reported mortality in any of the groups.

²Continuous variables. Presented as mean value and standard deviation.

³Compared to alpha value < 0.05 for significance.

⁴chi-SO.

⁵Fisher exact test.

⁶Wilcoxon rank sum test.

 $^{^2}$ Compared to alpha value < 0.05 for significance.

³Fisher exact test.

Table 4 Hemodynamic outcomes					
	Active cocaine users, <i>n</i> = 23	Remote cocaine users, <i>n</i> = 25	P value ^{2,3}	3	
Blood pressure pre-procedure	136/77 (17/13)	130/80 (19/12)	0.14/0.38	Active: 0.03/0.64	Remote: 0.34/0.01
Blood pressure post-procedure (mmHg \pm SD), n^1	129/76 (15/11)	124/74 (27/12)	0.46/0.52	0.05/ 0.04	
Heart rate pre-procedure	73 (12)	78 (16)	0.16	0.04	0.27
Heart Rate post-procedure (BPM \pm SD), n^1	76 (13)	81 (16)	0.28		
Respiratory rate pre-procedure	19 (2)	19 (4)	0.95	0.11	0.42
Respiratory rate post-procedure (BPM \pm SD), n^{1}	18 (3)	20 (5)	0.10		
Oxygen saturation pre-procedure	98 (2)	98 (1)	0.43	0.74	0.04
Oxygen saturation post-procedure (% ± SD), n^1	98 (2)	97 (3)	0.12		

¹Continuous variables. Presented as mean value and standard deviation.

A unique component to our study, in contrast to much of the available literature, is the overwhelming preponderance of MAC used *vs* general anesthesia in both cohorts. MAC is a type of anesthesia commonly used in diagnostic or therapeutic procedures such as endoscopies as it can be titrated to maintain spontaneous breathing and airway reflexes[16]. For endoscopic procedures, especially in the ambulatory setting, the rapid recovery of MAC is ideal for high volume centers. In contrast, under general anesthesia, patients undergo a drug-induced loss of consciousness that prevents any ability to respond purposefully and often necessitate airway support[16]. Further analysis into the two cohorts of our study showed that active users were more likely to undergo the EGD under general anesthesia, 30%, vs remote users, 0%. Unfortunately, given the retrospective nature of the study and the small sample size, the reasoning behind this deviation in anesthesia type could not be further dissected. However, it may point to some component in the patient's clinical status that swayed the anesthesiologist to favor one form over the other.

As previously mentioned, given the retrospective nature of this study, there are several limitations that must be addressed. Despite the two-year timespan for chart review, our total sample population of cocaine positive patients, both active and remote, remained small. This was to be expected as UDS are not part of the standard pre-procedural work up of a patient undergoing an EGD. Additionally, similarly to what was mentioned in Moon et al[14], selection bias is likely at play in the sample population as individuals that undergo a procedure even after a positive cocaine UDS are more likely to need urgent intervention[14]. Lastly, despite the stratification of active vs remote users based off UDS timing, there are several unknown factors that could not be standardized such as the exact time span between the last drug use and the procedure date, quantity of cocaine consumed, and other confounding factors such as co-morbid polysubstance abuse. As such, the generalizability of the results of our current study is difficult to determine and larger studies are needed to corroborate our

In summary, the findings of our study suggest that there are no significant differences in periprocedural adverse events or hemodynamic disturbances in active vs remote cocaine users undergoing an EGD with anesthesia support. Further investigation via larger prospective studies, containing a cocaine-negative control group, in which the type of anesthesia used can be standardized may elucidate any true difference in adverse events rates between MAC vs general anesthesia in this patient population. Additionally, given the wide range of drug agents used for MAC, other studies may be needed to identify which agents, if any, would be safer for use in cocaine positive patients or those suspected to have had recent cocaine abuse.

²Compared to alpha value < 0.05 for significance.

 $^{^{3}}t$ -test.

CONCLUSION

In conclusion, performing an EGD in patients with recent cocaine use, as evidenced by a positive UDS test, appears to be relatively safe, supporting forgoing procedure cancellation in this patient population.

ARTICLE HIGHLIGHTS

Research background

Procedure delay in patients with a recent history of cocaine use due to concerns of possible adverse events can compromise patient care and incur undue healthcare

Research motivation

There is a paucity of literature available to risk stratify patients with recent cocaine use undergoing endoscopic procedures.

Research objectives

We endeavored in this study to evaluate the relative safety of performing an esophagogastroduodenoscopy (EGD) in this specific patient population.

Research methods

Pre- and post-procedure hemodynamics were recorded and as well as frequency of adverse events. Using statistical tests including t-test, chi-square, Wilcoxon rank sum, and Fisher exact test, our data analysis results suggested no statistically significant differences in periprocedural adverse events or clinically significant hemodynamic disturbances in active (< 5 d) vs remote cocaine users (> 5 d).

