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Abstract
Coronary computed tomography angiography (CCTA) is recommended as a 
frontline diagnostic tool in the non-invasive assessment of patients with suspected 
coronary artery disease (CAD) and cardiovascular risk stratification. To date, 
artificial intelligence (AI) techniques have brought major changes in the way that 
we make individualized decisions for patients with CAD. Applications of AI in 
CCTA have produced improvements in many aspects, including assessment of 
stenosis degree, determination of plaque type, identification of high-risk plaque, 
quantification of coronary artery calcium score, diagnosis of myocardial infarc-
tion, estimation of computed tomography-derived fractional flow reserve, left 
ventricular myocardium analysis, perivascular adipose tissue analysis, prognosis 
of CAD, and so on. The purpose of this review is to provide a comprehensive 
overview of current status of AI in CCTA.

Key Words: Coronary computed tomography angiography; Coronary artery disease; 
Artificial intelligence; Deep learning; Machine learning; Prognosis
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Core Tip: The application of artificial intelligence in coronary computed tomography 
angiography mainly focuses on the following aspects: (1) Studies based on the 
coronary arteries and plaques for determination of stenosis degree, identification of 
plaque types, quantification of coronary artery calcium score, prediction of myocardial 
infarction, and prognosis evaluation; (2) Studies around the perivascular adipose tissue, 
which were mainly conducted using radiomics analysis and machine learning 
algorithm, for improvement of risk stratification; and (3) Studies based on the texture 
analysis of the left ventricular myocardium for assessment of functionally significant 
stenosis or for prognosis evaluation.
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INTRODUCTION
Coronary computed tomography angiography (CCTA) has merged as a first-line 
diagnostic tool in the non-invasive evaluation of patients with suspected coronary 
artery disease (CAD), as recommended in the international guidelines[1,2]. With rich 
information provided in the luminal stenosis, the morphology and composition of 
plaques, and the overall circulation, CCTA can safely rule out the obstructive CAD 
and improve prognosis.

However, the information derived from CCTA images is recognized and interpreted 
by human readers, and varies among different scanning protocols, scanners, contrast 
medium injection protocols, and readers. The arrival of artificial intelligence (AI) 
brought hope that it can be applied for intelligent decision-making with autonomous 
acquired knowledge by identifying and extracting patterns among a group of 
observations[3,4].

With the frontline role of CCTA in the diagnostic strategies for CAD, “big data” is 
available and offers an optimal platform to bridge AI with CCTA. Recently, AI 
techniques in CCTA have gained much attention and have been widely applied in 
clinical care ranging from diagnosis to prognostic stratification. We seek to summarize 
the recent application of AI techniques in CCTA images, so as to investigate and 
identify the most important and promising research topics, the problems that have 
been resolved and remain to be resolved, and the future directions with many 
challenges and opportunities.

CURRENT APPLICATION OF AI IN CCTA
The application of AI in CCTA images mainly focuses on the following aspects: (1) 
Studies based on the coronary arteries and plaques for determination of stenosis 
degree, identification of plaque types, quantification of coronary artery calcium (CAC) 
score, prediction of myocardial infarction (MI), and prognosis evaluation; (2) studies 
around the perivascular adipose tissue (PVAT), which were mainly conducted using 
radiomics analysis and machine learning (ML) algorithm, for improvement of risk 
stratification; and (3) studies based on the texture analysis of the left ventricular 
myocardium (LVM) for assessment of functionally significant stenosis or for prognosis 
evaluation, as shown in Figure 1.

AUTOMATIC DETECTION AND CLASSIFICATION OF CORONARY 
ARTERY PLAQUE AND STENOSIS
Since different grades of coronary artery stenosis and varying types of plaque would 
lead to different patient management strategies, it is therefore crucial to: (1) Detect and 
determine the stenosis; (2) Detailedly characterize plaques (i.e., non-calcified, calcified, 
mixed plaques); and (3) Identify the so-called “high-risk” plaque features. Recently, 
there are already applications of AI techniques in related CCTA fields, including 
stenosis evaluation and plaque characterization. Commonly, the anatomical evaluation 
of coronary stenosis and quantification of plaques rely on a relative accurate 
segmentation and successful automatic lesion localization in CCTA images. Several 
vendors are developing AI-based platform for stenosis evaluation. However, the 
identification of “high-risk” plaques remains challenging, and only a few studies have 
been proposed but are of great promise with prognostic value.

