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Abstract
Chronic hepatitis B (CHB) infection remains the most causative agent of liver-
related morbidity and mortality worldwide. It impacts nearly 300 million people. 
The current treatment for chronic infection with the hepatitis B virus (HBV) is 
complex and lacks a durable treatment response, especially hepatitis B surface 
antigen (HBsAg) loss, necessitating indefinite treatment in most CHB patients due 
to the persistence of HBV covalently closed circular DNA (cccDNA). New drugs 
that target distinct steps of the HBV life cycle have been investigated, which 
comprise inhibiting the entry of HBV into hepatocytes, disrupting or silencing 
HBV cccDNA, modulating nucleocapsid assembly, interfering HBV transcription, 
and inhibiting HBsAg release. The achievement of a functional cure or sustained 
HBsAg loss in CHB patients represents the following approach towards HBV 
eradication. This review will explore the up-to-date advances in the development 
of new direct-acting anti-HBV drugs. Hopefully, with the combination of the 
current antiviral drugs and the newly developed direct-acting antiviral drugs 
targeting the different steps of the HBV life cycle, the ultimate eradication of CHB 
infection will soon be achieved.

Key Words: Chronic hepatitis B; Hepatitis B surface antigen; Hepatitis B surface antibody; 
Covalently closed circular DNA; Direct acting antiviral drugs; Functional cure; Entry 
block; Nucleocapsid assembly modulator; Interfering hepatitis B virus transcription; 
Inhibiting hepatitis B surface antigen release
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improving hepatocellular injury and extrahepatic complications. However, the risk of 
hepatocellular carcinoma remains increased. New direct antiviral drugs that target the 
HBV life cycle, including entry blockers, assembly modulators, covalently closed 
circular DNA (cccDNA) disruptors, and hepatitis B surface antigen release inhibitors, 
would lead to hepatitis B surface antigen loss and a functional cure. Moreover, a 
combination of antiviral drugs with an immune-modulator could enhance the 
elimination of cccDNA and provide a definitive cure.

Citation: Leowattana W, Leowattana T. Chronic hepatitis B: New potential therapeutic drugs 
target. World J Virol 2022; 11(1): 57-72
URL: https://www.wjgnet.com/2220-3249/full/v11/i1/57.htm
DOI: https://dx.doi.org/10.5501/wjv.v11.i1.57

INTRODUCTION
Chronic hepatitis B (CHB) virus infection is a significant public health problem and 
causes substantial morbidity and mortality. It affects more than 257 million people 
worldwide, and the first-ever global hepatitis report published in 2017 indicated that 
in 2015, 887000 persons died from cirrhosis and hepatocellular carcinoma (HCC)[1,2]. 
The cumulative incidence of CHB infection in children less than 5-years-old fell from 
4.7% in the pre-vaccine era to 1.3% in 2015. This reduction in incidence is attributable 
to progress in immunization coverage. Although we have effective vaccines and 
potential antiviral drugs to treat CHB patients, the mortality rate of CHB infection still 
increased over the last 10 years.

Antiviral drugs, such as pegylated-interferon (Peg-INF)-α-2a, Peg-INF-α-2b, Peg-
INF-α-1b, and nucleoside or nucleotide analogs (NAs), have been used to treat CHB 
patients. They strongly suppress HBV replication and slow progression to cirrhosis 
and HCC. A limitation of the current treatments is the low rate of serological 
responses because covalently closed circular DNA (cccDNA) persists in the hepatocyte 
nucleus[3,4]. Hepatitis B surface antigen (HBsAg) loss is uncommon with current 
therapies, causing the majority of CHB patients to need indefinite therapy. The IFN 
treatment produces a higher rate of HBsAg loss, but most patients cannot tolerate the 
adverse events caused by it.

The combination of Peg-IFN and NAs may synergize the treatment effect to enable 
more CHB patients to achieve HBsAg loss[5,6]. However, a recent randomized 
controlled, open-label trial did not support the advantage of a combination of Peg-IFN 
and NAs in CHB patients[7]. Moreover, the patients also need frequent clinical and 
laboratory monitoring. Numerous clinical trials of drugs that interrupt the HBV life 
cycle in hepatocytes have been conducted. The novel agents for HBsAg loss include 
the direct-acting antiviral drugs targeting the different steps of the HBV life cycle and 
the indirect antiviral drugs modulating host immune response to eradicate HBV[8,9].

