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Abstract
There is growing evidence that metabolic alterations 
play an important role in cancer development and 
progression. The metabolism of cancer cells is repro-
grammed in order to support their rapid proliferation. 
Elevated fatty acid synthesis is one of the most im-
portant aberrations of cancer cell metabolism. An en-
hancement of fatty acids synthesis is required both for 
carcinogenesis and cancer cell survival, as inhibition of 
key lipogenic enzymes slows down the growth of tumor 
cells and impairs their survival. Based on the data that 
serum fatty acid synthase (FASN), also known as on-
coantigen 519, is elevated in patients with certain types 
of cancer, its serum level was proposed as a marker of 
neoplasia. This review aims to demonstrate the chang-
es in lipid metabolism and other metabolic processes 
associated with lipid metabolism in pancreatic ductal 

adenocarcinoma (PDAC), the most common pancreatic 
neoplasm, characterized by high mortality. We also ad-
dressed the influence of some oncogenic factors and 
tumor suppressors on pancreatic cancer cell metabo-
lism. Additionally the review discusses the potential role 
of elevated lipid synthesis in diagnosis and treatment of 
pancreatic cancer. In particular, FASN is a viable can-
didate for indicator of pathologic state, marker of neo-
plasia, as well as, pharmacological treatment target in 
pancreatic cancer. Recent research showed that, in ad-
dition to lipogenesis, certain cancer cells can use fatty 
acids from circulation, derived from diet (chylomicrons), 
synthesized in liver, or released from adipose tissue for 
their growth. Thus, the interactions between de novo  
lipogenesis and uptake of fatty acids from circulation by 
PDAC cells require further investigation.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Metabolic alterations associated with muta-
tion in oncogenes and tumor suppressor genes play an 
important role in cancer development and progression. 
One of the most important aberrations of metabolism 
in cancer cells is an elevated synthesis of lipids, which 
are building blocks for cell membrane formation during 
cell proliferation and signalling molecules. This review 
aims to demonstrate the changes in lipid metabolism 
in pancreatic ductal adenocarcinoma, the most com-
mon pancreatic neoplasm, with very high mortality. 
The potential role of elevated lipid synthesis in diagno-
sis, prognosis and therapy of pancreatic cancer is also 
discussed.
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INTRODUCTION
Cancer development is generally attributed to the accu-
mulation of  genetic alterations, which leads to activation 
of  cellular oncogenes and inactivation of  tumor suppres-
sor genes. Apart from mutations, epigenetic modulation, 
numerical and structural abnormalities in chromosomes, 
and aneuploidy are commonly observed in cancer cells, 
and may play a critical role in tumorigenesis[1]. In addi-
tion, carcinogenesis involves significant changes in cel-
lular metabolism, especially in carbohydrate, lipid, nucleic 
acid, and amino acid metabolism (Figure 1).

The metabolism of  cancer cells is reprogrammed 
in order to support their rapid proliferation. Nowadays, 
metabolic alteration, also referred to as metabolic trans-
formation, should be added to six classic hallmarks of  
cancer cells proposed by Hanahan and Weinberg[2], Ten-
nant et al[3] and illustrated on Figure 2. Over eight decades 
ago, Warburg revealed that an elevated rate of  glycolysis 
under aerobic conditions, a phenomenon commonly 
known as the Warburg effect, is a distinctive feature of  
many human and animal tumors[4]. In the majority of  
cancers, glucose is converted mostly to lactate, and, there-
fore, only 2 moles of  ATP per 1 mole of  glucose are syn-
thesized. In contrast, most non-cancer cells containing 
mitochondria, produce CO2 and H2O from glucose, and 
38 moles of  ATP are synthesized per 1 mole of  glucose, 
under aerobic conditions.

Over the last two decades, several authors reported 
overexpression of  genes encoding lipogenic enzymes in 
many human cancers (Table 1)[5-12]. This phenomenon 
is usually associated with an increased glucose carbon 
incorporation into lipids[13-16]. The possible pathways 
for the conversion of  glucose into phospholipids and 
cholesterol, required for membrane formation in cancer 
cells, are illustrated on Figure 1. Pyruvate formed from 
glucose during active aerobic glycolysis, is either con-
verted to lactate by lactate dehydrogenase (LDH), or can 
enter into mitochondria, where it is decarboxylated to 
acetyl-CoA by pyruvate dehydrogenase (PDH). Then, 
by means of  reactions of  citrate synthase (CS), present 
in mitochondria, and ATP citrate lyase (ACLY), present 
in cytosol, cytosolic acetyl-CoA, a key substrate for lipid 
biosynthesis is formed (Figure 1). Elevated activities of  
both enzymes (CS and ACLY) are observed in some 
malignancies, and the inhibition of  ACLY is known to 
lead to cessation of  tumor growth[17-21]. Interestingly, 
some tumors display a diminished flux of  glucose car-
bon through PDH-catalyzed reaction, due to increased 
PDHK (pyruvate dehydrogenase kinase) activity, under 
the influence either hypoxia or oncogenic factors. This 

points to the possible use of  carbon source other than 
glucose, for lipid synthesis[22-25].

Through conversion to fructose 6-phosphate, glu-
cose also serves as a substrate for hexosamine phosphate 
synthesis (according to reaction: fructose 6-phosphate 
+ glutamine → glucosamine 6 phosphate + gluta-
mate), required for biosynthesis of  glycoproteins and 
glycosaminoglycans. Glucose may also be converted to 
pentose phosphate on pentose phosphate pathway (PPP), 
and then to phosphoribosyl pyrophosphate (PRPP), a 
precursor of  purine and pyrimidine nucleotides necessary 
for DNA synthesis (Figure 1). PPP generates NADPH, 
which is required for many processes, including lipid bio-
synthesis (Figure 1). The activity of  glucose 6-phosphate 
dehydrogenase (G6PDH), a rate limiting enzyme of  
PPP, is elevated in certain cancers, including human pan-
creatic cancer (PC)[19,26]. Glutamine for hexosamine and 
nucleotide synthesis may originate from citrate produced 
in mitochondria. Citrate is converted by Krebs cycle to 
2-oxoglutarate, a precursor of  glutamate (Figure 1), and 
later to glutamine. However, glutamine is not synthesized 
on that pathway in many cancer cells, but is rather taken 
up from the circulation, where it is one of  the most 
abundant amino acids[27].

Glucose and glutamine are two main sources of  en-
ergy and carbon for most cancer cells[28-30]. Some data 
suggest that glucose accounts mainly for lipid, purine, 
and pyrimidine nucleotide synthesis, whereas glutamine is 
contributing to: (1) anaplerotic re-feeding of  Krebs cycle; 
(2) amino acid synthesis; and (3) providing nitrogen nec-
essary for purine and pyrimidine nucleotide synthesis[14], 
however, there is also evidence of  glutamine participation 
(as carbon donor) in lipid biosynthesis[31]. High expres-
sion of  glutaminase-encoding gene was revealed during 
the S phase of  the cell cycle in some cancer cell lines 
(i.e. HeLa cells), along with the low expression in G2/M 
phase[32]. Upon cellular uptake, glutamine is transported 
to mitochondria, and then converted to ammonia and 
glutamate by mitochondrial glutaminase. Then glutamate 
is deaminated to 2-oxoglutarate by glutamate dehydro-
genase. In mitochondria, 2-oxoglutarate is further me-
tabolized by Krebs cycle to malate (Figure 3). Part of  the 
malate is released to cytosol, converted to pyruvate by 
NADP-linked malic enzyme (ME), and, finally, to lactate 
by LDH, similarly to pyruvate formed from glucose dur-
ing glycolysis (Figure 3). The conversion of  glutamine 
to lactate is called glutaminolysis analogically to glycoly-
sis (Figure 3). The increased synthesis of  lactic acid by 
cancer cells leads to the decrease in pH of  tumor micro-
environment, which promotes angiogenesis, invasion, 
and metastasis, and suppresses the anticancer immune 
response through diminished cytotoxic T-cell function[33] 
(Figure 3).