Kang et al[5] proposed a structured learning technique for automatic detection of 
obstructive and non-obstructive CAD on CCTA. Taking the visual identification of 
lesions with stenosis ≥ 25% by three expert readers, using consensus reading, as the 
reference standard, the method achieved a high sensitivity (93%), specificity (95%), 
and diagnostic accuracy (94%), with an area under the curve (AUC) of 0.94. Zreik et al

http://creativecommons.org/Licenses/by-nc/4.0/
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Figure 1 The application of artificial intelligence in coronary computed tomography angiography.

[6] employed a multi-task recurrent convolutional neural network to determine the 
stenosis severity based on the MPR view of a coronary artery extracted from the CCTA 
scan, as well as to automatically detect and characterize the coronary plaques. The 
approach achieved an accuracy of 0.80 for the determination of the anatomical 
significance of the coronary artery stenosis, and 0.77 for the detection and character-
ization of coronary plaques. Wei et al[7] developed a topological soft-gradient (TSG) 
detection method to prescreen for noncalcified plaque (NCP) candidates, which 
achieved AUCs of 0.87 ± 0.01 and 0.85 ± 0.01 in the training and validation sets, 
respectively. Jawaid et al[8] utilized support vector machine algorithms for automated 
detection of NCPs, and their approach achieved a detection accuracy of 88.4% with 
respect to the manual expert and a dice similarity coefficient of 83.2%.

In 2017, Kolossváry et al[9] investigated whether radiomics analysis improves the 
identification of coronary plaques with or without Napkin-ring sign (NRS). NRS is 
characterized as a so-called “high-risk” plaque features, which is defined as a plaque 
core with low CT attenuation apparently in contact with the lumen that is surrounded 
by a ring-shaped higher attenuation as napkin ring like in CCTA images[10,11]. 
However, the identification of the NRS remains challenging because it is assessed by a 
qualitative read of CCTA images which is affected by clinical experience and intra-
/inter-reader variability[12]. Based on the segmented CCTA datasets, 8 conventional 
quantitative metrics and 4440 radiomic features were extracted. They found that none 
of the conventional quantitative parameters but 20.6% (916/4440) of radiomics 
features were significantly different between NRS and non-NRS plaques (Bonferroni-
corrected P < 0.0012). In addition, almost half of the features (418/916) reached an 
AUC > 0.80, of which three features, including short- and long-run low gray-level 
emphasis and surface ratio of high attenuation voxels to total surface, exhibited 
excellent discriminatory value with AUCs of 0.918, 0.894, and 0.890, respectively. In 
2019, the same research group validated the radiomics features extracted from CCTA 
in an ex-vivo histological study. One ML algorithm incorporating 13 parameters was 
superior compared with visual assessment (AUC = 0.73 vs 0.65) in the identification of 
advanced lesions[13].

DEEP LEARNING FOR AUTOMATIC CAC SCORING
CAC scoring plays a key role in risk stratification of CAD. Non-contrast-enhanced 
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cardiac CT, which is routinely acquired as a stand-alone test or an adjunct study prior 
to CCTA, is considered as the reference for quantification of CAC. CAC is defined as a 
high-attenuation area with > 130 HU in at least three contiguous pixels in non-
contrast-enhanced cardiac CT. Recently, it has been shown that CAC can be also 
detected in CCTA images, which could reduce the radiation dose of a typical cardiac 
CT examination by 40%-50%[14]. Besides, the increased visibility of the coronary 
arteries in CCTA compared to non-contrast-enhanced cardiac CT could improve the 
identification of CAC. However, manual quantification of CAC requires substantial 
clinical experience to identify and make of every calcified lesion in each image slice, 
which is a time-consuming process. Consequently, a series of automatic methods have 
been proposed for CAC scoring in CCTA. Many investigations have shown promising 
results for clinical application in this field.

