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Abstract
Stem cell medicine is gaining momentum in the development of therapy for 
various end-stage diseases. The search for new seed cells and exploration of their 
application prospects are topics of interest in stem cell medicine. In recent years, 
vascular endothelial cells (VECs) have attracted wide attention from scholars. 
VECs, which form the inner lining of blood vessels, are critically involved in 
many physiological functions, including permeability, angiogenesis, blood 
pressure regulation, immunity, and pathological development, such as athero-
sclerosis and malignant tumors. VECs have significant therapeutic effects and 
broad application prospects in stem cell medicine for the treatment of various 
refractory diseases, including atherosclerosis, myocardial infarction, diabetic 
complications, hypertension, coronavirus disease 2019, and malignant tumors. On 
the one hand, VECs and their extracellular vesicles can be directly used for the 
treatment of these diseases. On the other hand, VECs can be used as therapeutic 
targets for some diseases. However, there are still some obstacles to the use of 
VECs in stem cell medicine. In this review, advances in the applications and 
challenges that come with the use of these cells are discussed.

Key Words: Vascular endothelial cells; Stem cell medicine; Angiogenesis; Atherosclerosis; 
Tissue defects; Refractory diseases
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Core Tip: Vascular endothelial cells (VECs) are involved in several physiological and 
pathological processes, including angiogenesis, control of blood pressure, and 
treatment-resistant diseases. Therefore, researchers have applied VECs in stem cell 
medicine and achieved beneficial results, demonstrating that these cells have a broad 
potential for application in many fields. This review discusses the functions, applic-
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INTRODUCTION
With the rapid development of medical science and technology[1,2], methods for the 
treatment of many diseases have been improved. However, there is still a lack of 
effective treatments for some refractory diseases, such as atherosclerosis[3], 
myocardial infarction (MI)[4], hypertension[5], malignant tumors[6], and diabetes[7]. 
Some of the current treatment methods are capable of exerting an effect, but most of 
them can only function to inhibit the disease without the ability to cure it. In recent 
years, with the understanding of stem cell biology deepening[8], researchers have 
found that stem cells, which are capable of self-renewal and differentiation, may 
provide new solutions for promoting recovery of body defects[9] and treating many 
intractable diseases[10,11]. The use of stem cells in the field of medicine has been an 
emerging topic in the past two decades. The main methods of stem cell medicine 
include using stem cells alone, coculturing stem cells with another type of cells, and 
the combination of stem cells with a variety of materials and cytokines. Therefore, the 
exploration of suitable seed cells attracts attention constantly in stem cell medicine. 
Vascular endothelial cells (VECs), a single layer of cells that lines the inner surface of 
blood vessels[12], have been widely studied in recent years. A large number of studies 
have shown the function of VECs in angiogenesis[13,14], the regulation of blood 
pressure, and the promotion of various pathological processes[15]. VECs have 
promising potential in stem cell medicine. VECs promote angiogenesis in tissue 
regeneration and transplantation, improve neural recovery, and act as therapeutic 
targets for a variety of diseases[16], including atherosclerosis, hypertension, diabetes, 
and malignant tumors. These recent studies have shown promise for the use of VECs 
in stem cell medicine. The research progress of VECs is remarkable and has attracted 
worldwide attention. Although there have been some reviews of VECs[15], the 
application of VECs in the field of stem cell medicine has been rarely reviewed. 
Therefore, a systematic description of the application scope and mode of VECs in stem 
cell medicine is urgently needed. This review aims to discuss the application of VECs 
in stem cell medicine and focuses on some existing problems, solutions, and aspects 
that need to be further studied.

SEPARATION, CULTURE AND IDENTIFICATION OF VECs
Sources of VECs
VECs come from a wide range of sources, including various organs from humans and 
animals. VECs derived from the human umbilical vein are most commonly used[17-
21], because human umbilical vein endothelial cells (HUVECs) offer the advantages of 
sufficient sources, favorable cell activity, ability to obtain a large number of cells at one 
time, and importantly, availability without any major ethical controversy. In addition, 
the coronary artery and omentum are also donors for VECs. Shishkova et al[22] 
cocultured primary human coronary artery and internal thoracic artery endothelial 
cells and identified their mutually beneficial paracrine interactions. Wang et al[23] 
extracted mouse aortic endothelial cells, while Schwartz[24] cultured bovine aortic 
endothelial cells and Reckless et al[25] cultured rabbit aortic endothelial cells. 
Winiarski et al[26] explored strategies to extract microvascular endothelial cells from 
the omentum. These studies enriched sources of VECs.

To expand the source of VECs, scholars induced human pluripotent stem cells, 
including human embryonic stem cells and induced pluripotent stem cells, to differ-
entiate into VECs[27]. Although it has been shown that VECs derived from pluripotent 
stem cells exhibit some characteristics of endothelial cells, the expression of some key 
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VEC genes is decreased in stem cell-derived VECs, and some epithelial genes are 
detected[28]. As a result, most researchers prefer tissue-derived VECs to pluripotent 
stem cell-derived VECs.