This review will address the newly investigated therapeutic drugs, and the results 
of clinical trials that aim to cure HBV.

HBV GENOME AND LIFE CYCLE
HBV is a small virus of the Hepadnaviridae family which infects hepatocytes, replicates, 
and persists in the nucleus. HBV particles include the HBV genome, nucleocapsid, and 
envelope proteins. The HBV genome is partially double-stranded DNA, with approx-
imately 3200 base pairs that form a relaxed circular DNA (rcDNA) genome. The minus 
(-) strand is the longer-strand DNA which complements pre-genomic RNA (pgRNA). 
The plus (+) strand is the shorter-strand DNA. The minus (-) strand has four 
overlapping open reading frames (ORFs), consisting of PreC/C, P, PreS/S, and X. The 
PreC/C ORF encodes the hepatitis B e antigen (HBeAg) and hepatitis B core antigen 
(HBcAg). The P ORF encodes the HBV DNA polymerase. The PreS/S ORF encodes the 
large (L), the middle (M), and the small (S) envelope proteins. The X ORF encodes the 
X protein (HBx)[10].

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
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The large envelope protein contains the receptor-binding domain and is involved in 
viral entry into the cytoplasm by receptor-mediated endocytosis. This process involves 
the sodium taurocholate co-transporting polypeptide (NTCP) receptor in the 
hepatocyte membrane. After attachment, two pathways for cell entry include 
endocytosis and fusion of the HBV envelope with the plasma membrane[11]. Then, 
individual rcDNAs are modified into cccDNAs, packaged into chromatin by histone 
and non-histone proteins[12]. The cccDNAs are responsible for viral persistence in the 
nuclei of infected cells. These cccDNAs also use pre-C mRNA and all other sub-
genomic mRNAs that code for the main viral proteins.

An HBe protein is translated from the pre-C mRNA transcripts, which have a longer 
reading frame than HBc protein, and is finally secreted into the bloodstream as 
HBeAg, the immunoactive biomarker for HBV infection[13]. This replication cycle is 
concomitant with the release of incomplete sub-viral particles and infectious viral 
particles. The most abundant of these exported sub-viral particles are particulate forms 
of viral envelopes formed with such HBs proteins as HBs antigen (HBsAg), a primary 
immunoactive biomarker for HBV infection in conjunction with HBeAg.

The encapsulated mRNAs are known as HBcAg, which can be detected in serum, 
even when HBV DNA cannot.

CURRENT ANTIVIRAL DRUGS AGAINST HBV
Currently, two different therapeutic strategies have been approved to treat CHB 
patients. These included IFN-α or Peg-IFN-α and direct-acting antivirals comprised of 
NAs that include nucleoside analogs, lamivudine (LAM), telbivudine (LdT) and 
entecavir (ETV), or NAs adefovir dipivoxil (ADV) and tenofovir disoproxil fumarate 
(TDF)[14,15].

IFNs
IFN-α suppresses viral DNA synthesis by stimulating antiviral enzyme production, 
which results in the clearance of infected hepatocytes, enabling a proportion of CHB 
patients to achieve a sustained virologic response (SVR). Several studies have 
demonstrated that IFN-α exhibits an SVR of up to 37%, with a mean loss rate of 33% in 
HBeAg and 8% in HBsAg. However, other factors influencing SVRs following IFN-α 
treatment comprised low serum levels of HBV DNA, early infection, treatment-naïve 
status, HBV genotypes, pre-core HBV mutation detection, chronicity, and co-infection 
with human immunodeficiency virus (commonly known as HIV)[16]. Due to its 
limited efficacy, low SVRs, and frequent injections, IFN-α has been replaced with the 
long-acting Peg-IFN-α.

Peg-IFN-α could prolong the effective half-life of IFN-α, reduce functional dose 
levels, increase efficacy, and lower side effects[17]. However, randomized clinical trials 
suggest that Peg-IFN-α effects are better in CHB patients who are HBeAg-positive than 
in those who are HBeAg-negative. Long-term treatment with Peg-IFN-α in CHB 
patients with HBeAg-positive status led to viral suppression in 10%–40%, HBeAg loss 
in 30%–35%, and normalization of alanine aminotransferase (ALT) levels in 35%–50%. 
Moreover, an HBsAg loss was established in 5% of patients 6 mo after stopping 
treatment and 10% of patients 3 years post-treatment[18]. Unfortunately, the benefits 
of Peg-IFN-α treatment vary with patient geographical distributions and HBV 
genotype, resulting in it not being effective in all CHB patients[19,20-22].