Some researchers[15,16] developed the automatic methods using two stages, 
including: (1) Segmentation of the coronary arteries; and (2) Identification of the CAC 
with the deviation from a trend line through the lumen intensity, or the voxels above a 
specific HU threshold, or the deviation from a model of non-calcified artery segments.

Wolterink et al[17,18] proposed an automatic CAC quantification method without a 
need for segmentation of the coronary artery tree in CCTA images using a 
combination of a convolutional neural network (CNN) and a Random Forest classifier. 
Thereafter, the same working group further extended and optimized their framework 
using a pair of CNNs in five ways[18], and the automatic CAC scoring in CCTA using 
a pair of CNNs yielded a high correlation (Pearson P = 0.950) and high consistency 
(intraclass correlation coefficient of 0.944) with the reference CAC scoring in non-
contrast-enhanced CT.

In 2020, Fischer et al[19] proposed a novel fully automated algorithm using 
recurrent neural network with long short-term memory to detect CAC from CCTA 
data in a total of 565 vessels. An accuracy of 90.3% [95% confidence interval (CI): 
88.0%-90.0%] was achieved on a per-vessel basis.

In summary, the CAC scoring performed on routine CCTA images without 
additional radiation exposure is highly desirable and the application of AI has 
provided considerable progress in the field and would become more influential in the 
clinical setting. In the near future, with the widespread application of AI techniques, 
CAC scoring using CCTA may eliminate the need for separate dedicated coronary 
calcium-scoring non-contrast enhanced CT scans.

IDENTIFICATION OF MYOCARDIAL ISCHEMIA
ML-based fractional flow reserve-CT for detection of functionally significant 
stenosis
It has been demonstrated that the anatomically significant appearance of a coronary 
stenosis is insufficient to detect hemodynamic significance and does not always equate 
with functional significance, which is particularly true for intermediate type coronary 
lesions[20,21]. Fractional flow reserve (FFR) performed during cardiac catheterization 
has been the reference standard in the detection of lesion-specific ischemia and is 
recommended for therapeutic decision-making[22]. However, the invasive 
measurement with a pressure wire and the relatively high cost restrict the clinical 
applica-tion of FFR.

Recently, novel non-invasive approaches utilizing ML algorithms for determination 
of FFR based on conventional CCTA images (FFR-CT) were developed and validated 
with a considerable diagnostic accuracy. The most popular algorithm is FFR-CTML 
(Figure 2). FFR-CTML was developed by Itu et al[23] in 2016 and provided by only one 
vendor (Siemens Healthineers, Germany) for research purpose. With the rapid 
development of AI, some FFR-CT platforms were provided for commercial use, such 
as the DEEPVESSE-FFR Platform provided by Keya Medical (Beijing, China). The 
DEEPVESSE-FFR Platform was developed by Wang et al[24] using MLNN + BRNN 
and has been commercially available since 2020.

So far, ML-based FFR-CT has been evaluated in several multi-center and single-
center studies[23-35] using a threshold of ≤ 0.80 acquired from invasive FFR to detect 
lesion-specific ischemia. It has been demonstrated that ML-based FFR-CT performed 
equally in detecting flow-limiting stenosis compared with the computer fluid 
dynamics (CFD) based FFR-CT (FFR-CTCFD)[26], while the FFR-CTCFD algorithm is 
time-consuming and heavily affected by the image quality[25,27,36]. The performance 
of ML-based FFR-CT in the related literature is summarized in Table 1.
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Table 1 Summary of the current literature on machine learning-based fractional flow reserve-computed tomography