Separation of VECs
There are three classic methods for the isolation of VECs: (1) Mechanical scraping 
method[29]; (2) Tissue block adherent method[30]; and (3) Enzyme digestion method
[31]. Because of its high efficiency, enzyme digestion is the most commonly used 
method. However, the cells obtained by enzyme digestion are of low purity and often 
contaminated by other cells. Therefore, many researchers have pursued purification 
methods of VECs. Abbot et al[32] first purified human synovial microvascular 
endothelial cells by magnetic bead sorting, which is still frequently used in recent 
years for its high purity. However, magnetic bead sorting could affect the activity of 
the cells. Density gradient centrifugation is another purification method that is based 
on the physical properties of endothelial cells[33]. It is an effective method for cell 
purification, but if the cells are mixed with other components of similar densities in the 
tissue, it is difficult to separate them. In addition, repeated centrifugation may impact 
the state of cells and increase the risk of cell damage. Fluorescence-activated cell 
sorting is another commonly used method[34] that is equipped with good reprodu-
cibility, high efficiency, and no effect on cell activity.

Culture of VECs
VECs are cultured adherently in most cases. However, there are still major differences 
between adherent culture methods and the in vivo microenvironment, and there is the 
disadvantage of low culture efficiency. Scholars have explored various methods for the 
culture of VECs in the pursuit of better culture conditions. Locatelli et al[35] cultured 
the HUVECs in microgravity and observed that the HUVECs made a series of 
adaptive changes in order to achieve a new equilibrium in this environment. Wang et 
al[27] applied VECs to three-dimensional (3D) culture in alginate saline gel and found 
that this method could provide a better environment for cells compared with 2D 
culture in terms of cell quantity and quality. Bartaula-Brevik et al[36] cultured 
HUVECs in a bioreactor system and found HUVECs in the bioreactor performed good 
abilities in angiogenesis. These studies provided the potential for some new culture 
methods to be applied in VECs culture.

Identification of VECs
Identification of VECs is not difficult and microscopic observation is the most common 
method. Although VECs from different sources differ microscopically, they all show a 
paving stone-like morphology. Mitotic, dikaryotic, and polykaryotic nuclei can be 
observed in the process of cultivation over time. To further identify VECs, scholars 
focused on exploring their specificity, including the expression of specific surface 
markers and biological factors. Flow cytometry and immunofluorescence are universal 
methods for identification and CD31 is the most commonly detected surface marker 
for VECs. Evaluation of certain biological factors is also helpful for identification of 
VECs, including VIII factor and von Willebrand factor[37].

ROLE AND MECHANISM OF VECs IN PHYSIOLOGICAL AND PATHOLO-
GICAL PROCESSES
VECs function as a single layer of cells lining the inner surface of the cardiovascular 
system and play important roles in both physiological and pathological processes. 
First, VECs act as a barrier between blood and the surrounding tissues, which is 
especially important for penetration[38]. Second, VECs also serve as an endocrine 
organ in the body, capable of synthesizing and releasing various endothelial-derived 
vasoactive factors to regulate vascular tone and coagulation. Third, VECs have 
receptors that interact with various biological factors and are involved in the 
regulation of angiogenesis and immune responses[15]. Finally, VECs participate in 
some diseases[39], such as atherosclerosis and malignant tumors.

Barrier and regulation of permeability
VECs are closely arranged on the inner surface of blood vessels and not only provide a 
smooth surface for healthy blood circulation, but also serve as a selective barrier that is 
conducive to the exchange of nutrients, wastes, and various signaling molecules to 
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maintain the dynamic balance of tissues, organs, and the circulatory system 
throughout the body[40]. Therefore, VECs regulate the permeability of vessels. In 
different physiological and pathological states, a variety of factors interact with VECs 
and change the morphology of VECs and the intercellular spaces, leading to changes 
in the vascular endothelial permeability. In addition to inflammatory mediators such 
as histamine, bradykinin, thrombin, and platelet-activating factor, vascular endothelial 
growth factor (VEGF) is also involved in the regulation of endothelial permeability
[41]. VEGF is an important signaling molecule synthesized and secreted by VECs and 
other cells, including smooth muscle cells, fibroblasts, and immune cells. VEGF can 
interact with VECs to regulate vascular permeability. VEGF binds to VEGF receptor 2 
(VEGFR2), activates an intracellular tyrosine kinase activity, regulates downstream 
signals, and increases vascular penetration[40].

Blood pressure
The regulation of blood pressure is a complex process, and VECs function greatly in it. 
VECs regulate blood pressure via the synthesis and secretion of paracrine signaling 
molecules and act on smooth muscle cells, whose contraction and relaxation control 
vascular tension and thus regulate blood pressure[15]. Molecular regulatory networks 
are one of the research hotspots at home and abroad. Endothelin and NO have 
attracted wide attention due to their important roles in blood pressure regulation 
among various molecules.

Endothelin, which is produced by VECs, is an important factor for the promotion of 
vasoconstriction. Three isoforms of endothelin have been reported, among which, 
endothelin-1 is the most effective and long-lasting for vasoconstriction. When blood 
pressure needs to rise, VECs secrete endothelin for vasoconstriction. Endothelin 
couples with endothelin receptor A, which is located in vascular smooth muscle cells. 
Endothelin receptor A mainly induces smooth muscle contraction and constricts blood 
vessels, thus raising blood pressure[42].