Nucleosides or NAs
The NAs are the small molecule drugs that directly inhibit the HBV DNA polymerase 
reverse transcriptase activity, resulting in reduced virion production[23]. Moreover, 
they also compete with natural nucleotide substrates for the elongating DNA chain, 
interrupting HBV DNA synthesis[24]. There are six NAs approved for CHB treatment: 
LAM, ADV, ETV, LdT, TDF, and tenofovir alafenamide (TAF). Long-term treatment 
with NAs can reduce the cccDNA pool in hepatocytes infected with HBV by inhibiting 
nucleocapsid recycling. However, they cannot prevent the initial cccDNA formation in 
newly infected hepatocytes[25].

The first generations of NAs are LAM, ADV, and LdT. The NA approved by the 
United States Food and Drug Administration in 1998 for the treatment of CHB is LAM, 
which can compete for cytosine in the synthesis of viral DNA. The CHB patients who 
were treated with 100 mg LAM for 104 wk achieved 52% virological response. 
However, after 5 years of treatment, approximately 70% of the patients developed 
LAM resistance[26,27]. ADV, a phosphonate acyclic NA of adenosine monophosphate, 
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was approved in 2002. In 2003, Marcellin et al[28] reported that after 48 wk of 10 mg 
ADV treatment in HBeAg-positive CHB patients, 53% had histologic improvement, 
21% had undetectable serum levels HBV DNA, and 12% had HBeAg seroconversion. 
Furthermore, Hadziyannis et al[29] demonstrated that after 48 wk of 10 mg ADV 
treatment in HBeAg-negative CHB patients, 64% had histologic improvement and 51% 
had undetectable serum levels of HBV DNA. However, long-term treatment with 
ADV also results in a high drug resistance rate of nearly 30% after 5 years of treatment
[30]. LdT, the unmodified β-l enantiomer of thymidine, was approved for CHB 
treatment in 2007[31]. In 2009, Liaw et al[32] reported that LdT was superior to LAM in 
patients with CHB. They found that the rates of therapeutic response in HBeAg-
positive and HBeAg-negative patients treated with 104 wk of LdT compared with 
LAM were 63% vs 48% and 78% vs 66%. However, long-term treatment with LdT led 
to nearly 35% drug resistance after 3 years of therapy[33].

ETV, TDF, and TAF are second-generation NAs with a high genetic barrier to HBV 
resistance. They are used as the first-line drugs for CHB treatment. In 2005, ETV, a 
guanosine NA with selective activity against HBV, was launched. The effective 
concentration (EC50) of ETV is 4 nM. This EC50 is 100-fold more potent than ADV or 
LAM in HBV suppression[34]. In 2016, Ahn et al[35] reported that ETV had shown 
durable and increasing viral suppression in 84.6% of HBeAg-positive patients and 
96.2% of HBeAg-negative patients over 5 years of treatment. However, the cumulative 
probability of HBsAg loss at year 5 was 5.2% in HBeAg-positive patients and 4.6% in 
HBeAg-negative patients. TDF, an acyclic NA with activity against retroviruses, was 
approved for CHB treatment in 2008. Buti and colleagues[36] reported that 437 
patients remained on the study at year 7; among them, 54.5% and 11.8% achieved 
HBeAg and HBsAg loss in HBeAg-positive patients but only 0.3% of the HBeAg-
negative patients achieved HBsAg loss. Although TDF resistance is relatively low, it 
has been associated with dose-dependent renal toxicity and induced Fanconi 
syndrome[37,38]. Recently, TAF was approved to be an alternative to TDF because it 
caused fewer side effects and was suitable for the treatment of CHB patients at risk of 
renal dysfunction[39]. Moreover, TAF has been demonstrated to be more effective than 
TDF with continued improved renal and bone safety[40].