Research results

Our study found no significant difference in the rate of periprocedural adverse events during EGD in patients with recent vs remote use of cocaine.

Research conclusions

Performing an EGD in patients with recent cocaine use appears to be safe.

Research perspectives

Given the retrospective nature of this study, we hope our results generate more interest to explore this topic further in larger, prospective studies.

REFERENCES

- Substance Abuse and Mental Health Services Administration. Key Substance Use and Mental Health Indicators in the United States: Results from the 2019 National Survey on Drug Use and Health. 2020 Sep [cited 10 November 2020]. Available from: https://www.samhsa.gov/data/
- 2 The Validity of Self-Reported Drug Use: Improving the Accuracy of Survey Estimates. Harrison L, Hughes A, editors. Rockville (MD): National Institute on Drug Abuse, 1997
- Schwartz BG, Rezkalla S, Kloner RA. Cardiovascular effects of cocaine. Circulation 2010; 122: 2558-2569 [PMID: 21156654 DOI: 10.1161/CIRCULATIONAHA.110.940569]
- 4 Perper JA, Van Thiel DH. Respiratory complications of cocaine abuse. Recent Dev Alcohol 1992; **10**: 363-377 [PMID: 1589607 DOI: 10.1007/978-1-4899-1648-8_18]
- Marasco CC, Goodwin CR, Winder DG, Schramm-Sapyta NL, McLean JA, Wikswo JP. Systemslevel view of cocaine addiction: the interconnection of the immune and nervous systems. Exp Biol Med (Maywood) 2014; 239: 1433-1442 [PMID: 24903164 DOI: 10.1177/1535370214537747]
- 6 Richards JR, Jacqueline KL. Cocaine Toxicity. 2020 Oct 21 [cited 4 February 2021]. In: StatPearls [Internet]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430976/
- Jeffcoat AR, Perez-Reyes M, Hill JM, Sadler BM, Cook CE. Cocaine disposition in humans after intravenous injection, nasal insufflation (snorting), or smoking. Drug Metab Dispos 1989; 17: 153-159 [PMID: 2565204]
- Drug plasma half-life and urine detection window. ARUP Laboratories. [cited 4 February 2021]. Available from: https://www.aruplab.com/files/resources/painmanagement/DrugAnalytesPlasmaUrine.pdf
- Nickley J, Pesce AJ, Krock K. A sensitive assay for urinary cocaine metabolite benzoylecgonine

516

- shows more positive results and longer half-lives than those using traditional cut-offs. Drug Test Anal 2017; 9: 1214-1216 [PMID: 28024167 DOI: 10.1002/dta.2153]
- 10 Weiss RD, Gawin FH. Protracted elimination of cocaine metabolites in long-term high-dose cocaine abusers. Am J Med 1988; 85: 879-880 [PMID: 3195611 DOI: 10.1016/s0002-9343(88)80042-1]
- Kuczkowski KM. The cocaine abusing parturient: a review of anesthetic considerations. Can J Anaesth 2004; 51: 145-154 [PMID: 14766691 DOI: 10.1007/BF03018774]
- Hill GE, Ogunnaike BO, Johnson ER. General anaesthesia for the cocaine abusing patient. Is it safe? Br J Anaesth 2006; 97: 654-657 [PMID: 16914461 DOI: 10.1093/bja/ael221]
- Baxter JL, Alexandrov AW. Utility of cocaine drug screens to predict safe delivery of general 13 anesthesia for elective surgical patients. AANA J 2012; 80: S33-S36 [PMID: 23248828]
- Moon TS, Gonzales MX, Sun JJ, Kim A, Fox PE, Minhajuddin AT, Pak TJ, Ogunnaike B. Recent 14 cocaine use and the incidence of hemodynamic events during general anesthesia: A retrospective cohort study. J Clin Anesth 2019; 55: 146-150 [PMID: 30660093 DOI: 10.1016/j.jclinane.2018.12.028]
- Elkassabany N, Speck RM, Oslin D, Hawn M, Chaichana K, Sum-Ping J, Sepulveda J, Whitley M, Sakawi Y. Preoperative screening and case cancellation in cocaine-abusing veterans scheduled for elective surgery. Anesthesiol Res Pract 2013; 2013: 149892 [PMID: 24069030 DOI: 10.1155/2013/149892]
- Das S, Ghosh S. Monitored anesthesia care: An overview. J Anaesthesiol Clin Pharmacol 2015; 31: 27-29 [PMID: 25788769 DOI: 10.4103/0970-9185.150525]

Published by Baishideng Publishing Group Inc

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

Telephone: +1-925-3991568

E-mail: bpgoffice@wjgnet.com

Help Desk: https://www.f6publishing.com/helpdesk

https://www.wjgnet.com