Vasodilation is mainly regulated by NO that is synthesized by endothelial NO 
synthase in VECs. NO functions as a vasodilative factor partly in two ways. First, NO 
counteracts the contractile effect of acetylcholine on vascular smooth muscle[43]. 
Second, NO is able to stimulate increased concentration of cyclic guanosine 
monophosphate and relax vascular smooth muscle[44].

Together, all of these signaling molecules regulate the dynamic stability of blood 
pressure. They provide the possibility for VECs to be targeted in blood pressure re-
gulation.

Angiogenesis
VECs have significant influence on angiogenesis. New vessels stem from the es-
tablished vessels with VECs protruding into filopodia[13]. During new blood vessel 
formation, VECs differentiate into different phenotypes, including so-called tip cells 
and stalk cells. Tip cells explore signaling molecules and sense the environment, while 
stalk cells grow to ensure that new blood vessels continue to elongate. When new 
vessels meet, a vascular anastomosis occurs[45].

VECs have binding sites for a variety of cytokines and are regulated by these 
cytokines to promote angiogenesis. VEGF is a key proangiogenic factor. It binds to 
three receptors: VEGFR1, VEGFR2, and VEGFR3. The former two receptors have a 
great influence on angiogenesis, especially VEGFR2, which promotes the migration 
and proliferation of VECs by activating phospholipase C-α and phosphatidylinositol-3 
kinase and binding to TYR951[46]. In the angiogenic environment, the formation and 
secretion of the powerful proangiogenic molecule VEGF are increased. VEGF can 
regulate the proliferation and migration of VECs. Pulkkinen et al[47] found that as a 
specific endothelial target of VEGF, bone morphogenetic proteins (BMPs) 2/4/6 have 
a significant impact on the regulation of angiogenesis. The Hippo signaling effector 
TAZ is the key for BMPs to control VEGF signaling via the regulation of VEGFR2 
expression. In this way, TAZ can regulate VEC survival and proliferation. In addition, 
other signaling molecules such as heat shock protein A12b, store-operated calcium 
entry-associated regulatory factor, and orai1 have also been found to be involved in 
the regulation of VECs and contribute to the progression of angiogenesis.

Hypoxia is an important promoter of angiogenesis especially in a tumor microenvir-
onment. Hypoxia can upregulates hypoxia-inducible factor-1, a factor that activates 
the transcription of proangiogenic factors including VEGF[48], fibroblast growth 
factors (FGFs), and placental growth factor (PLGF). PLGF binds to the tyrosinase 
receptor of VECs to regulate VECs, and FGFs regulate the migration of VECs, both of 
which can promote the angiogenic process of VECs[13]. It is reported that hypoxia also 
activates hypoxia-inducible-factor-α-independent proangiogenic pathways including 
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the mechanistic target of rapamycin and unfolded protein response[49]. Tumoral 
angiogenesis induces an unharmonious angiogenic profile.

Endothelial-mesenchymal transition
Endothelial-mesenchymal transition (EMT) describes a state in which VECs have lost 
the characteristic phenotype and functions of endothelial cells and gained the morpho-
logical and functional characteristics of mesenchymal stem cells[50]. This transition is 
important for the maturation of blood vessels and heart valves[51], which may be 
considered a part of angiogenesis. Many factors, including oxidative stress, fatty acid 
oxidation, hyperglycemia, and shear stress forces, can be initiators for EMT. However, 
sometimes EMT might lead to pathological changes and the onset of many diseases, 
such as MI, atherosclerosis, and hypertension. Therefore, it is important to understand 
the change and regulation mechanism of EMT of VECs. In the past decade or so, 
scholars have pursued in-depth exploration of the EMT mechanism and its influence 
on the body’s condition. The transforming growth factor (TGF)-α signaling pathway 
has been generally regarded as the main regulatory factors for EMT[52]. The TGF-α 
signaling pathway promotes inhibition of the endothelial gene that encodes connectin 
and activation of Smad-independent pathways. Then cell adhesion is loosened and 
EMT occurs.

Activation of some other pathways such as the BMP signaling pathway, Notch 
signaling pathway, Wnt signaling pathway, and the inflammatory process can also 
regulate EMT[51].

Atherosclerosis development
As a chronic inflammatory vascular disease, atherosclerosis in the early stage is cha-
racterized by the deposition of lipids and complex polysaccharides in the vascular 
endothelium[46]. Dysfunction and inflammation of VECs have an impact on the early 
progression of atherosclerosis[53]. NO signaling and reactive oxygen species (ROS) 
signaling are responsible for regulating VEC activation. NO mainly inhibits the 
secretion of proinflammatory factors and the migration of immune cells to maintain 
VECs in a quiescent state. In contrast, ROS is critical to the regulation of inflammation, 
resulting in VEC activation. Under inflammatory conditions, the nuclear factor kappa-
light-chain enhancer of activated B cells signaling pathway (NF-κB) is induced by ROS. 
NF-κB acts as a promoter for monocyte recruitment and alteration of permeability[54]. 
This process contributes to atherosclerosis. VEC dysfunction promotes the occurrence 
of atherosclerosis by damaging the integrity of VECs, changing the role of VECs in the 
control of blood pressure, blood flow, and coagulation, and promoting the deposition 
of lipids and thrombi on the surface of VECs. The molecular mechanism of VECs in the 
mediation of atherosclerosis has been explored. Huang et al[55] found that the 
scavenger receptor B-1 in VECs serves as a mediator to promote atherosclerosis by 
mediating and accumulating low-density lipoprotein. This study demonstrates the 
mediating role of VECs in atherosclerosis.