Combination of NA plus Peg-IFN-a
Although the current monotherapy of anti-HBV drugs can suppress viral replication, 
prevent the progression of CHB to cirrhosis, and decrease the rates of HBV-related 
HCC in most CHB patients, long-term anti-HBV monotherapy rarely achieves the 
higher rate of HBsAg loss. Hence, to accomplish the goal of a functional cure in more 
CHB patients, the combination of NA with Peg-IFN-α has been evaluated. The reason 
for this is that the two classes of anti-HBV drugs have different mechanisms of action. 
Thus, their combination would result in a synergistic anti-HBV effect. Several studies 
have demonstrated that the combination of NA with Peg-IFN-α can substantially 
enhance the rates of HBsAg loss, but the benefits are mainly limited to a small 
proportion of patients and depend on HBV genotype and patient geographical distri-
butions[41-44]. Moreover, NAs and Peg-IFN-α treatment have no direct impact on 
viral transcription or cccDNA. Thus, there is a very high risk of reactivation of HBV 
and the emergence of downstream disease symptoms after stopping treatment. 
Therefore, new therapeutic drugs that target different HBV life cycle steps or modulate 
the host immune system are needed.

NEW DRUGS TARGETING HBV LIFE CYCLE
HBV entry inhibitors
Bulevirtide (Myrcludex B): NTCP has been demonstrated as a functional receptor for 
HBV entry into hepatocytes[11]. Therefore, the new drugs targeting viral entry 
receptors have been proposed as potential agents for preventing uninfected 
hepatocytes. Bulevirtide (Myrcludex B) is a synthetic lipopeptide of 47 amino acids 
obtained from the HBV preS1 domain. When bulevirtide binds to NTCP, it will 
effectively prevent HBV spread among intrahepatic cells and hinder the amplification 
of intrahepatic cccDNA pool in infected hepatocytes[45,46].

In 2016, Blank et al[47] conducted a prospective, open-label, first-in-human, phase 1 
clinical trial in 36 healthy volunteers. They found that bulevirtide was well tolerated, 
with no serious side effects and no immunogenic effects up to the highest dose of 20 
mg intravenously. Moreover, the pharmacokinetic model showed that 10 mg and 
above of bulevirtide subcutaneous injection could reach a target saturation of over 80% 
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for at least 15 h. Furthermore, Blank et al[48] conducted a study to investigate the 
effects of bulevirtide on plasma bile acid disposition, TDF pharmacokinetics, and 
perpetrator characteristics on cytochrome (CYP) P450 3A in 12 healthy volunteers. All 
of the volunteers received 300 mg TDF orally and 10 mg of subcutaneous bulevirtide. 
They found that bulevirtide increased total plasma bile acid by 19.2-fold without signs 
of cholestasis, and co-administration of TDF with bulevirtide revealed no relevant 
changes in TDF pharmacokinetics.

Recently, Wedemeyer et al[49] conducted a phase 2b clinical trial in 60 patients with 
chronic HBV/hepatitis D virus (HDV) co-infection. They randomized 1:1:1:1 into the 
following four groups: Peg-IFN-α once-weekly (qw) (n = 15, Arm A); bulevirtide 2 mg 
once daily (QD) subcutaneous (sc) injection + Peg-IFN-α qw (n = 15, Arm B); 
bulevirtide 5 mg QD sc + Peg-IFN-α qw (n = 15, Arm C); or bulevirtide 2 mg QD (n = 
15, Arm D) for 48 wk. They found that HBsAg levels declined by more than 1 Log10 in 
6/15 (40%) and 2/15 (13.33%) patients from Arm B and Arm C, respectively. Notably, 
4/15 (27%) patients from Arm B had undetectable HBsAg levels, and 3/4 (75%) 
patients established HBsAg seroconversion. Bulevirtide is moving along to phase 3 
studies, whereby monotherapy extended or in combination with Peg-IFN-α will be 
investigated in CHB patients (Table 1).

cccDNA disruptors
The cccDNA plays a crucial role in the viral life cycle, where it acts as the template for 
viral transcription, while pgRNA is the template for viral replication. It interacts with 
histone and non-histone proteins, resembling cellular chromatin within the nucleus
[50]. Disruption of cccDNA is considered an optimal target of HBV treatment because 
its persistence in the nucleus of infected hepatocytes is the crucial reason why HBsAg 
loss is currently not possible. The blocking of cccDNA formation, enhancing its 
destruction, and silencing its transcription, are currently under exploration.