Ref. Journal Prospective
Multi- or 
single 
center

Platform No. of 
patients 

No. of 
vessels

Compared 
with CT-
FFRCFD

Accuracy AUC

Itu et al[23], 
2016

Journal Application 
Physiology

No Single center - 87 125 Yes Per-lesion: 83% Per-lesion: 0.90

Coenen et al
[25], 2018

Circulation: 
Cardiovascular 
Imaging

Yes The 
MACHINE 
registry

cFFR, version 
2.1, Siemens

351 525 Yes Per-lesion: 
78%Per-
patient: 85%

Per-lesion: 0.84

Tesche et al
[26], 2018

Radiology No Single 
Center

cFFR, version 
1.4, Siemens

85 104 Yes Per-lesion: 
88%; Per-
patient: 92%

Per-lesion: 0.89; 
Per-patient: 
0.91

Mastrodicasa 
et al[34], 2019

Journal of 
Cardiovascular 
Computed 
Tomograph

No Single center cFFR, version 
3.0, Siemens

10/40 160 No IRIS: 82%; FBP: 
82%

-

Baumann et al
[32], 2019

European Journal 
of Radiology

No The 
MACHINE 
registry

cFFR, version 
2.1, Siemens

351 525 No - Per-patient: 
Women:0.83; 
Men: 0.83

Doeberitz et al
[27], 2019

European 
Radiology

No Single center cFFR, version 
2.1, Siemens

48 103 No - Per-lesion: 0.93

Wang et al
[24], 2019

Journal of Geriatric 
Cardiology

Yes Single center DEEPVESSE-
FFR Platform

63 71 No Per-lesion: 
89%; Per-
patient: 87%

Per-lesion: 0.93; 
Per-patient: 
0.93

Tesche et al
[30], 2020

Journals of the 
American College 
of Cardiology: 
Cardiovascular 
Imaging

Yes The 
MACHINE 
registry

cFFR, version 
2.1, Siemens

314 482 No Per-lesion: 
78%; CAC ≥ 
400: 76%CAC 
0-100: 79%; 
CAC 100-400: 
76%

Total: 0.84 CAC 
≥ 400: 0.71; 
CAC 0-400: 
0.85

De Geer et al
[31], 2019

American Journal 
of Roentgenology

No The 
MACHINE 
registry

cFFR, version 
2.1, Siemens

351 525 No Total: 78%; 80 
kv: 86%; 100 
kv: 77%; 120 
kv: 78%

Total: 0.84; 80 
kv: 0.90; 100 
kv: 0.82; 120 
kv: 0.84

Xu et al[33], 
2020

European 
Radiology

No 10 individual 
centers 
across China

cFFR, version 
3.2.0, Siemens

437 570 No Total: 89%; 
High quality: 
94%; Low 
quality: 83%

Total: 0.89; 
High quality: 
0.93; Low 
quality: 0.80

Kumamaru et 
al[28], 2020

European Heart 
Journal - 
Cardiovascular 
Imaging

No Multi-center Python 3.6 131 - No Per-patient: 
76%

Per-patient: 
0.78

Li et al[29], 
2021

Acta Radiologica No Single center DEEPVESSE-
FFR Platform

73 85 No Per-lesion: 
92%; Per-
patient: 91%

Per-lesion: 0.96

Xu et al[35], 
2020

European 
Radiology

No A Chinese 
multicenter 
study

cFFR, version 
3.1.0, Siemens

442 544 No Per lesion: 90% -

IRIS: Iterative reconstruction in image space; FBP: Filtered back projection; CAC: Coronary artery calcium; FFR: Fractional flow reserve; AUC: Area under 
the curve; CT: Computed tomography.

In addition, the influences of CT reconstruction algorithms, image quality, tube 
voltage, coronary calcium, and gender on the diagnostic performance of FFR-CTML 

were investigated in several studies. In a sub-study of MACHINE Registry, Tesche et al
[30] examined the impact of calcification on CT-FFRML determination and concluded 
that CT-FFRML revealed a statistically significant different (P = 0.04) performance as 
Agatston calcium score increased: The AUC in high Agatston scores (CAC ≥ 400) was 
0.71 (95%CI: 0.57-0.85) and in low-to-intermediate Agatston scores (CAC > 0 to < 400) 
was 0.85 (95%CI: 0.82-0.89). In another sub-study of MACHINE Registry, De Geer et al
[31] examined the impact of different tube voltages on CT-FFRML determination and 
concluded that  performance does not vary significantly between tube voltages of 100 
kVp (AUC: 0.82) and 120 kVp (AUC: 0.84), while the AUC was 0.90 in examination 
with a tube voltage of 80 kVp. Based on data of the MACHINE Registry, Baumann et al
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Figure 2 The workflow of the fractional flow reserve-computed tomography derivation. 1A total of 12000 coronary anatomies were generated;  
2twenty-eight geometric features were extracted from the synthetically generated database; 3a deep neural network with four hidden layers was used to train the 
machine learning-based model. FFR-CT: Fractional flow reserve-computed tomography; CCTA: Coronary computed tomography angiography.