Atherosclerotic plaques are a feature of atherosclerosis and contain many me-
senchymal cells. Some of these mesenchymal cells originate from EMT of VECs[56]. 
The accumulation of mesenchymal cells is crucial in atherosclerosis. Mesenchymal 
cells can secrete proinflammatory molecules and synthesize extracellular matrix 
proteins and metalloproteases to promote plaque formation. However, the specific role 
of VEC-derived mesenchymal cells in atherosclerotic plaques has not yet been 
elucidated.

Immunoregulation
VECs are not only an integral part of the cardiovascular system, but also act as an 
immune organ throughout the body that is involved in immunoregulation. VECs 
function in both innate and adaptive immune responses. When carrying out innate 
immune functions, VECs are involved in many immune functions that macrophages 
perform[57]. VECs possess danger-associated molecular patterns that recognize 
harmful endogenous and exogenous components. They are also equipped with some 
immune receptors, including Toll-like receptors, that induce a series of proinflam-
matory cellular responses. VECs exert their immune effects in several ways[58-62]. 
First, VECs act as a barrier against invasive damage and maintain a balance of 
hemostasis or coagulation. Second, VECs deliver and recruit migrated immune cells
[63]. Finally, equipped with the function of primary paracrine secretion, VECs can 
secrete chemokines, interleukins, interferons, and growth factors. Although VECs are 
not classical immune cells, they have an important effect on the immune process via 
the mechanisms described above[64,65].
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Endothelial glycocalyx is also of importance in the immunomodulatory function of 
VECs. The endothelial glycocalyx tends to be damaged by sepsis[66]. Endothelial 
permeability changes as the endothelial glycocalyx is destroyed. Without the 
protective layer, VECs are directly exposed to the blood and come into contact with 
various inflammatory cells and cytokines that promote VEC damage. Fluid 
extravasation and edema coincide with VEC dysfunction. Therefore, the integrity of 
endothelial glycocalyx is essential for the immune function and other physiological 
functions of VECs.

Tumor development
Angiogenesis is vital in tumor formation and development. Tumor blood vessels 
transport oxygen, nutrients, and signaling molecules, and assist in the removal of 
waste for tumor growth, invasion, and metastasis. The formation of tumor blood 
vessels mainly occurs through two methods: Sprouting angiogenesis and intussus-
ceptive angiogenesis[45]. Sprouting angiogenesis[13] is the synergism of tip cells and 
stalk cells regulated by VEGF and Notch signaling, which leads to the formation and 
continuous elongation of blood vessel buds and promotes the formation of blood 
vessels. This is a common form of tumor angiogenesis. In intussusceptive angioge-
nesis, VECs first form an endodermal tube[67]. Then, a base-degraded collagen bundle 
is attached to the lateral side of the VEC tube and surrounds the lumen. Finally, 
myofibroblasts promote the maturation of the connective tissue of the blood vessel. 
The newly formed blood vessel then gives off branches.

It has been reported that VEGF receptors modulate the formation of blood vessels in 
tumors and are involved in the progression of tumor development. Krebs et al[68] 
investigated the relationship between VEGFR2 and prostate cancer. VEGFR2, as one of 
the main therapeutic targets of tyrosine kinase inhibitors (TKIs), was upregulated in 
high-risk prostate cancer. Although TKI-based regimens do not achieve promising 
result for unselected prostate cancer patients at first sight, they can be beneficial for 
different patient subgroups. This study uncovered the roles of VEGF receptors in 
angiogenesis and indicated that VEGF receptors can be taken into consideration in 
tumor treatment.

CLINICAL PROSPECTS
The role of VECs in blood pressure regulation, angiogenesis, inflammatory processes, 
tumor development, and atherosclerosis has provided new insights into many medical 
issues, including tissue engineering and refractory diseases. The application of VECs 
in these contexts has been widely studied.

Tissue engineering
Tissue engineering has been a topic of interest in recent years. It aims to solve 
problems involving tissue repair and reconstruction. However, there are still many 
obstacles for vascularization in traditional stem cell medicine, especially in large 
tissues, which often die due to insufficient blood supply[69]. Because of their excellent 
angiogenic ability, VECs have attractive prospects in stem cell medicine. This research 
direction is mainly focused on coculture with other cells and endothelial-cell-derived 
extracellular vesicles.

Coculture with stem cells is the most commonly used method for VECs in tissue 
engineering and researchers have made lasting advances in this realm. Niemistö et al 
were the first to coculture VECs and fibroblasts to promote angiogenesis in vitro[70]. 
Recently, Piard et al[71] cocultured HUVECs and human mesenchymal stem cells to 
promote vascularization and bone regeneration. The level of angiogenesis positively 
correlated with the total number of HUVECs. These two studies highlight the potential 
of VECs in angiogenesis. Coculturing VECs with other cells not only promotes 
vascular regeneration, but also exerts an important effect on tissue regeneration 
through the interactions caused by contact with other cells. Mutschall et al[72] 
cocultured HUVECs and adipose-derived stem cells for bone regeneration. They found 
that mineralized substrates and alkaline phosphatase activity were increased, as was 
the expression of angiogenic marker genes. This study demonstrates that VECs not 
only promote angiogenesis through coculture but also promote tissue regeneration via 
cell contact. It provides a new direction that VECs can be cocultured with other cells to 
function via cell contact, and more should be explored about this contact.
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VECs have also been used to build disease models in vitro, which provide a found-
ation for the development of treatments for various diseases. Campisi et al[73] used 
human induced pluripotent stem cell-derived VECs, brain pericytes, and astrocytes to 
construct a microvascular network in vitro in order to simulate the complex microen-
vironment of the blood-brain barrier. The establishment of this model represents a 
new avenue for the study of complex physiological states, which is beneficial for the 
development of new drugs and therapeutic methods. More study can be conducted for 
distinct models.