Gene editing: The four ORFs of the HBV genome (surface, core, polymerase, and X 
protein) are translated into seven essential proteins for viral replication. The blocking 
of any one of the seven proteins would likely be essential to inhibit viral gene 
expression. Several small molecules have been developed as sequence-specific RNA-
guided (gRNA) nucleases and proteins which can block the formation, enhance the 
destruction, and silence the transcription of cccDNA, while stimulating cell division
[51]. These comprise cleaving sequence-specific DNA targets using the transcription 
activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and clustered 
regularly interspaced short palindromic repeats-associated 9 (CRISPR/Cas9) systems 
that could demonstrate antiviral efficacy[52-54].

In 2014, Lin et al[55] demonstrated that the CRISPR/Cas9 system could disrupt the 
HBV genome both in vitro and in vivo. They showed that the HBV-specific gRNAs 
significantly decreased the production of HBV core and HBsAg in Huh-7 cells 
transfected with an HBV-expression vector. They also reported that the CRISPR/Cas9 
system could cleave the intrahepatic HBV genome-containing plasmid and facilitate its 
clearance in vivo, causing a reduction in serum HBsAg levels. In 2015, Kennedy et al
[56] reported the effective inhibition of HBV DNA production in in vitro models of 
both chronic and de novo HBV infection using lentiviral transduction of a bacterial 
Cas9 gene and single-guide RNAs (sgRNAs) specific for HBV. They showed that 
Cas9/sgRNA combinations specific for HBV reduced HBV DNA levels by up to 1000-
fold and HBV cccDNA levels by up to 10-fold. Moreover, this method could inactivate 
the mutation of residual viral DNA. They concluded that CRISPR/Cas9 systems could 
serve as effective tools for disrupting the cccDNA pool in chronically-infected HBV 
patients.

Furthermore, Liu et al[57] showed that HBV-specific gRNA/Cas9 could inhibit the 
HBV replication of different genotypes in vitro and in vivo due to error-prone repair of 
viral DNA templates. Dong et al[58] reported that the CRISPR/Cas9 system could be 
used for disrupting intracellular cccDNA and viral replication in pre-cccDNA-
transfected Huh7 cells and a new mouse model carrying HBV cccDNA. Zhen et al[59] 
studied the effects of the CRISPR/Cas9 system targeted to the HBsAg-encoding region 
of HBV in a cell culture system and in vivo. They found that the concentration of 
HBsAg secreted in the cell culture and mouse serum was decreased by CRISPR/Cas9 
treatment. They concluded that a CRISPR/Cas9 system inhibited HBV replication and 
expression in vitro and in vivo, and may constitute a new therapeutic strategy for HBV 
infection. Seeger and Sohn[60] reported that HBV infections could be inhibited up to 8-
fold by HBV-specific guide RNAs in NTCP-expressing HepG2 cells. Ramanan et al[61] 
demonstrated that the CRISPR/Cas9 system could specifically target and cleave 
conserved regions in the HBV genome, causing robust suppression of viral gene 
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Table 1 Developing new therapeutic drug targets for chronic hepatitis B

Drugs Mechanism of 
action Therapeutic class Route of 

administration Clinical trial Results

HBV entry inhibitors

Bulevirtide 
(Myrcludex B)[49]

Competition with 
NTCP

Peptide Subcutaneous 
injection

IIb HBsAg loss in 27% of HBV/HDV co-
infected patients after 48 wk of treatment 
with Bulevirtide + pegIFN-α and 24 wk 
treatment-free follow-up

cccDNA disruptors

CRISPR/Cas9[67] Disruption of 
cccDNA

Gene editing In vivo Pre-clinical Significantly improved survival of human 
hepatocytes in liver-humanized FRG mice 
and demonstrated a decreasing of total liver 
HBV-DNA and cccDNA

ZFNs[69] Disruption of 
cccDNA

Gene editing In vitro Pre-clinical Efficiently suppress the cellular template for 
HBV persistence and inhibit active HBV 
replication

Nucleocapsid 
assembly modulators

JNJ-632 and BAY41-
4109[73]

Misdirecting the 
formation of capsid-
like structures

Capsid assembly 
modulators

In vitro Pre-clinical Induce the formation of morphologically 
intact viral capsids and prevented formation 
of cccDNA