In a variety of  tumors, pyruvate formed during active 
glutaminolysis is converted into acetyl-CoA by PDH (in-
stead of  being converted to lactate by LDH), and later 
to citrate, supplying carbons for lipid synthesis (Figure 
3)[34,35]. Conversion of  glutamine to citrate may be also 
the result of  reductive carboxylation of  2-oxoglutarate 
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derived from glutamine, catalyzed by two isoforms of  
NADP+-dependent isocitrate dehydrogenase - mitochon-
drial (IDH2), and/or cytosolic (IDH1) (Figure 1)[36-40]. In 
some cancer cell lines 10%-25% of  fatty acids carbons 
are derived from glutamine under normoxia, and up 
to 80% under hypoxia[14,36,37]. Wise et al[38] suggest that 
IDH2 is mainly contributing to conversion of  glutamine 
to lipids. However, other data show that in A549 (adeno-
carcinoma of  human alveolar basal epithelial cells), and 
in renal carcinoma cells (RCC) cell lines IDH1 is more 
important[36]. In melanoma or osteosarcoma cell lines 
both IDH isoforms equally participate in 2-oxoglutarate 
reduction[37,40].

Continuous loss of  citrate from mitochondria to 
cytosol requires replenishment of  Krebs cycle intermedi-
ates. Glutamine serves as a key substrate for Krebs cycle 
intermediates in many cancer cells, and is critical for cell 

proliferation. A proliferating cell dies upon glutamine (but 
not glucose) withdrawal from the medium[41].

Fatty acid (FA) biosynthesis remains at a low level in 
most non-cancerogenic tissues, except liver and adipose 
tissue. The two latter lipogenic tissues convert the excess 
of  carbohydrates to triacylglycerols[42-49]. Conversely FAs 
synthesized in cancer cells are esterified mainly to phos-
pholipids required for membrane formation, which pro-
motes cellular replication (Figure 1). Overall, coordinated 
enhancement of  glucose, lipid, and amino acid metabo-
lism, leading to increased synthesis of  membrane lipids, 
nucleotides, and amino acids supports rapid proliferation 
of  cancer cells (Figure 1).

Proliferation and metabolism of  cancer cells share 
common regulatory pathways[50-53]. MYC, proto-onco-
gene and major regulator of  transcription in growing 
cells, controls several metabolic processes such as: (1) 
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hydrate, lipid, nucleotide and amino acid metabolism are 
presented in Table 2.

Also mutations of  some genes can contribute to 
abnormal cellular metabolism, which in turn can affect 
oncogenic signaling pathways. For example mutation in 
gene encoding IDH1/2 is associated with deregulation 
of  cellular metabolism, especially in glioma cells[62]. In 
glioma IDH1/2 mutations are responsible for conversion 
of  2-oxoglutarate to 2-hydroxyglutarate, which, by inhibi-
tion of  2-oxoglutarate-dependent dioxygenases, affects: 
(1) proto-oncogene expression; (2) DNA and histone 
modification; and (3) alteration of  extracellular matrix 
proteins (due to inhibition of  collagen hydroxylation)[62]. 
This paper reviews the possible role of  lipid metabolism 
in human cancers, particularly in PC biology, prognosis, 
and treatment.

glycolysis and glutaminolysis; (2) nucleotide biosynthesis; 
and (3) lipid biosynthesis, and mitochondrial biogen-
esis[53]. Furthermore, MYC stimulates glutamine uptake 
and metabolism[54,55]. Tumor suppressor protein, p53, is 
involved in regulation of  bioenergetic homeostasis and 
lipid metabolism in both normal and cancer cells[51,56-58]. 
p53 induces the expression mitochondrial glutaminase-
encoding gene, increasing energy production from 
glutaminolysis[59,60]. Mutant p53 increases lipid synthe-
sis, via sterol regulatory element-binding protein 1c 
(SREBP1c), and promotes ovarian cancer metastasis[52]. 
Certain oncoproteins such as: Akt, Ras, and Src, also 
stimulate glycolysis in transformed cells[50]. Regulation 
of  glutamine metabolism by Rho GTPases and Ras was 
also proposed[61]. The oncogenes and tumor suppressor 
genes whose products participate in regulation of  carbo-

Persistent growth signal

Abnormal metabolism Evasion of apoptosis

Metastasis
Hallmarks
of cancer

Insensitivity to
anti-growth signals

Angiogenesis and invasion Unlimited replicative potential

Figure 2  Hallmarks of cancer. 

Table 1  Overexpression of lipogenic enzymes in human tumors

Enzyme name Neoplasm type Experimental model Ref.

Fatty acid synthase 
(FASN)

Pancreatic cancer Human tumor tissue, cell line [96,104,105]
Breast carcinoma Human tumor tissue [5,9,166]
Prostate cancer Human tumor tissue [167]

Melanoma Human tumor tissue [168]
Nephroblastoma Human tumor tissue [169]

Renal cancer Cell line [170]
Endometrial carcinoma Human tumor tissue [12,171]

Colon cancer Human tumor tissue [11,172]
Ovarian neoplasms squamous cell Human tumor tissue [10,173]

Carcinoma of the lung head and neck squamous Human tumor tissue [174]
Cell carcinoma squamous cell Human tumor tissue [175]

Carcinoma of the tongue Human tumor tissue [176]
ATP citrate lyase 
(ACLY)

Small cell lung cancer Cell line [251]
Bladder cancer Human tumor tissue [7]
Breast cancer Cell line [252]
Gastric cancer Human tumor tissue, cell line [253]
Colon cancer Human tumor tissue [254]

Prostate cancer Human tumor tissue [254]
Hepatocellular carcinoma Human tumor tissue [255]

Acetyl-CoA carboxylase 
(ACCA)

Prostate cancer Human tumor tissue [6]
Hepatocellular carcinoma Human tumor tissue [255]

Breast carcinoma Human tumor tissue [256]
Stearoyl-CoA desaturase 
(SCD1)

Pancreatic cancer SCD1 indices in patients serum [128]
Clear cell renal cell carcinoma Human tumor tissue [200]

Acetyl-CoA synthetase 
(ACS)

Colon adenocarcinoma Human tumor tissue [257]
Malignant glioma Cell line [258]

Citrate synthase 
(CS)

Pancreatic cancer Human tumor tissue [19]
Renal cell carcinoma Human tumor tissue [20]

Swierczynski J et al . Lipid metabolism in pancreatic cancer



2283 March 7, 2014|Volume 20|Issue 9|WJG|www.wjgnet.com

ABNORMAL LIPID METABOLISM IN 
PANCREATIC CANCER
Pancreatic ductal adenocarcinoma (PDAC) is the most 
common pancreatic neoplasm, comprising approxi-
mately 90% of  all pancreatic malignancies, and the eight 
leading cause of  cancer-associated death in the world[63]. 
The 5-year survival rate of  PDAC patients is approxi-
mately about 5%[64]. Surgery is the primary treatment 
modality and the only available chance for recovery, 
however only approximately 10% of  patients are eligi-
ble for surgical treatment. Other therapies have proven 
ineffective thus far.