Extensive study of extracellular vesicles has occurred in recent years, and VEC-
derived extracellular vesicles have been an area of particular interest. Venkat et al[74] 
found that the use of VEC-derived extracellular vesicles in mice with cerebral ischemia 
could promote angiogenesis in the brain and increase the density of axons and myelin 
sheath and polarization of M2 macrophages. The use of VEC-derived extracellular 
vesicles can effectively avoid many immune problems compared with using VECs 
directly. This research opens up a new door for the application of VECs.

Refractory diseases
Cardiovascular diseases: VECs are found on the inner surface of cardiovascular 
vessels, and affect both physiological functions and pathological processes of the 
cardiovascular system. Therefore, VECs have the potential to serve as seed cells or 
therapeutic targets. VEC-derived exosomes may have additional potential in the 
treatment of many cardiovascular diseases, including MI, atherosclerosis, and 
hypertension.

MI is a serious cardiovascular disease, which is caused by continuous ischemia and 
hypoxia of the coronary artery. In those experiencing MI, it is difficult to restore the 
blood supply to the pathological myocardium. After continuous exploration for MI 
treatments, researchers have focused on regeneration of the coronary vessels. Some 
have applied tissue engineering methods to implant cells and scaffolds into damaged 
areas. VECs are considered to be suitable as seed cells because of their critical role in 
angiogenesis. Ye et al[75] used VECs for the treatment of MI in pigs. Their results 
showed that this strategy could effectively control the development of the disease and 
improve myocardial function. Rabbani et al[76] extracted autogenous VECs from sheep 
saphenous veins and then injected the cells into the area of MI. They found that 
autogenous VECs promoted angiogenesis and functional recovery in MI areas. These 
studies demonstrate the potential of VEC transplantation in the reconstruction of 
blood supply and functional recovery in MI. However, the transplantation of VECs 
still coincides with issues such as potentially low cell survival rate and strong 
immunogenicity of allogeneic VECs. Therefore, some researchers have turned their 
attention to exosomes derived from VECs. Ong et al[77] used VEC-derived exosomes 
as a vehicle to deliver miRNA-210 and miRNA-126 to cardiac progenitor cells. The 
results showed that the treatment increased the ejection fraction and improved heart 
function. This study demonstrates that VEC-derived exosomes can act as a delivery 
agent in the treatment of MI. This suggests that VEC-derived exosomes can also play a 
role of transmission in other diseases, which has great clinical value and needs to be 
confirmed by more studies.

Aside from cell and exosome transplantation, VECs could also be a potential target 
for the treatment of MI. Myocardial fibrosis is a consequence of heart attack and 
eventually leads to heart failure. EMT is essential for myocardial fibrosis. Therefore, 
the process of myocardial fibrosis can be controlled by the regulation of EMT. Chen et 
al[78] found that NUR77, an orphan nuclear receptor, inhibits EMT and thus regulates 
myocardial fibrosis. Yin et al[79] found that Tongxinluo, a common drug used to treat 
cardiovascular disease, enhanced the expression of endothelial markers in VECs and 
inhibited EMT. As a result, it inhibits myocardial fibrosis and facilitates the recovery of 
the blood supply. These studies have demonstrated that the control of EMT can reduce 
the occurrence of myocardial fibrosis and thus improve recovery of the myocardial 
blood supply. Researchers have attempted to identify the target molecules of VECs. Li 
et al[16] observed the changes in VECs in mouse models of MI and studied the effect of 
plasmalemma vesicle-associated protein on the proliferation of VECs in vitro. They 
demonstrated that plasmalemma vesicle-associated protein, a VEC-specific marker, 
directly regulates the proliferation of VECs. This protein may be an emerging potential 
therapeutic target. Although it is believed that VECs can be used as a target in the 
treatment of MI, the precise mechanism and methods of treatment require further 
exploration, and more work should be done in different animal models.

Apoptosis, dysfunction, and coagulation of VECs are all triggers for atherosclerosis, 
and represent the early manifestations of the disease. VECs have potential to function 
in the treatment of atherosclerosis. Studies have also shown that exosomes derived 
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from VECs can be effective in the development of atherosclerosis. Inflammatory 
hyperplasia of the arterial wall is a hallmark of atherosclerosis. Control of arterial wall 
hyperplasia is a promising direction for the treatment of atherosclerosis. Li et al[80] 
modulated the molecular expression of VEC-derived exosomes and used these 
exosomes for in vivo studies. The results showed that the formation of new intima was 
reduced and the phenotype of vascular smooth muscle cells was altered when VEC-
derived exosomes mediated by CD137 signaling were injected. This study showed that 
VEC-derived exosomes are promising targets for the treatment of atherosclerosis.