[32] evaluated the impact of gender on the performance of FFRCTML and they found 
that FFRCTML performs equally in men and women (both with an AUC of 0.83). In a 
retrospective Chinese multicenter study, Xu et al[33] investigated the effect of image 
quality on the diagnostic performance of FFRCTML in 437 patients with 570 vessels. 
They found that the AUC of high-quality images [0.93 (95%CI: 0.88-0.98), n = 159] was 
significantly (P = 0.02) superior to that of low-quality images [0.80 (95%CI: 0.70-0.90), n 
= 92]. And CCTA with a score ≥ 3, intracoronary enhancement degree of 300–400 HU, 
and heart rate below 70 bpm at scanning could be of great benefit to more accurate 
FFRCTML analysis. In a retrospective single center study, Mastrodicasa et al[34] 
evaluated the influence of different CT reconstruction algorithms on the performance 
of CT-FFRML in 40 CCTA datasets. CT-FFRML values were significantly different 
between iterative reconstruction in image space (IRIS) and filtered back projection 
algorithms, whereas no difference was observed in diagnostic accuracy (both 81.8%, P 
= 1.000). Additionally, they found that IRIS improved CT-FFRML post-processing 
speed significantly.

It should be mentioned that CT-FFRML value for each location along the coronary is 
trained when taking the CT-FFRCFD as ground truth. Although the diagnostic accuracy 
of CT-FFR derived using deep learning (DL) methods was validated in several studies, 
it is still susceptible to the CCTA scanning factors. In the future, more attention should 
be paid to the widespread use of a local software solution that allows for image-
variation and user-variation.

OTHER AI ALGORITHMS FOR PREDICTION OF MYOCARDIAL ISCHEMIA
Except for the ML based FFR-CT platforms described above, some other AI algorithms 
were developed recently for prediction of myocardial ischemia. These approaches are 
in early stage but show better interpretability, which were established via an 



Zhang ZZ et al. Artificial intelligence in CCTA

AIMI https://www.wjgnet.com 79 June 28, 2021 Volume 2 Issue 3

integration of qualitative or quantitative features derived from CCTA images and 
clinical factors.

In 2018, Dey et al[37] developed an integrated ML ischemia risk score (ML-IRS) from 
quantitative plaque measures using a supervised learning process to predict 
functionally significant stenosis in a prospective multicenter trial of 254 patients with 
484 vessels. The ML-IRS exhibited a higher AUC (0.84) than conventional CCTA 
measures, including stenosis (0.76), LD-NCP volume (0.77), total plaque volume (0.74), 
and pre-test likelihood of CAD (0.63), for predicting lesion-specific ischemia by 
invasive FFR. Thereafter, the ML-IRS was integrated into coronary plaque analysis 
research software for generating a percent probability of pathological FFR on CCTA 
data.

In 2019, van Hamersvelt et al[38] proposed a DL method based on the LVM in 
resting CCTA images to identify functionally significant coronary artery stenosis using 
126 patients. The DL approach achieved a higher AUC of 0.76 compared to degree of 
stenosis (AUC = 0.68).

In 2020, Shu et al[39] established a radiomics nomogram based on myocardial 
segments for predicting chronic myocardial ischemia using multivariate logistic 
regression. The accuracy of the nomogram for distinguishing chronic myocardial 
ischemia from normal myocardium was 0.839, 0.832, and 0.816 in the training, test, and 
validation cohorts, respectively.