Similar to other cancers, both activation of  oncogenes 
and inactivation of  tumor suppressor genes play key role 
in PDAC pathogenesis. The most frequent genetic altera-
tions documented in PCs, including PDAC, are presented 
in Table 3. Other pancreatic tumors show different aber-
rations (Table 4).

In addition to genetic and epigenetic alterations, de-
velopment of  PC involves significant alterations of  cellu-
lar metabolism, supporting rapid proliferation of  cancer 
cells. Reduced vascularity, leading to poor perfusion is 
characteristic for PC. This results in low availability of  
oxygen and nutrients[65,66]. The presence of  hypoxia cor-
responds to highly aggressive character of  PCs[67].

Oxygen deprivation of  both non-cancer and cancer 
cells leads to the stabilization of  hypoxia inducible factor 
1α (HIF-1α), which dimerizes with HIF-1β, transfers 
into nucleus and binds with hypoxia-responsive elements 
present in DNA (Figure 4). This counteract the delete-
rious impact of  decreased oxygen availability[68]. High 
level of  HIF-1α is associated with increased glucose 
consumption due to activation of  glucose transporter 1 
(GLUT1), and glycolysis, especially hexokinase (1 and 2), 
and LDH[69-73] (Figure 4). Overexpression of  HIF-1α in 
human PC cells makes this malignancy similar to other 
cancers[74]. Interestingly, the expression of  HIF-1α in the 
hypoxic part of  pancreatic tumor is at the same level as 
in its well-oxygenated fragments[75]. Some data indicate 
that phosphorylation of  HIF-1α weakens the interaction 
of  this protein with von Hippel-Lindau tumor suppres-
sor (VHL) which normally stimulates degradation of  
HIF-1α during normoxia (Figure 4). The phosphoryla-
tion result from activation of  MAPK or other protein ki-
nase (putatively AKT) in cancer cells[76]. Both kinases are 
downstream effectors in various signaling pathways, in-
cluding KRAS pathway. Continuous KRAS signaling and 
downstream activation of  MAPK and AKT results from 
the mutation of  KRAS (observed in 90% of  PDACs), 
or can be stimulated by epidermal growth factor (EGF), 
prostaglandin E2 (PGE2), and some oxidants[73,77,78]. 
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PI3K/Akt signaling pathway leads to overexpression of  
HIF-1α, and directly participates in glucose transport 
and metabolism by regulating GLUT1 gene expression 
in PC cells, especially when the function of  PTEN, 
tumor suppressor inhibiting PI3K/AKT pathway, is 
lost[79-81]. Another oncogene, MYC, interacts with KRAS 
and HIF-1α in PDAC metabolic switch. MYC response 
elements are present in most glycolytic genes, thus, al-
lowing MYC protein to regulate glucose metabolism[73,82]. 
Some data suggest that activation of  HIF-1α, leading 
to metabolic reprogramming of  pancreatic cells during 
normoxia, is also controlled by β-adrenergic receptors 
through the transactivation of  epidermal growth factor 
receptor (EGFR, requiring PKA activity), and further 
activation of  AKT[83]. Also insulin, causing activation 
of  PI3K/AKT and MAPK pathways, can be potential 
stimulator of  HIF-1α activity acting independently of  
oxygen availability[84].

Mucin 1 (MUC1), a transmembrane protein involved 
in stabilization of  HIF-1α is one of  the newly discovered 
activators of  HIF-1α in PC. Directly interacting with 
HIF-1α and DNA, MUC1 induces expression of  glyco-
lytic genes[85]. High activity of  MUC1 is correlated with 

intensive growth and metastasis of  pancreatic tumors[86,87]. 
HIF-1α is coexpressed with Nupr1 (also known as p8 
or Com, i.e. candidate of  metastasis) in human PDAC[88]. 
Nupr 1 is a chromatin protein, structurally related to the 
high-mobility group (HMG) protein, it interacts with sev-
eral other proteins in the regulation of  cell cycle, apopto-
sis, autophagy, and gene transcription[89]. It is responsible 
for increased resistance of  stress-exposed PDAC cells[90] 
and supposedly interacts and amplify the KRAS signaling 
in cancer cells, in order to overcome the activity of  some 
tumor suppressors (such as p16) action[91].

The data presented above suggest that several pro-
teins (mainly products of  proto-oncogens or tumor 
suppressor genes) might affect conversion of  glucose to 
pyruvate in PDAC cells.

Most of  the pyruvate formed as a result of  increased 
glycolysis in PDAC cells, is metabolized to lactate, some 
pyruvate is used to citrate, and further to FAs biosynthe-
sis[92,93]. Accordingly, the activity of  CS, one of  the crucial 
enzymes involved in pyruvate to FA conversion (Figure 
1), is elevated in PC[19,20]. Thus, it is likely that citrate is 
synthesized from glucose in PC cells, although glutamine 
seems to play an important role as well.

Table 2  Oncogenes and tumor suppressor genes, whose products participate in regulation of cancer cells metabolism

Oncogene/tumor suppressor Metabolic pathway Enzyme Ref.

MYC Glucose transport GLUT1 [53-55]
Glycolysis Hexokinase 2

Phosphohexose isomerase
Phosphofructokinase 1

Aldolase A
3-phosphoglyceraldehyde dehydrogenase

Phosphoglycerate kinase
Phosphoglycerate mutase

Enolase 1
Pyruvate kinase 2

Lactate dehydrogenase A
Regulation of PDH Pyruvate dehydrogenase kinase 1

Glutamine transport Glutamine transporters ASCT2 and SN2
Glutaminolysis Glutaminase 1

Serine hydroxymethyltransferase
Pyrimidine synthesis

Aminoacids metabolism CAD
Ornithine decarboxylase

Lipogenesis Fatty acid synthase
p53 Glucose transport GLUT1 [51,56-60]

Glycolysis Hexokinase 2
Fructose-2,6-bisphosphatase

Phosphoglycerate mutase
Oxidative phosphorylation Cyrochrome c oxidase

Glutaminolysis Glutaminase 2
Pentose Phosphate Pathway Glucose-6-phosphate dehydrogenase

Regulation of PDH Pyruvate dehydrogenase kinase 1
Krebs cycle Aconitase

KRAS Glucose transport GLUT1 [61,73,94]
Glycolysis Hexokinase 2

Phosphofructokinase 1
Lactate dehydrogenase A

Pentose phosphate pathway Transketolase
Hexosamine synthesis Phosphohexose aminotransferase

Glutaminolysis Glutamate dehydrogenase
Aspartate transaminase

Akt/PTEN Glucose transport GLUT1 [50,113-115]
Lipogenesis FASN
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Son et al[94] suggested that KRAS directs glutamine 
carbons to Krebs cycle in PC cells, to export them to 
cytosol for cytosolic ME reaction. This results in the gen-
eration of  NADPH, which is used for lipid biosynthesis 
and for redox state control. Deprivation of  glutamine 
or inhibition of  glutaminase activity are reflected by de-
creased production of  ATP and higher levels of  reactive 
oxygen species (ROS). Glutamine may also supply OAA, 
condensed with acetyl-CoA, to citrate synthesis, or be in-
volved in citrate formation through reductive carboxyla-
tion of  2-oxoglutarate catalyzed by reverse IDH reaction. 
Although the involvement of  glutamine was documented 
in some malignancies, its role in PC cells is still not com-
pletely understood[14,36-40,95]. Nevertheless, de novo biosyn-
thesis of  lipids (possibly from glucose and/or glutamine) 
is elevated in PDAC cells[96-98].