Owing to the important role that VECs plays in the progression of atherosclerosis, 
the control of VECs via various mechanisms has been considered a promising direction 
for atherosclerosis treatment. Therefore, VECs can be used as a target for athero-
sclerosis therapy. It has been found that low shear stress can induce VEC apoptosis. 
Some researchers have developed enhanced external counterpulsation, which is a form 
of noninvasive treatment[81,82]. Enhanced external counterpulsation treats athero-
sclerosis by increasing the shear stress acting on VECs to inhibit VEC apoptosis. This 
method is able to reduce the causes of atherosclerosis and is effective for athero-
sclerosis control. This study demonstrated that enhanced external counterpulsation 
can be effective as a treatment for atherosclerosis. It also illustrates that more new 
methods for atherosclerosis treatment may be developed with VECs as the target.

Covered on the surface of VECs, extracellular glycocalyx lesions make contributions 
to VEC dysfunction and the early development of atherosclerosis. On the contrary, 
restoring the integrity of the extracellular glycocalyx is beneficial to reverse the 
dysfunction of VECs and facilitate early treatment of atherosclerosis. Mitra et al[83] 
published a detailed review on this possibility and the corresponding methods for 
targeting the extracellular glycocalyx in atherosclerosis treatment.

Hypertension is an important and harmful cardiovascular disease, and its de-
velopment leads to organic changes in blood vessels. VECs are important managers of 
vascular tension and the occurrence of hypertension is closely related to VEC 
dysfunction. Although there are currently some treatment methods for hypertension, 
they hardly address the recovery of dysfunctional VECs. Some researchers have 
explored VECs as a target for the treatment of hypertension and found that targeted 
regulation of VECs can be a potential approach. Guo et al[84] found that endothelial 
sirtuin 6 (SIRT6), a highly conserved nicotinamide adenine dinucleotide-dependent 
histone deacetylase[85], can enhance the function of VECs, inhibit their aging and 
apoptosis, and facilitate vasodilation of NO. As a result, VEC target regulation via 
modulating SIRT6 has potential in the treatment of hypertension. BMP receptor 
(BMPR)-2, which is specifically expressed in VECs, regulates angiogenesis by 
controlling the expression of VECs. It has been reported that the absence of BMPR-2 in 
VECs can lead to pulmonary hypertension[86]. Therefore, modulation of BMPR-2 has 
also been considered as a method to treat pulmonary hypertension. Spiekerkoetter et al
[87] treated pulmonary hypertension with FK506, a drug that alleviates pulmonary 
artery endothelial cells by inducing BMPR-2. They found that low-dose FK506 is 
capable of promoting recovery of dysfunctional VECs, which finally reverses 
pulmonary hypertension. These studies suggest that rescuing VEC dysfunction can be 
a potential therapeutic method for the treatment of pulmonary hypertension.

The EMT of VECs also contributes to the development of hypertension. Wang et al
[12] found that promotion of EMT facilitated the development of pulmonary hyper-
tension. Therefore, some researchers have considered treating hypertension by 
targeting EMT. Yu et al[88] downregulated EMT via application of paeoniflorin to 
alleviate pulmonary hypertension. Tsutsumi et al[89] also identified that pulmonary 
hypertension could be treated by inhibiting EMT with TKI nintedanib. Zhang et al[90] 
found that hydrogen solubility inhibited EMT in pulmonary artery hypertension. 
These studies all highlight the therapeutic potential of EMT in hypertension, although 
the specific drugs and the methods by which they are administered require further 
study.

Neurological diseases: In addition to their application in cardiovascular disease, VECs 
have also been used in the treatment of neurological disease. Zhou et al[91] discovered 
that in the process of nerve injury, brain microvessels function as phagocytes to engulf 
myelin debris. During this process, VECs are also involved in angiogenesis associated 
with demyelinating lesions. This study suggested that the role of VECs in demye-
linating lesions may lead to new therapeutic approaches for neurological diseases via 
control of the phagocytic process.

Extracellular vesicles from VECs are also helpful in nervous system impairment. 
Yue et al[92] cocultured HUVECs with neurons and found that HUVEC-derived 
exosomes prevented neuronal injury. Venkat et al[74] found that exosomes derived 
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from brain VECs can promote neurological recovery in diabetic stroke mice. These 
studies demonstrated that VEC-derived extracellular vesicles may be used as a drug 
directly or as a carrier of other drugs. However, the method and effectiveness of the 
treatment need to be further studied.

Diabetes: Diabetes mellitus is a chronic metabolic disease that is difficult to cure and is 
accompanied by a variety of complications. Beta cell dysfunction in the pancreas is the 
main cause of insulin-dependent diabetes mellitus, and the main approach for 
treatment involves increasing the source of insulin. Pancreatic transplantation may be 
a promising treatment for the promotion of insulin production. Yue et al cocultured 
HUVECs and beta cells and constructed a bioartificial pancreas encapsulation device
[92]. They found that coculture with HUVECs enhanced secretion of islet beta cells. 
Barba-Gutierrez et al[93] covered isolated islets with VECs and found that VECs could 
enhance the vascularization of pancreatic islets, promote insulin secretion, and 
improve the success rate of transplantation. Lazzari et al[20] cultured human skin 
fibroblasts and HUVECs in pancreatic acellular scaffolds and found that HUVECs 
significantly increased the vasculature of the scaffolds. These studies confirmed the 
role of VECs in promoting vascularization and enhancing islet function in pancreas 
and islet transplantation.