PROGNOSTIC SIGNIFICANCE 
PVAT-based radiomics for improving cardiac risk prediction
Early detection of vascular inflammation, which is a major contributor to athero-
genesis and atherosclerotic plaque rupture[40,41], would enable better cardiovascular 
risk stratification[42]. The vascular inflammation can be detected by characterizing the 
phenotypic changes in PVAT using the fat attenuation index (FAI) in routine CCTA 
images[43,44]. FAI was defined as the average attenuation of all voxels with 
attenuation values between -190 HU and -30 HU located within a radial distance from 
the outer coronary artery wall equal to the average diameter of the respective vessel, 
as described previously[43,44]. However, FAI is an average of the voxel intensity 
values and does not account for the complex spatial relationship among voxels.

Recently, some studies investigated whether radiomics analysis could help to 
extract more information from the PVAT that cannot be captured by human eyes. The 
radiomics features surrounding PVAT mainly include two parts: (1) PVAT 
surrounding the standardized coronary segments, which was often investigated at a 
per-patient level; and (2) PVAT around the target lesion, which was at a per-lesion 
level.

As for the per-patient level, Oikonomou et al[45] developed an AI-powered 
radiotranscriptomic signature for predicting cardiac risk based on the radiomics 
features extracted from PVAT around the proximal to distal right coronary artery 
(RCA) and the left coronary artery in CCTA images. A fat radiomic profile (FRP) was 
established, using random forest model based on the features extracted from the 
standardized coronary segments, to distinguish the 101 patients who experienced 
major adverse cardiac events (MACE) within 5 years from 101 matched controls. The 
FRP was significantly associated with the risk of MACE [adjusted hazard ratio (HR): 
1.12, 95%CI: 1.08-1.15, P < 0.001]. And patients with an FRP ≥ 0.63 had a 10.8-fold 
higher risk of MACE than those with an FRP < 0.63, after adjusted for clinical factors. 
The AUC of FRP in predicting MACE was 0.774 (95%CI: 0.622-0.926) in the external 
validation dataset (20% of the 202 samples). When added to the traditional model, FRP 
improved the distinguishing performance from an AUC of 0.754 to 0.880. 
Additionally, they found that FRP was significantly higher in 44 patients with acute 
MI compared with 44 controls (P < 0.001), but unlike FAI, FRP remained unchanged 6 
mo later in 16 patients with acute MI (AMI), confirming that FRP detects persistent 
PVAT changes that cannot be captured by FAI.

As for the per-lesion level, in 2020, Lin et al[46] further explored the prognostic 
value of the radiomics features of PVAT around not only the standardized coronary 
segments but also lesions in a prospective case-control study. They found no 
significant difference between the PVAT radiomics features of culprit and non-culprit 
lesions in patients with AMI, lending further support to the pan-coronary inflam-
matory hypothesis. But on the other hand, as for the per-patient level, patients with 
AMI (n = 60) have a distinct PVAT radiomics phenotype surrounding the proximal 
RCA compared with patients with stable (matched, n = 60) or no CAD (matched, n = 
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60). Among the three models that they developed, the PVAT-based radiomics model 
(AUC: 0.87) outperforms the clinical model (AUC: 0.76) and the combined model 
incorporating clinical factors and PVAT attenuation (AUC: 0.77) in identifying AMI 
with stable CAD and controls. Additionally, after a 6-mo follow-up of patients with 
AMI, no significant change was observed in the radiomics features of PVAT 
surrounding the proximal RCA or non-culprit lesions.

QUANTITATIVE CT FEATURES-BASED ML FOR OUTCOME PREDICTION
Information extracted from CCTA images along with other clinical factors are 
associated with prognosis, and AI technology demonstrated great potential to enhance 
decision-making and improve patient outcomes. Currently, the prognostic value of 
ML algorithms using quantitative CCTA features together with clinical variables was 
investigated by researchers in several studies[47-53], in which promising results were 
obtained. The ML algorithms performed better than traditional predictors, not only for 
short-term treatment decisions but also for long-term risk predictions, as summarized 
in Table 2.