Gemcitabine, herceptin or irinotecan treatment has 
minimal impact on survival rates in patients with ad-

vanced PC[99,100]. In contrast treating PC patient with gem-
citabine, α-lipoic acid, and hydroxycitrate yielded prom-
ising results[101]. Since hydroxycitrate is an inhibitor of  
ACLY, the activity of  the latter lipogenic enzyme (splitting 
citrate to acetyl-CoA and OAA in cytosol) is likely elevat-
ed in PC cells as well, and, similar to other cancers, plays 
an important role in the development of  this malignancy. 
The next stage of  lipogenesis, leading to biosynthesis of  
malonyl-CoA (fatty acid synthase substrate), is catalyzed 
by acetyl-CoA carboxylase (ACCA). Phosphorylation by 
AMPK, leading to ACCA activity cessation, is one of  
the crucial stages of  lipogenesis regulation in lipogenic 
tissues[102]. The activity of  AMPK in PDAC cells is lower 
than in normal cells, mostly due to LKB1 tumor sup-
pressor inhibition, leading to increased ACCA activity[103]. 
Fatty acid synthase (FASN) reaction constitutes the last 
step in palmitate synthesis. The significant role of  FASN 
in cancer development was established approximately two 

Table 3  Oncogenes and tumor suppressor genes whose products alter the metabolism of pancreatic cancer cells

Gene Protein Mechanism of alteration in PDAC Regulated processes in PDAC Alteration in PDAC Ref.

Oncogenes
   KRAS KRAS Point mutations Cell proliferation and survival, motility, glucose 

transport, glycolysis, hexosamine synthesis, 
nonoxidative pentose phosphate pathway arm, 

glutaminolysis

> 95% [73,94,259-261]

   AKT AKT Mutations, amplification Signal transduction, lipogenesis, glucose transport 10%-20% [73,79-81,262-264]
   c-erbB2 HER2 Overexpression amplification Proliferation, differentiation, survival 20%-80% [265-268]
   Myc MYC Amplification overexpression Glycolysis, glutaminolysis, PDH inhibition 70% [55,73,82,94,269]
Tumor suppressor genes
   TP53 p53 Mutation and second allele 

deletion
Cell cycle, apoptosis, DNA repair, glucose 

transport, glycolysis, lipogenesis, ppp oxidative 
arm, glutaminolysis

50%-80% [270-273] 

   Smad4/DPC4 SMAD4 Homozygous deletion, mutation 
and second allele deletion

Cell cycle, TGF-β signaling 55% [274-276]

   STK/LKB1 LKB1 Homozygous deletion, mutation 
and second allele deletion

Apoptosis, lipogenesis, energy production, protein 
synthesis

  5% [277-279]

   CDKN2A/p16 p16 Homozygous deletion, mutation, 
hypermethylation

Cell cycle 95% [280-282]

   PTEN PTEN Hypermethylation, inhibition by 
miRNA

PI3K/AKT signaling pathway 30%-70% [79,283,284]

PDAC: Pancreatic ductal adenocarcinoma.

Table 4  Most common genetic alterations observed in different types of human pancreatic cancers

Type of pancreatic cancer Gene affected Ref.

Pancreatic ductal adenocarcinoma (PDAC) KRAS, AKT, MYC, TP53, SMAD4, CDKN2A, PTEN [55,63,64,73,78,79,94,269,284-287]
(90% of all pancreatic cancers)
Acinar cell carcinoma (ACCA) APC/β-catenin (CTNNB1), BRCA2, BCL10 [288-290]
(< 1% of all pancreatic cancers)
Adenosquamous carcinoma (ASC) TP53, CDKN2A, KRAS, E-cadherin, [291,292]
(< 1% of all pancreatic cancers)
Intraductal papillary mucinous neoplasm (IPNM) GNAS, KRAS, RNF4, STK11/LKB1, MUC1, MUC2, 

hTERT, COX2, Shh
[278,293,294]

(1%-3% of all pancreatic cancers)
Mucinous cystic neoplasm (MCN) KRAS, RNF4, TP53, CDKN2A [295]
(< 1% of all pancreatic cancers)
Serous cystadenoma (SCN) VHL [296]
(< 1% of all pancreatic cancers)
Solid-pseudopapillary neoplasm (SPN) APC/β-catenin (CTNNB1), E-cadherin [297,298]
(1%-2% of all pancreatic cancers)
Pancreatic neuroendocrine tumors (PanNET) DAXX, ATRX, MEN1, TSC2, PTEN, PI3KCA, CHGA, 

CHGB, mTOR
[299-302]

(2%-5% of all pancreatic cancers)
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decades ago, when the oncogenic antigen-519 (OA-519), 
a molecular marker, was identified in breast cancer pa-
tients[9]. FASN utilizes acetyl-CoA (supplied by ACLY), 
malonyl-CoA (supplied by ACCA) and NADPH as a 
reducing equivalent. In the case of  PC cells, NADPH is a 
product of  PPP or reaction catalyzed by ME during oxi-
dative decarboxylation of  malate formed from glutamine 
(i.e. during glutaminolysis)[94]. FASN is the most exten-
sively studied lipogenic enzyme in PDAC cells. Elevated 
expression of  FASN-encoding gene was documented in 
human PC[96,104,105] and high level of  FASN protein, both 
in tumor cells and in serum is associated with poor prog-
nosis[96,98]. Furthermore inhibition of  FASN activity was 
revealed to induce apoptosis in several tumors[106-110]. In-
deed, FASN is an oncogenic protein and its overexpres-
sion in non-transformed human breast epithelial cells, 
can produce their cancer-like phenotype, in a HER1/2 
dependent process[111]. Similar phenomenon was reported 
in the case of  colorectal cancer cells[112]. The expression 
of FASN is strongly induced in hypoxia, by MAPK or 
PI3K/AKT signaling pathways. This results in activation 
of  SREBP1c transcription factor, which directly binds 
to FASN promoter (and promoters of  other lipogenic 
genes)[113,114]. Similar effect can be observed in the ab-
sence of  PTEN tumor suppressor, which normally in-
hibits PI3K/AKT signaling[114,115]. Moreover, SREBP1c-
independent regulation of  FASN, mediated by HER2 
with PI3K or mTOR involvement was observed in breast 
cancer cells[116]. Furthermore strong acidic environment 

of  breast cancer may promote epigenetic modification 
of  FASN promoter, leading to increased expression of  
this gene[117]. As all those events take place in PC cells, the 
mechanism of  FASN regulation in PDAC is probably 
similar as in the case of  other malignancies.

Inhibited activity of  FASN (or other lipogenic en-
zymes) is reflected by decreased tumor growth and may 
lead to apoptosis of  some cancer cells. The inhibition of  
FASN was revealed to diminish proliferation of  osteosa-
rcoma and colorectal cancer cells, through decrease of  
HER2 activity, leading to down-regulation of  PI3K/Akt 
signaling pathway[112,118]. Induction of  apoptosis is likely to 
result from elevated concentration of  malonyl-CoA, that 
is reflected by decreased oxidation of  FA and increased 
ceramide concentration. Ceramide is a well-known activa-
tor of  apoptosis, and its enhanced biosynthesis (along 
with inhibited ceramidase activity) leads to the death of  
PC cells[106,119]. Furthermore the altered composition of  
FAs in phospholipid structure (predominance of  polyun-
saturated acids over saturated and monounsaturated acids) 
increases the oxidative stress yielding the same result[120].