NVR3-778[78] Misdirecting the 
formation of capsid-
like structures

Capsid assembly 
modulator

In vivo I/II The largest mean reduction in serum HBV 
DNA levels was achieved from the 
combination treatment of 600 mg NVR3-778 
BD + pegIFN 180 mg subcutaneous weekly 
(1.97 log10 IU/mL)

JNJ-6379[76] Misdirecting the 
formation of capsid-
like structures

Capsid assembly 
modulators

Oral II No clinically significant changes in levels of 
HBsAg were observed

ABI-H0731[77] Misdirecting the 
formation of capsid-
like structures

Capsid assembly 
modulators

Oral I/II Dose-dependent reduces in HBV DNA and 
HBV RNA not HBsAg was seen in both 
HBeAg-positive and HBeAg-negative 
patients

HBV transcription 
inhibitors

ARC-520[84] Interference viral 
mRNA

Transcription 
inhibitor

Intravenous injection II CHB patients with high dose significantly 
reduced HBsAg and persisted for > 85 d 
after the last dose

GSK3389404[85] Interference viral 
mRNA

Transcription 
inhibitor

Subcutaneous 
injection

I Dose 120 mg for 4 wk was safe and well 
tolerate

RG7834[87] Interference viral 
mRNA

Gene expression 
inhibitor

In vivo Pre-clinical Reduced WHsAg by a mean of 2.57 log10 
and WHV DNA by a mean of 1.71 log10 from 
baseline. However, WHsAg and WHV DNA 
rebounded to baseline after stopped 
treatment and WHsAb was not observed. 

HBsAg release 
inhibitors

REP 2055 and REP 
2139-Ca[88]

HBsAg release 
inhibitors

NAPs Intravenous injection II Substantially reduction of HBsAg levels, 
HBV DNA levels and increasing of serum 
HBsAb

REP 2139-Mg and 
REP 2165-Mg[90]

HBsAg release 
inhibitors

NAPs Intravenous injection II Addition of NAPs to TDF + pegINFα-2a 
significantly increased rates of HBsAg loss 
during therapy and functional cure after 
therapy

cccDNA: Covalently closed circular DNA; CHB: Chronic hepatitis B; CRISPR/Cas9: Clustered regularly interspaced short palindromic repeats/CRISPR-
associated 9; HBsAb: Hepatitis B surface antibody; HBeAg: Hepatitis B e antigen; HBsAg: Hepatitis B surface antigen; HBV: Hepatitis B virus; HDV: 
Hepatitis D virus; NAPs: Nucleic acid polymers; NTCP: Sodium taurocholate co-transporting polypeptide; pegIFN-α: Pegylated interferon-alpha; TDF: 
Tenofovir disoproxil fumarate; WHsAb: Woodchuck hepatitis surface antibody; WHsAg: Woodchuck hepatitis surface antigen; WHV: Woodchuck 
hepatitis virus.
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expression and replication both in vitro and in vivo, and extended this antiviral activity 
to a virus isolated from patients. They also reported that upon continuous 
Cas9/sgRNA, a sharp decline of cccDNA and HBV proteins resulted in a de novo 
infection model.

Wang et al[62] evaluated the efficiency of each gRNA and 11 dual-gRNAs on the 
suppression of HBV (genotypes A-D) replication using the measurement of HBsAg or 
HBeAg in the culture supernatant. They found that all dual gRNAs could efficiently 
suppress HBsAg and HBeAg production for HBV of genotypes A-D, and the efficacy 
of dual gRNAs was significantly increased compared to the single gRNA used alone. 
Karimova et al[63] identified cross-genotype conserved HBV sequences in the S and X 
region of the HBV genome targeted for specific and effective cleavage by a Cas9 
nickase. This technique could disrupt episomal cccDNA, and chromosomally 
integrated HBV target sites in reporter cell lines and HBV replication in chronically 
and de novo infected hepatoma cell lines.

In 2019, Kostyushev et al[64] evaluated CRISPR/Cas9 systems from four different 
species using co-expressed cell lines with gRNAs targeting conserved regions of the 
HBV genome. They found that the CRISPR/Cas9 systems from Streptococcus pyogenes 
(Sp) and Streptococcus thermophilus (St) targeting conserved regions of the HBV genome 
could block HBV replication and degrade over 90% HBV cccDNA by 6 d post-
transfection. They concluded that the St CRISPR/Cas9 system represented the safest 
system with high anti-HBV activity.