One of the first major studies using CCTA based ML approach for prognosis 
evaluation is a large prospective multi-center study conducted by Motwani et al[48] in 
2017. They developed an ML model in CCTA to predict 5-year all-cause mortality 
using a dataset of 10030 patients with suspected CAD from the CONFIRM registry 
(Coronary CT Angiography Evaluation for Clinical Outcomes: An International 
Multicenter). The ML model was established after an automated feature selection 
procedure based on 44 CCTA-derived parameters and 25 clinical parameters. One 
summary score for clinical parameters (Framingham risk score, FRS) and three 
composite CCTA-based scores [including the segment stenosis score (SSS), the 
segment involvement score (SIS), and the modified Duke prognostic CAD index (DI)] 
were derived. The ML model exhibited a significant higher AUC compared with the 
conventional scores alone for predicting 5-year all-cause mortality (ML: 0.79 vs FRS: 
0.61, SSS: 0.64, SIS: 0.64, and DI: 0.62; P < 0.001).

Two years later, in 2019, Johnson et al[49] developed another ML model using 64 
vessel features derived from CCTA images, to discriminate between patients with and 
without subsequent death or cardiovascular events in a retrospective single-center 
study with 6892 patients. The performance of the ML model was compared with that 
of Coronary Artery Disease Reporting and Data System (CAD-RADS) score. For 
prediction of all-cause mortality, the AUC of the ML model was significantly higher 
than that of CAD-RADS (0.77 vs 0.72, P < 0.001). For prediction of coronary artery 
deaths, the AUC was significantly higher for the ML model than for CAD-RADS (0.85 
vs 0.79, P < 0.001).

In 2020, Commandeur et al[52] developed an ML model integrating clinical 
parameters with quantitative imaging-based variables for predicting events of long-
term risk of MI and cardiac death in asymptomatic subjects using the dataset with 1912 
cases from the randomized EISNER trial. The ML model obtained a significantly 
higher AUC than atherosclerotic cardiovascular disease (ASCVD) risk and CAC score 
for predicting events (ML: 0.82; ASCVD: 0.77; CAC: 0.77; P < 0.05). Subjects with a 
higher ML score had a significant high hazard of suffering events (HR: 10.38, P < 
0.001).

As for the short-term decision-making, in 2020, Kwan et al[53] examined whether 
the ML-IRS, developed by Dey et al[37] in 2018, as described previously (Figures 1 and 
2), can predict revascularization in patients referred to ICA after CCTA in a 
prospective dual-center study of 352 patients with 1056 analyzable vessels. It would be 
beneficial to effectively identify the patients who were referred for standard clinical 
CCTA followed by ICA due to decision by a primary treating physician but did not 
receive revascularization, because those patients are a high-cost population with low 
yield from the invasive procedure. The results indicated that ML-IRS, when added to 
the traditional risk model, significantly improve the prediction of future revascular-
ization with an increased AUC from 0.69 (95%CI: 0.65-0.72) to 0.78 (95%CI: 0.75-0.81) (
P < 0.0001).

Overall, the application of AI in CCTA has a potential future for improving the 
short-term risk stratification and long-term prognostic evaluation. The ML algorithms 
that have been proposed should be validated and tested in real world with larger 
external cohorts including diversity of patients so as to make sure the models be 
optimized and generalized.
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Table 2 summary of the current literature on the prognostic value of machine learning algorithms in coronary computed tomography 
angiography

Ref. Journal Prospective Multi 
Center

No. of 
Patients

No. of 
Events Algorithm Endpoint Follow-up 

time Performance

Motwani et al
[48], 2017

European Heart 
Journal

Yes Yes 10030 745 died LogitBoost 5-yr all-cause 
mortality

5.4 ± 1.4 yr AUC = 0.79

van Rosendael 
et al[47], 2018

Journal of 
Cardiovascular 
Computed 
Tomograph

Yes Yes 8844 350 
death 
and 259 
non-fatal 
MI

XGBoost MI and death 4.6 ± 1.5 yr AUC = 0.77

Johnson et al
[49], 2019

Radiology No No 6892 380 died 
of all 
causes 
and 70 
died of 
CAD

Logistic 
regression, 
KNN, Bagged 
trees, and 
classification 
neural network

Death or 
cardiovascular 
events

9.0 yr 
(interquartile 
range, 8.2–9.8 
yr)