Glycolytic synthesis of  ATP seems the most im-
portant pathway in hypoxic cancer cells. In the cases of  
normoxia, glucose is rather directed to PPP for NADPH 
and pentose synthesis, and KRAS acts as the main con-
trolling factor supporting tumor cell proliferation[121,122]. 
Both oxidative and non-oxidative phases of  PPP are up-
regulated in PC cells. The non-oxidative phase is up-
regulated by KRAS[73,123], whereas G6PDH activity (main 
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enzyme of  oxidative phase, controlling NADPH produc-
tion) is increased putatively, due to p53 deficiency[19]. p53 
inhibits G6PDH through direct binding, and its loss leads 
to the up-regulation of  the oxidative PPP phase in cancer 
cells[73,124]. Taken together, these data suggest that similar 
to other malignancies, the increased glucose flux (both by 
glycolytic and pentose phosphate pathway) is integrated 
with the enhanced biosynthesis of  lipids in PC cells. 
Pathways involved in the conversion of  glucose to lipids 
in PC cells are presented in Figure 5.

The lipids formed in cancer cells play two important 
roles. Firstly, they are building blocks for cell membrane 
formation during cell proliferation (mainly cholesterol, 
phosphatidylcholine, phsphatidylserine, phosphatidyleth-
anolamine). Secondly, they play an important role as sign-
aling molecules (phosphatidylinositol, phosphatidic acid, 
diacylglycerol), or substrates for posttranslational protein 
modification, including palmitoylation and prenylation[125]. 
Mammalian cancer cells rely mostly on saturated (SFAs) 
or monounsaturated FAs (MUFAs). MUFAs are less sus-
ceptible to peroxidation, thus increasing the resistance 
of  cancer cells to oxidative stress[126]. Elevated level of  
MUFAs is maintained mostly by stearoyl-CoA desaturase 
1 (SCD1). Inhibition of  SCD1 activity in some tumors 

(e.g., in prostate cancer) leads to inhibition of  cancer cell 
growth. Diminished SCD1 activity is reflected by lower 
synthesis of  phosphatidylinositol, which participates 
in AKT activation, crucial for cancer development and 
growth. Additionally inhibition of  SCD1 blocks onco-
genic transformation of  KRAS necessary for activation 
of  this gene and further tumor growth[127]. As SCD1 
is very active in PDAC cells[128], and KRAS and AKT 
signaling pathway are important for their development 
and growth, SCD1 supposedly plays an essential role in 
pathogenesis of  that malignancy via the same mechanism 
as in case of  other tumors.

In the context of  lipid synthesis, especially FASN ac-
tivity, special attention should be paid to lipid rafts. Lipid 
rafts are cholesterol- and sphingolipid-rich membranous 
lipid domains, which contain several signaling and trans-
port proteins. According to some authors, lipid rafts play 
an important role in health and disease, including car-
cinogenesis[129]. Lipid rafts rich in proteins of  the caveolin 
family are referred to as caveolae. Caveolin-1 encoding 
gene expression is altered in some cancers including 
colon cancer[130,131], breast cancer[132], urothelial carci-
noma[133], esophageal squamous cell carcinoma[134], and 
prostate cancer[135]. The overexpression of  caveolin -1 in 
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colon cancer cells is associated with elevated saturated to 
unsaturated FA ratio in cellular membrane[136]. Deregula-
tion of  caveolin-1 is also observed in PC cells[137]. Moreo-
ver, caveolin-1 and FASN are co-expressed in the cells of  
this malignancy. This phenomenon is consistent with his-
tological grade and stage of  the tumor (high expression 
of  ceveolin-1 and FASN genes correspond with poor 
differentiation status)[104]. Thus, FASN and caveolin-1 
were suggested as potential diagnostic and prognostic 
markers of  PC and possible therapeutic targets[104].

Recently published data suggest that cancer cells do 
not rely solely on the de novo lipogenesis, but also utilize 
food-derived FAs for synthesis of  phospholipids required 
for cell proliferation and lipid signaling[138,139]. This cor-
roborates well with the evidence that a high dietary intake 
of  fat constitutes potential risk factor of  some malignan-
cies[140]. Moreover, there is growing evidence that obesity, 
associated with elevated blood concentrations of  FAs, 
modulates the risk and prognosis of  certain cancers[141]. 
These findings suggest that, apart from lipogenesis, can-
cer cells can utilize FAs present in blood (derived from 
VLDL and chylomicrons or from adipose tissue) for their 
growth. This fact may partly explain why many promising 
lipogenic enzymes inhibitors tested succesfully in pre-
clinical studies did not confirm their efficacy in further 
clinical trials. Furthermore, apart from inhibition of  lipo-
genesis, also reduced dietary lipid digestion and absorp-
tion, and decreased lipoprotein lipase and FAs uptake 

seem necessary for the control of  cancer growth[139].
Recently, overexpression and oncogenic function of  

aldo-keto reductase family 1B10 (AKR1B10; A-aldo, 
K-keto, R-reductase), tightly associated with lipid me-
tabolism in human PC cell lines, has been reported[142]. 
AKR protein family consists of  enzymes which catalyze 
the reaction: alcohol + NADP+ → aldehyde (or ketone) 
+ NADPH + H+. These enzymes are expressed in nu-
merous human organs/tissues. AKR1B10, the enzyme 
specific to such substrates as farnesal, geranylgeranial, 
retinal, and carbonyls[143-146], is overexpressed in certain 
malignancies, especially in tobacco-related cancers, in-
cluding non-small cell lung carcinoma[147] and PC[142]. On-
cogenic function of  AKR1B10 is associated with protein 
farnesylation and up-regulation of  FA synthesis by stabi-
lization of  ACCA[142,148]. Farnesyl diphosphate is a precur-
sor of  cholesterol biosynthesis and a substrate for protein 
farnesylation, which plays an important role in carcino-
genesis[149]. Conversion of  farnesyl diphosphate to far-
nesol diminishes its intracellular level, and, consequently, 
protein farnesylation. Farnesol can be further converted 
to farnesal, then oxidized to farnesoic acid. If  the activity 
of  AKR1B10 is high (as in the case of  PC cells), farnesal 
is reduced to farnesol, following the reaction pattern: 
farnesal + NADPH + H+ → farnesol + NADP+. Far-
nesol can be re-phosphorylated to farnesyl diphosphate, 
increasing the ability for protein farnesylation (Figure 
6). Farnesyl diphosphate, together with isopentenyl di-
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phosphate, is converted to geranylgeranyl diphosphate, 
a substrate for protein geranylation. A geranylgeranyl di-
phosphate, e.g., farnesyl diphosphate, can be converted to 
geranylgeranoic acid (via geranylgeraniol and geranylgera-
nial) (Figure 6). Similarly, high activity of  AKR1B10 may 
cause the reversed conversion of  geranylgeranial to gera-
nylgeranyl diphospate, a substrate for protein geranyla-
tion (Figure 6). siRNA-mediated silencing of  AKR1B10, 
knockdown of  AKR1B10, or inhibition of  the enzyme 
activity lead to decrease in protein prenylation[142]. Mem-
brane-bound KRAS protein of  PC cells, a product of  
point mutation in KRAS is activated by prenylation. If  
the expression of  AKR1B10 is diminished, the activity 
of  membrane-bound KRAS protein decreases in pancre-
atic cell lines[142]. Thus, the deactivation of  AKR1B10 and 
resultant inhibition of  the prenylation (fanezylation, gera-
nylgeranylation) of  protein (e.g., KRAS), may constitute a 
promising target for PC treatment.