When exposed to high blood glucose concentration for an extended period of time, 
VECs may experience pathological changes, including the overexpression of ROS, 
which is an essential promoter of VEC dysfunction. VEC dysfunction further brings 
about vascular disease in multiple organs of the body and is the basis of various 
complications. Therefore, treatment of VEC dysfunction has become one of the 
methods to prevent and treat diabetic complications. Studies have found that 
metformin, the first-line antidiabetic agent, is a good regulator for the control of VEC 
dysfunction in diabetic patients, in addition to its main target for the control of blood 
glucose by respiratory chain complex 1. Ouslimani et al[94] found that metformin can 
reduce ROS and inhibit the occurrence of VEC dysfunction. Targosz-Korecka et al[95] 
found that metformin can promote recovery of endothelial glycocalyx dysfunction, 
which is conducive to the recovery of VEC dysfunction. In addition, other approaches 
to treat diabetic VEC dysfunction are being explored. Wang et al[96] found that 12(S)-
hydroxyeicosatetraenoic acid [12(S)-HETE], an arachidonic acid metabolite, is able to 
damage VECs and alter VEC permeability by changing the phosphorylation levels of 
adherens junctions. Otto et al[97] conducted a study in a mouse model of diabetes to 
identify the function of 12(S)-HETE. They found that 12(S)-HETE is capable of 
activating intracellular cation channel transient receptor potential vanilloid 1. VEC 
dysfunction is promoted through the process above. Conversely, inhibition of VEC 
dysfunction prevents the progression of diabetes. These findings suggest that the 
regulation of 12(S)-HETE to rescue VEC dysfunction could be a new therapeutic 
approach for diabetes. These studies validate the importance and mechanisms of VECs 
in the development of diabetes and, more importantly, shed new light on the potential 
of targeting VECs for the treatment of diabetes. The mechanism of treatment and 
additional drugs and treatment methods need to be further investigated.

Malignant tumors: Malignant tumors are life-threatening and remain difficult to cure. 
Excessive angiogenesis is a characteristic of many malignant tumors. Therefore, many 
researchers have begun to explore whether VECs can be used for malignant tumor 
therapy. The therapeutic application of VECs in malignant tumors mainly occurs in 
two ways: (1) Serving as a target for clinical treatment; and (2) Participating in the 
construction of in vitro malignant tumor models. Early antiangiogenic drugs failed to 
identify malignant tumor VECs from normal VECs, leading to damage of healthy 
VECs during treatment. Recently, it was found that under the influence of the tumor 
microenvironment, tumor VECs are heterogeneous and express different phenotypes 
from normal VECs[98,99], which provides opportunities for successful VEC-targeted 
treatment of malignant tumors. However, anticancer mechanisms and new drugs 
targeting VECs should be developed more widely.

To explore clinical treatment methods, malignant tumor models have been compre-
hensively studied. Lazzari et al[20] cocultured pancreatic malignant tumor cells, 
fibroblasts, and HUVECs to construct a pancreatic malignant tumor model in vitro and 
this model is helpful in advance of preclinical drug trials. Swaminathan et al[100] 
established a model of breast cancer in vitro by coculturing mammary epithelial cells 
and VECs on alginate scaffolds. Furlan et al[101] established several different coculture 
models of VECs and cancer cells to study the related mechanisms of angiogenesis in 
breast cancer. These models can be used for the development of new anticancer drugs 
and treatments.
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Inflammation: VECs also have potential in the treatment of inflammation, especially 
in coronavirus disease 2019 (COVID-19), which is caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2)[102], a virus that has had sig-
nificant impact on the world since 2019. Pathogenic mechanisms and treatment 
methods of COVID-19 have attracted worldwide attention and extensive research on 
SARS-CoV-2 has been carried out. It has been widely reported that SARS-CoV-2 binds 
to angiotensin-converting enzyme 2 in VECs[103], affecting the balance between 
angiotensin-converting enzyme 2, angiotensin-converting enzyme 1, and angiotensin 
II, which leads to inflammation and damage of VECs and organs. Therefore, 
promotion of VEC recovery represents a new way to enhance therapeutic effects and 
improve the prognosis of COVID-19. In addition, the endothelial glycocalyx is also 
damaged by COVID-19[104]. Studies have found that there is an increase in 
endothelial glycocalyx fragments in patients with COVID-19. This finding not only 
indicates that endothelial glycocalyx fragments can be used to evaluate the extent of 
endothelial injury, but also reflects the extent of damage to the body by COVID-19. It 
demonstrates that the recovery of endothelial glycocalyx injury to reactivate the 
function of VECs may be another method to treat COVID-19.

In addition, thrombus formation is a serious complication in COVID-19 patients and 
VECs are also targeted by SARS-CoV-2. Khan et al[105] found that large thrombi in 
COVID-19 patients entered the heart and were life-threatening. Other studies have 
found that the occurrence of thromboembolism is related to the severity of disease 
progression and mortality[106,107]. Anticoagulation is also regulated by VECs to some 
extent. Therefore, anticoagulation and restoration of normal functions of VECs are 
crucial in the treatment of patients with COVID-19. However, much effort still needs 
to be made toward finding effective treatments.