In 2020, Yang et al[65] investigated the utility of CRISPR/Cas-mediated "base 
editors" (BES) in inactivating HBV gene expression without cleavage of DNA. They 
found that Cas9-mediated base editing is a potential strategy to cure CHB by 
permanently inactivating integrated HBV DNA and cccDNA without double-strand 
breaks of the host genome. Recently, Kayesh et al[66] evaluated the effects of adeno-
associated virus 2 (AAV2) vector-mediated delivery of 3 selected from 16 gRNAs. 
These gRNAs/Cas9 significantly suppressed HBV replication in cells, with WJ11/Cas9 
demonstrating the highest efficacy. Furthermore, AAV2/WJ11-Cas9 also substantially 
inhibited HBV replication and significantly reduced cccDNA in the tested cells. It also 
enhanced ETV actions when used in combination due to different modes of action. 
They concluded that AAV2/WJ11-Cas9 significantly suppressed HBcAg, HBsAg, and 
HBV DNA along with cccDNA in the liver tissues without significant cytotoxicity in 
humanized chimeric mice. A pre-clinical study was reported by Stone et al[67], in 
which HBV-specific AAV-Staphylococcus aureus (Sa)-Cas9 therapy significantly 
improved survival of human hepatocytes in liver-humanized FRG mice and 
demonstrated a decrease in total liver HBV DNA and cccDNA; in addition, a good 
tolerance profile was found. The investigators concluded that this approach was safe 
and feasible for in vivo gene editing therapy in CHB infections, and it may be a 
plausible method to cure CHB patients.

In 2010, Cradick et al[68] demonstrated the effective cleavage of viral DNA targets 
by HBV-specific ZFNs within cultured cells. Moreover, the cleaved fragments were 
mis-repaired, which could potentially inactivate HBV. The authors suggested that 
AAVs can transfect 100% of mouse hepatocytes and could be used to deliver ZFNs to 
the human livers. In 2014, Weber et al[69] evaluated three ZFNs that target sequences 
within the HBV polymerase, core, and X genes. They demonstrated that HBV-targeted 
ZFNs could efficiently suppress the cellular template for HBV persistence and inhibit 
active HBV replication, causing them to be potential candidates for cccDNA disruptors 
(Table 1).

Overall, gene editing techniques have demonstrated the usefulness of destroying 
HBV cccDNA in vitro and in vivo and shown the therapeutic potential in acute and 
chronic HBV infection. Gene editing is at an exciting stage, and the future of curative 
anti-HBV regimens for chronic HBV infection may well entail the use of it combined 
with other drugs.

Nucleocapsid assembly modulators
HBV capsid has numerous functions in the HBV life cycle, including reverse 
transcription, genome packaging, and intracellular trafficking. It is an excellent target 
for the development of new antiviral drugs[70]. The capsid assembly modulators 
(CAMs) can disturb pgRNA encapsidation and HBV DNA replication by misdirecting 
the formation of capsid-like structures[71]. There are two categories of CAM: type I 
represented by heteroaryl-dihydro pyrimidine, which misdirects the formation of 
aberrant structures; and type II represented by phenylpropenamides and sulfamoyl-
benzamides, which accelerate the formation of morphologically intact empty capsids
[72].
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In 2017, Berke et al[73] conducted the study to evaluate the CAM JNJ-632 and CAM 
BAY41-4109, novel and potent inhibitors of HBV replication, in vitro across genotypes 
A to D. They found that it can induce the formation of morphologically intact viral 
capsids. They prevented the formation of cccDNA in a dose-dependent fashion when 
added with the viral inoculum. Moreover, it also reduced intracellular HBV RNA, 
HBeAg, HBcAg, and HBsAg concentrations in the cell culture supernatant. They 
concluded that CAMs have a dual mechanism of action that inhibits early and late 
steps of the viral life cycle, whereas NAs did not. In 2018, Lam et al[74] conducted a 
pre-clinical characterization of CAM NVR3-778 in HepG2.2.15 cells, mice, and dogs. 
They found that CAM NVR3-778 suppressed HBsAg, HBeAg, and intracellular HBV 
RNA production in primary human hepatocytes. Furthermore, it can block cccDNA 
formation during de novo infection and the subsequent transcription and viral protein 
translation steps. Furthermore, Klumpp et al[75] performed a comparative study of 
NVR3-778 to determine the in vivo antiviral efficacy and effects on innate and 
endoplasmic reticulum stress responses alone or in combination with Peg-IFN-α and 
compared with entecavir in 61 uPA/SCID mice with humanized livers. Mice were 
infected with an HBV genotype C preparation and then waited for 8 wk. They were 
randomly assigned to six groups (control, NVR3-778, entecavir, Peg-IFN-α, NVR3-778 
+ entecavir, or NVR3-778 + Peg-IFN-α) for 6 wk. Ultimately, the mice given NVR3-778 
or entecavir alone for 6 wk showed reduced serum levels of HBV DNA compared with 
controls or mice given Peg-IFN-α. Moreover, the most considerable HBV DNA serum 
level reduction was demonstrated in mice given NVR3-778 + Peg-IFN-α. Serum levels 
of HBsAg and HBeAg were reduced in the groups that received Peg-IFN-α.