3-hydroxy-methylglutaryl-CoA reductase (HMG-CoA 
reductase) is a key enzyme of  cholesterol synthesis path-
way (Figure 6), which is inhibited by statins, prescribed to 
treat hypercholesterolemia. Since the reaction catalysed 
by HMG-CoA reductase provides substrate for choles-
terol synthesis (that is of  great importance in rapidly pro-
liferating cancer cells), and also for isoprenoids necessary 
for prenylation of  proteins, the application of  statins as 
an antiproliferative drugs have been studied. Numerous 
in vitro studies, also with the use of  PC cancer cells, pro-
vided promising results[150].

Cyclooxygenase-2 (COX-2) is another enzyme which 
plays an important role in lipid metabolism, namely in the 
conversion of  arachidonic acid (released from membrane 
phospholipids by phospholipase A2) to prostaglandins. 
COX-2 is overexpressed in many malignancies, including 
45%-75% PCs[151-155]. This suggests, that this enzyme plays 
an important role in pancreatic carcinogenesis and chem-
oresistance of  PC cells. Moreover, the overexpression of  
COX-2 in PC cells was postulated to be associated with 
greater invasiveness of  this malignancy and promotion 
of  angiogenesis. Recent data suggest that combination 
of  COX-2 inhibitor (Celecoxib) with gemcitabine and 
irinotecan could be an active treatment for non-operable 
PC[152]. These clinical observations have been supported 
by the results of  in vitro studies. Inhibition of  COX-2 
by non-steroidal anti-inflammatory drugs causes a dose-
dependent block of  pancreatic cell line proliferation[156]. 
According to recent reports, the anti-tumor activity of  
class Ⅰ histone deacetylase (HDAC) inhibitors in human 
PC model is significantly improved by the simultaneous 
inhibition of  COX-2[157]. Taken together, the results of  
clinical and in vitro observations suggest that COX-2 plays 
an important role in PC development. The up-regulation 
of  COX-2 in PC cells and its role in carcinogenesis are 
probably related to inflammation. The anti-cancer ac-
tion of  COX-2 inhibitors is most likely associated with 
the reduction of  inflammation that can contribute to 
cell proliferation. Several authors revealed that many 
malignancies, including PC, result from a chronic inflam-
matory process[158]. According to Jackson and Evers[151], 

several signaling pathways involving COX-2, NF-kappa B 
and phosphatidyl inositol 3-kinase may constitute a link 
between inflammation and carcinogenesis.

ABNORMAL LIPID METABOLISM 
AND CANCER PROGRESSION AND 
PROGNOSIS
Overexpression of  FASN is associated with significantly 
enhanced proliferation of  non-tumorigenic mammary[111] 
and prostate[159] epithelial cells. On the other hand, siR-
NA-mediated silencing of  FASN gene expression or in-
hibition of  FASN activity by pharmacological (synthetic 
or natural) agents leads to growth arrest of  some cancer 
and normal cells[160-162]. Moreover, FASN inhibitors sup-
press the synthesis of  DNA and induce apoptosis in 
cancer cell lines[163]. Previous studies confirmed the as-
sociation between FASN activity and cell cycle progres-
sion[161,164]. However, activity of  FASN was not reflected 
by cell cycle progression in some experimental models, 
e.g. MCF7 cell line[165]. Also siRNA-mediated knockdown 
of  FASN gene expression did not cause a significant 
growth arrest in PC cell line (Panc-1)[105]. Therefore, the 
results published thus far do not present sufficient evi-
dence for the role of  FASN in cell cycle regulation, es-
pecially in PC cells. Nevertheless, the FASN knockdown 
in Panc-1 cells were revealed to show reduced resistance 
to gemcitabine[105].

The results of  in vitro studies and clinical observations 
suggest that elevated expression of  FASN gene in cancer 
cells is related to markedly worse prognosis. Overexpres-
sion of  FASN gene was proved to be associated with 
cancer progression, higher risk of  recurrence and shorter 
survival of  patients with breast cancer[5,166], prostate 
cancer[167], melanoma[168], nephroblastoma[169], renal cell 
carcinoma[170], endometrial carcinoma[171], colorectal carci-
noma[172], ovarian cancer[173], squamous cell carcinoma of  
the lung[174], head and neck squamous cell carcinoma[175], 
and squamous cell carcinoma of  the tongue[176]. CD44 is 
a transmembrane glycoprotein which is involved in tumor 
progression and metastasis[177]. Interaction between CD44 
and c-MET (tyrosine kinase), a proto-oncogene involved 
in several processes (including tumor growth, invasion, 
and metastasis)[178], is essential for activation of  the lat-
ter and down-stream signaling in some malignancies[179]. 
Interestingly, inhibition of  FASN and ACLY in human 
colorectal cancer cell lines (KM20, HCT116) is associated 
with reduced expression of  CD44. This is attributed to 
attenuated activation of  c-MET, AKT, FAK, and paxil-
lin, factors affecting adhesion, migration and invasion 
of  cancer cells[180]. The abovementioned phenomenon 
was reflected by lower metastatic potential of  colorec-
tal cancer cells. The data suggest a direct link between 
lipogenic enzyme activity (FASN and ACLY) and tumor 
progression to a metastatic phenotype. As the inhibition 
of  FASN is related to decreased phosphorylation of  
c-Met in diffuse large B-cell lymphoma[181] and prostate 
cancer[182], one can surmise that lipogenesis is feature of  
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metastatic cancers, including PC. However, to date there 
are no evidence confirming this hypothesis.

Overexpression of  FASN gene is associated with 
poor prognosis in PC patients[96,104,105]. As previously 
mentioned, the overexpression of  FASN gene may be as-
sociated with gemcitabine resistance of  PC cells[105], and 
the inhibition of  FASN enhances the cytotoxicity of  this 
agent[105]. Similar phenomenon was observed in the case 
of  human breast cancer cells and ovarian cancer cells. 
According to Menendez group, the inhibition of  FASN 
is associated with enhanced cytotoxicity of  docetaxel, 
vinorelbine, paclitaxel, 5-fluorouracil, and herceptin in the 
Her-2 positive breast cancer cell lines and ovarian cancer 
cells[183-187].

SERUM FATTY ACID SYNTHASE 
LEVEL AND SERUM FATTY ACID 
PROFILE-POTENTIAL BIOMARKERS FOR 
PANCREATIC CANCER
At present there is no sufficiently specific and sensitive 
serum (plasma) marker of  PC. Ca19-9, the most widely 
used marker of  this malignancy (the sensitivity up to 
80%), is also elevated in other conditions, including 
chronic pancreatitis and cholangitis, as well as in other 
tumors[188,189]. Moreover, Ca19-9 is not useful in detecting 
early stages of  PC[190]. According to some authors, circu-
lating micro-RNA (miR-21, mir-210, mir155, mir196a) 
could constitute novel diagnostic biomarkers of  PC[191,192]. 
Proteomic analyses of  human PCs revealed numerous 
differentially regulated proteins, which could be involved 
in the progression of  this malignancy, and, consequently, 
could act as its biomarkers, determined in pancreatic juice 
and in serum[193]. Also up-regulation of  numerous pro-
teins, which can be used as biomarkers of  PC, has been 
reported recently[194]. However, despite extensive studies, 
we still lack a valid approach for detection of  PC, espe-
cially its early stages, and sufficiently specific and sensitive 
biomarkers of  this malignancy.