Problems and solutions of VECs application
In the application of VECs, there are still some problems that should be addressed. 
First, cell sources and culture methods need to be carefully considered. Tissue-derived 
VECs are more reliable than human-induced VECs. For example, the aorta and the 
human umbilical vein are common sources[23,35,36]. Second, how to obtain a large 
number of VECs for medical applications and how to make VECs function in the most 
efficient way are still worth further exploration. HUVECs are the most frequent choice 
due to their excellent proliferation and amplification ability[72,92]. In terms of culture 
methods, emerging research in recent years has broken out of the limitation of 2D 
culture and developed new culture methods, including 3D culture and microgravity 
culture for VECs[35,71]. These new culture methods also improved the quality and 
amplification efficiency of VECs. Third, in the process of cultivating VECs, it is 
necessary to prevent not only the contamination of microorganisms, but also the 
contamination of other cells. Crouch et al[34] have described in detail the steps taken to 
isolate and purify VECs in adult mouse brain microregions via fluorescent-activated 
cell sorting with anti-CD31 antibodies. This recent study has provided a good method 
for the purification of VECs. The application of VECs will inevitably encounter 
immunogenic obstacles, and the application of autologous cells[76] and extracellular 
vesicles[74,80] is a good solution. However, this is usually limited in the clinic 
(Table 1).

CONCLUSION
VECs have been widely used in stem cell medicine because of their important roles in 
angiogenesis and tissue regeneration. However, the application of VECs is subject to 
many restrictions, including limited sources of VECs, invasive acquisition processes, 
and immune-rejection due to the immunogenicity of heterogenous and allogeneic 
VECs. Although induced pluripotent stem cells represent a new source of VECs, their 
phenotypes are different from those of tissue-derived VECs and there is some 
uncertainty about their application. If VEC transplantation is to be used in clinical 
treatment, there are still ethical concerns as well as a lack of relevant application norms 
at present. The application of VECs in stem cell medicine is mostly allotransplantation, 
and the problem of immunogenicity arising from it remains to be solved. Many studies 
have shown that VECs have potential to function as therapeutic targets for a variety of 
diseases such as atherosclerosis, MI, hypertension, malignant tumors, and COVID-19. 
However, many treatment methods and mechanisms are still in the verification stage 
and lack sufficient clinical evidence, especially the role of VEGFRs in development and 
treatment of malignant tumors.
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Table 1 Summary of roles of vascular endothelial cells as checkpoint for immunological patrolling

Role of VECs Molecule type Suggested mechanisms Ref

TLRs (TLR1-TLR10) Contribute to early stages of the immune response 
against various microbial agents

Sturtzel et al[15]

NLRs Sense intracellular microbial invaders and danger 
molecules produced under stress

Fleissner et al[58]

RLRs Involved in antiviral immune response and 
contribute to chronic inflammatory disease

Asdonk et al[59]

AIM2-like receptors Form an inflammasome with the ligand and ASC 
to activate caspase-1

Hornung et al[60]

Express pattern recognition 
receptors

C-type lectin receptors Regulate signal cascades in response to distinct 
pathogen- or self-derived components

Kim et al[61]

FGFs Anneal adherens junctions and promote VEC 
migration

Potente et al[13]

NEU1 Restrains VEC migration Cross et al[62]

VEGF Induces VEC phenotype changes and regulates 
proliferation and migration of VECs

Potente et al[13]

Express proangiogenic molecules

IL-8 Induces VEC proliferation Sturtzel et al[15]

P-selectin Recruits leukocytes Sturtzel et al[15]

E-selectin Attaches monocytes Sturtzel et al[15]

Express adhesion molecules

ICAM-1; VCAM-1 Function as VEC activation markers Sturtzel et al[15]

MHC I Leads to recruitment of antigen-specific; naïve 
CD8+ T cells 

Mai et al[63]Express MHC

MHC II Presents endothelial antigens to immune cells Mai et al[63]

PD-L1/2 Inhibits T cell activation Rodig et al[64]Express immune checkpoints

ENO-1 A major glycolytic enzyme, over-expressed in 
various cancer tissues

Zheng et al[65]

Express pro-inflammatory cytokines IL-10, IL-6, and IL-8 Function as a complementary mechanism for the 
detrimental effects of viruses on atherosclerosis

Asdonk et al[59]

TLRs: Toll-like receptors; NLRs: Nucleotide-binding oligomerization-domain (NOD)-like receptors; RLRs: Retinoic acid inducible gene-I (RIG-I) like 
receptors; AIM2: Absent in melanoma 2; NEU1: Epidermal growth factor like domain 7; IL: Interleukin; ICAM: Intercellular adhesion molecule; VCAM: 
Vascular cell-adhesion molecule; MHC: Major histocompatibility complex; PD-L1/2: Programmed death-ligand 1/2; ENO-1: Enolase 1; FGFs: Fibroblast 
growth factors; VEC: Vascular endothelial cell; VEGF: Vascular endothelial growth factor.

Despite the numerous challenges, the important role played by VECs and their 
exosomes in many physiological and pathological processes has prompted a new 
direction for the treatment of many diseases and represents a broad prospect in the 
development of stem cell medicine.
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