For all-cause 
mortality: AUC 
= 0.77; For CAD 
deaths: AUC = 
0.85

van Assen et al
[50], 2019

European 
Journal of 
Radiology

No No 45 16 
MACEs

Regression 
analysis

MACE 12 mo AUC = 0.94

von Knebel 
Doeberitz et al
[51], 2019

The American 
Journal of 
Cardiology

No No 82 18 
MACEs

Integration of 
CT-FFR, 
stenosis ≥ 50% 
and plaque 
markers 

MACE 18.5 mo 
(interquartile 
range 11.5 to 
26.6 mo)

AUC = 0.94

Commandeur 
et al[52], 2020

Cardiovascular 
Research

Yes 1912 76 MI 
and/or 
cardiac 
death

ML Long-term risk of 
MI and cardiac 
death

14.5 ± 2 yr AUC = 0.82

Kwan et al
[53], 2021

European 
Radiology

Yes Yes 352 ML Future 
revascularization

AUC = 0.78

XGBoost: Extreme gradient boosting; KNN: K-nearest neighbors; ML: Machine learning; AUC: Area under the curve; MACE: Major adverse cardiac events; 
CT-FFR: Computed tomography-fractional flow reserve; CAD: Coronary artery disease; MI: Myocardial infarction.

CONCLUSION
Current AI applications in CCTA images are mostly designed in two dimensions: (1) 
For the radiologists, AI is applied to improve efficiency and reduce workload via 
optimizing the clinical workflow, such as improvement of image reconstruction from 
lower quality to high quality (e.g., low-dose acquisition or motion artifacts) and 
structured reporting; and (2) For the patients, AI is utilized to increase benefit and 
improve prognostic evaluation via providing valuable diagnostic information more 
accurately, such as detection of anatomic and functional stenosis, quantification of 
plaques, and estimation of the vascular inflammation.

In this review, we mainly focused on the second dimension which is patient 
oriented. AI algorithms in CCTA images provide information in a more objective, 
reproducible, and rational manner compared to human perception, and exhibits its 
potential to outperform human in several cardiac fields. However, CCTA imaging 
lagged behind cancer imaging in the clinical translational of AI-based methods, 
especially the radiomics analysis. It has long been demonstrated in the field of cancer 
imaging that radiomics signatures are superior to traditional factors in predicting 
outcomes of patients. But only a few studies using radiomics analysis have been 
conducted in CCTA images. Considering that regions of interest (ROIs) segmented 
before the extraction of radiomics features, can be drawn along the edge of the tumor 
in cancer imaging generally, in CCTA images the selection of ROIs brings about 
challenges. Researchers hereby performed radiomics analysis around the PVAT or 
LVM or plaques. And recently, several groups succeeded in developing automated 
segmentation of PVAT and LVM, which provides probabilities to explore more novel 
non-invasive predictors for improvement of risk stratification and prognosis in 
patients with CAD.

Additionally, FFR-CT driven by AI is a hot topic in recent years. Various FFR-CT 
platforms are developed and adding into the clinical diagnostic workflow for not only 
research purpose but also commercial use. In the near future, the FFR-CT platforms 
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would bring major changes in the way to make decisions for patients with CAD before 
invasive coronary angiography.

However, before AI solutions can be truly widely implemented in daily clinical 
workflow or the reading room, several issues should be noted: (1) The algorithms need 
to be carefully validated in multi-center studies or large clinical trials to ensure the 
robustness and generalization; (2) The approval of clinical application is required to 
prove the accuracy and safety of the AI products; and (3) The legal and ethical issues 
should be taken into consideration.

In summary, AI offers the possibility to optimize clinical workflow and provide 
precise information for diagnostic and treatment, which will benefit both radiologists 
and patients. However, it is pertinent to note that AI will not simply substitute the 
cardiac radiologists, and human support or supervision is still needed. Rather, the 
cardiac radiologists need to be fully aware of the strengths and limitations of AI.
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