The fact that cancer cells and the normal cells of  
surrounding tissues are characterized by differential ex-
pression patterns of  FASN suggests that serum levels of  
FASN may constitute a good biomarker of  malignancy. 
Indeed, up-regulation of  FASN in cancer cells was 
proved to be associated with increased serum levels of  
this enzyme in patients with some malignancies. The se-
rum FASN level measured by ELISA in breast, prostate, 
colon, and ovarian cancer patients was significantly high-
er than in healthy controls[195-197]. Moreover, an increase 
in the serum levels of  FASN proved to be proportional 
to the clinical stage of  colorectal cancer and breast can-
cer[196,198]. The ELISA-determined serum levels of  FASN 
were also elevated in patients with PC and intraductal 
papillary mucinous neoplasm[98]. Interestingly, the serum 
FASN levels of  most PC patients decreased after resec-
tion of  this malignancy[98]. This suggests that the elevated 
serum level of  FASN reflects its up-regulation in PC 

cells. However, increased levels of  FASN were also found 
in sera of  patients with chronic pancreatitis[98]. This sug-
gests that this parameter is not a PC-specific biomarker. 
Nevertheless, the serum levels of  FASN could potentially 
add to the panel of  markers used in the monitoring of  
individuals at high risk of  PC.

According to some authors, PC patients show in-
creased proportion of  total MUFA in all plasma lipid 
classes, a feature which is associated with increased delta 
9 desaturase (SCD1) and delta 5 desaturase indices[128]. 
Moreover, the association between longer survival of  
PC patients and higher level of  eicosapentaenoic acid 
(EPA), docosahexaenoic acid (DHA) and with lower 
SCD1 index was demonstrated[128]. Recently, Yabushita 
et al[199] documented a significant decrease in serum (and 
pancreatic) level of  palmitoleic acid in an experimen-
tal model of  PDAC, and suggested that this FA could 
serve as a biomarker of  human PC. Palmitoleic acid is 
a monounsaturated FA (16:1 n-9). It can be synthesized 
from palmitic acid, the main product of  FASN, or may 
originate from diet. Conversion of  palmitic acid to palmi-
toleic acid is catalyzed by SCD1, which is up-regulated 
in some malignancies including PC[128,200]. The reason for 
decrease in palmitoleic acid in patients with PC is not 
clear, as due to higher activity of  SCD1, elevated level of  
this FA should be rather anticipated. Despite unknown 
molecular basis for the decreased serum and tissue con-
centration of  palmitoleic acid the diagnostic value of  this 
finding should be verified in patients with PC. Chavarro 
et al[201] showed that blood levels of  some MUFAs includ-
ing myristoleic acid (14:1 n-5), palmitoleic acid, and oleic 
acid (18:1 n-9), were associated with higher incidence of  
prostate cancer. This relationship was the strongest in the 
case of  palmitoleic acid.

Recently Zhang et al[202] reported that PC can be di-
agnosed by means of  1H nuclear magnetic resonance 
(NMR)-based metabonomic profiles. These authors 
showed that numerous plasma metabolites, including 
lipids, are either elevated (e.g., VLDL) or decreased (e.g., 
HDL, LDL and 3-hydroxybutyrate) in patients with this 
malignancy.

Yabushita et al[199] revealed that serum chenodeoxy-
cholic acid, a major constituent of  bile acids (which play 
a key role in lipid digestion in the alimentary tract), is el-
evated in the experimental model of  PDAC. Also Uraya-
ma et al[203] claimed on elevated serum levels of  some bile 
acids (taurocholic acid and tauroursodeoxycholic acid) in 
PC patients.

Overall, several PC-characteristic features of  lipids 
metabolism have been found: (1) elevated serum level 
of  FASN; (2) elevated serum levels of  EPA, DHA and 
VLDL; (3) decreased serum levels of  palmitoleic acid, 
HDL, LDL and 3-hydroxybutyrate, and (4) elevated se-
rum levels of  bile acids. All these parameters could serve 
as additional markers of  PC.

Up-regulation of  lipogenic enzymes in PC cells and 
resultant enhanced synthesis of  lipids[19,96,104,105] seem to 
occur early in tumorigenesis and can be associated with 
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the progression of  the disease. Therefore, metabolic im-
aging with lipid precursor tracers: 11C-acetate, 18F-fluoro-
acetate (as a substrates for FA synthesis), and 11C-choline, 
18F-fluorocholine (as a substrate for phosphatidylcholine 
synthesis), may constitute a novel imaging technique 
for diagnosis of  PC, even at the very early stages of  
this malignancy. It is of  note that 11C-acetate and 11C-
choline have been successfully used for detecting primary 
prostate cancer, as well as metastases and recurrence 
of  this malignancy[204]. However, both 11C-acetate and 
11C-choline cannot be used in case of  small metastatic 
foci[205]. Moreover, the sensitivity of  11C-acetate in the de-
tection of  prostate cancer is decreased in patients whose 
PSA level is lower than 3 ng/mL[204]. Finally it should be 
remembered that the incorporation of  11C-acetate (or its 
analogue 18F-fluoroacetate) to lipids is determined not 
only by FASN activity, but also by the activity of  acetyl-
CoA synthetase[206].

ABNORMAL LIPID METABOLISM AS A 
PROMISING TARGET OF PANCREATIC 
CANCER TREATMENT
Chemotherapy provides only modest improvement in 
pancreatic cancer patients. Effective molecular therapeu-
tic strategy requires characteristic features of  the disease 
to be identified. As previously mentioned the values of  
some parameters of  lipids synthesis, namely the expres-
sion of  FASN gene and resultant activity of  FASN, are 
significantly higher in cancer cells than in adjacent nor-
mal cells. This suggests that inhibition of  FASN could 
constitute a selective therapeutic approach in cancer 
patients. Possible application of  FASN as a therapeutic 
target is sustained by the results of  many studies which 
showed that pharmacological blockade of  this enzyme 
exerted cytostatic and cytotoxic effects to several tu-
mor cells[97,109,125,207-216]. Pharmacological blockade of  

other enzymes involved in lipogenic pathway such as 
ACLY[18,209,217,218], ACCA[219-221], SCD1[222-225], and acyl-CoA 
synthetase[209], could also be an effective strategy for can-
cer treatment. Table 5 lists lipogenic enzymes inhibitor 
which can be potential antitumor drugs.

Similar to other malignancies, the overexpression 
of FASN observed in PC cells is associated with poor 
prognosis[96,104]. This suggest that FASN is involved in 
PC cell survival and its inhibition could constitute an ef-
fective strategy for PC treatment. Irresponsiveness to 
chemotherapy and radiotherapy is an important feature 
of  PC. According to Yang et al[105], overexpression of  
FASN can be associated with resistance to gemcitabine 
and radiotherapy in PC patients. The exact molecular 
mechanism by which FASN induce gemcitabine resist-
ance of  PC cells is unknown. As the elevated expression 
of  this molecule was proved to protect breast cancer 
cells from drug-induced apoptosis[165], also the FASN-
induced resistance of  PC cells to gemcitabine can result 
from similar mechanism. C75 (trans-4-carboxy-5-octyl-
3-methylenebutyrolactone), a synthetic analog of  natural 
cerulenin (isolated from Cephalosporum caerulens), is an 
inhibitor of  FASN most often used in experimental mod-
els. This antitumor activity of  this agent was documented 
in the case of  human breast cancer[109], prostate cancer[226], 
ovary cancer[227] and mesothelioma[215] cell lines. Also 
many green tea polyphenols (e.g., EGCG-epigallocatechin 
gallate or ECG-epicatechin gallate) and plant-derived 
flavonoids (such as luteoin) showed inhibitory effect to 
FASN[208]. Green tea polyphenols down-regulate FASN 
gene expression and induce apoptosis in human prostate 
cancer[228-230]. Luteolin (natural flavonoid) inhibits FASN 
in vitro and induces cytotoxic effects in breast, prostate 
cancer and hepatocellular carcinoma cells[231]. Moreover, 
the consumption of  flavonoid rich foods was revealed to 
decrease the incidence of  some malignancies[105]. Harris 
et al[232] studied the effect of  FASN inhibitors (C75 and 
some phytochemicals) on the in vitro proliferation of  PC 

Table 5  Lipogenic enzyme inhibitors that can be used as potential antitumor drugs

Enzyme name Inhibitor Type of neoplasm Ref.

Fatty acid synthase 
(FASN)

Cerulenin Breast cancer, [303]
ovarian cancer [304]

C75 Breast cancer [216]
Pancreatic cancer [232]

Epigallocatechin-3-gallate (EGG) Prostate cancer [228]
C93 Lung cancer [305]

Ovarian cancer [306]
Luteolin Breast cancer, ovarian cancer [228]

Pancreatic cancer [232]
Orlistat Prostate cancer [307]

ATP citrate lyase 
(ACLY)

SB-204990 
hydroxycitrate

Lung cancer [308]
Brest cancer [18]

Pancreatic cancer [101]
Acetyl-CoA carboxylase 
(ACCA)

Soraphen A 
TOFA 

Prostate cancer [309]
Lung cancer, colon cancer [310]

Stearoyl-CoA desaturase 
(SCD1)

CVT-11127 
TOFA

Lung cancer [222]
Colon cancer [225] 

Acetyl-CoA synthetase (ACS) Triacsin c Various cancers cell lines [311]
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cells (MIA PaCa-2). They found that C75 and luteolin de-
creased proliferation of  these cells at a similar dose. Also 
other tested phytochemicals, quercetin (flavonoid) and 
resveratrol (stilbenoid), inhibited the proliferation albeit, 
at significantly higher concentrations. The same authors 
revealed that the inhibitory effect of  luteolin against PC 
cells results from three mechanisms: decreased synthesis 
of  FA, and nucleic acids and decreased energy produc-
tion. In contrast quercetin and resveratrol (natural inhibi-
tors of  FASN), which showed weaker inhibitory potential 
affect mainly glycogen metabolism. Collectively, the 
results published by Harris et al[232] suggest that the block-
ade of  FASN by some flavonoids could lead to inhibition 
of  pancreatic cells proliferation, similarly as in other can-
cer cells.

The results of  clinical observations suggests that the 
incidence of  cancer in diabetic patients, treated with met-
formin (an oral hypoglycemic drug, N,N’-dimethyl bigua-
nide) is lower than in individuals with diabetes who do 
not receive this drug[233-236]. The anticancer properties of  
metformin were also confirmed by in vitro studies[237,238]. 
Recently, Nair et al[239] reported that metformin inhibits 
PC cell proliferation and tumor growth via down-regula-
tion of  Sp transcription factors and Sp regulated genes. 
Noticeably, FASN is one of  the Sp regulated genes[240]. 
Thus, one can assume that the metformin induced block-
ade of  PC cell proliferation and tumor growth is at least 
partially associated with indirect inhibition of  FASN ac-
tivity and lipid synthesis.

The anticancer potential of  statins, inhibitors of  
HMG-CoA reductase also have been studied in vitro 
with various cancers cells lines. The antitumor effects 
of  lipophilic statins (e.g., lovastatin, simvastatin) resulted 
mainly from suppression of  proliferation and promo-
tion of  apoptosis[150]. The chemopreventive effects of  
statins have been also reported in PC cell lines[241-243], 
and in mouse model of  PC[244]. Available data from anal-
yses on large human populations show, that daily intake 
of  statins, in doses for cardiovascular event prevention, 
is not associated with the risk of  PC[245-247]. However 
some recent data suggests that in subgroup of  male 
smokers statins use may reduce the odds of  PC[248], and 
is associated with better survival in diabetic patients[249]. 
The combination of  statins and a FASN inhibitors used 
in an anticancer therapy would be of  particular inter-
est, but until now there are no data published regarding 
such approach.

In summary, the results presented above suggest that 
inhibitors of  FASN (and inhibitors of  other lipogenic 
enzymes) constitute promising anticancer agents. How-
ever, most of  the known FASN inhibitors which can be 
potentially used as anticancer drugs displayed some side 
effects[250]. Nevertheless, the evidence of  PC cells prolif-
eration blockade resulting from direct or indirect inhibi-
tion of  FASN, and potential involvement of  FASN in 
gemcitabine (chemotherapeutic) resistance, substantiate 
further research on the role of  this molecule in the biol-
ogy and therapy of  pancreatic malignancies. Moreover, 
there is an urgent need for specific/selective, side effect 

free inhibitors of  FASN, which can be used in treatment 
of  PC.

CONCLUSION
Similar to other malignancies, the reprogramming of  lipid 
metabolism in PDAC, is closely connected with tumor 
development, growth, and progression. Hypoxia, activity 
of  oncogenic factors, or the loss of  tumor suppressors 
lead to significant changes in lipid biosynthesis and me-
tabolism. KRAS, together with MYC and HIF1α, either 
increase the use of  glucose and glutamine as substrates 
for FA synthesis, or regulate the lipogenesis directly. SFA 
and MUFA, (produced by FASN and SCD1 or taken up 
from blood), enhance the tumor growth by up-regulation 
of  some oncogenic factors. FA built into phospholipids 
(together with caveolin-1) participate in the remodeling 
of  cancer cell membrane structure. Other products of  
altered lipid metabolism, such as isoprene derivatives 
(farnesyl diphosphate or geranylgeranyl diphosphate), in-
fluence the activity of  some proteins involved in tumori-
genesis (enzymes and regulatory proteins) through their 
prenylation. Up-regulation of  prostaglandin biosynthesis 
(from arachidonic acids) by COX2 links inflammation to 
PC development.

FASN is the most extensively studied enzyme in-
volved in the lipid metabolism of  PDAC cells. Its high 
activity in PC cells is associated with poor prognosis and 
increased resistance to chemo- or radiotherapy. Elevated 
serum levels of  FASN, EPA, DHA or VLDL, and de-
creased serum levels of  palmitoleic acid, HDL, LDL, or 
3-hydroxybutyrate could serve as additional markers of  
PDAC. As the lipogenic activity of  PDAC cells is higher 
than in normal cells, pharmacological inhibition of  
FASN and other lipogenic enzymes seems a promising 
therapeutic target. C75, some flavonoids, and metformin 
are good candidates for anticancer agents, but further re-
search is required prior to their implementation to PDAC 
treatment.
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