In 2020, Zoulim et al[76] performed a double-blind study of 57 treatment-naïve 
patients with HBeAg-positive or -negative CHB infection without cirrhosis. They were 
randomly assigned to five groups to receive either 25 mg (100 mg loading dose), 75 
mg, 150 mg, or 250 mg JNJ-6379 or placebo daily for 4 wk, with an 8-wk follow-up 
period. They found that all doses of JNJ-6379 tested were well tolerated, demonstrated 
dose-dependent pharmacokinetics, and had potent antiviral activity in patients with 
CHB. However, no clinically significant changes in levels of HBsAg were observed. 
Recently, Yuen et al[77] conducted a phase 1/2, randomized, placebo-controlled study 
to explore the safety, pharmacokinetics, and pharmacodynamics of ABI-H0731 in 
healthy subjects and patients with CHB in two parts. In part 1, healthy adults were 
randomly assigned to receive single oral doses of ABI-H0731 (100, 300, 600, or 1000 
mg) or matching placebo, or once-daily or twice-daily doses ABI-H0731 800 mg or 
matching placebo for 7 d. In part 2, HBeAg-positive or HBeAg-negative CHB adults 
were randomly assigned to receive ABI-H0731 (100, 200, 300, or 400 mg) or matching 
placebo once daily for 28 d. Overall, ABI-H0731 was safe and well-tolerated. There 
were no serious adverse events, nor clinically significant drug-related, dose-
dependent, or treatment-emergent laboratory findings. ABI-H0731 showed dose-
related activity with once-daily dosing. The mean maximal HBV DNA reductions from 
baseline of 1.7 Log10 IU/mL at 100 mg to 2.8 Log10 IU/mL at 300 mg after 28 d for the 
HBeAg-positive and HBeAg-negative patients. The authors concluded that dose-
dependent reduction in HBV DNA and HBV RNA with ABI-H0731 occurred in both 
HBeAg-positive and HBeAg-negative patients. There were no serious adverse events 
related to the 1600 mg daily doses in healthy subjects or patients with CHB infection 
receiving doses up to 300 mg once daily.

Furthermore, Yuen et al[78] also performed a phase 1/2 study to examine the safety, 
pharmacokinetics, and antiviral activity of NVR3-778 in 73 patients with HBeAg-
positive CHB infection without cirrhosis. The study had eight cohorts comprised of 
one placebo cohort and seven treatment cohorts. The four dose-escalation cohorts 
received NVR3-778 of 100 mg (10 cases), 200 mg (10 cases), or 400 mg once daily (QD) 
(8 cases), or 600 mg twice daily (BD) (8 cases). The fifth cohort was treated with 600 mg 
NVR3-778 BD + Peg-IFN 180 mg subcutaneous weekly (10 cases). The sixth cohort was 
treated with Peg-IFN 180 mg subcutaneous weekly + placebo (10 cases). The seventh 
cohort was treated with 1000 mg NVR 3-778 BD (7 cases). The eighth cohort was 
treated with a placebo. The investigators found that mean HBV DNA decline was 
minimal with low once-daily doses of NVR3-778, but when daily dosing was increased 
to 1200 mg/d, HBV DNA reductions became substantial. The fourth cohort (600 mg 
NVR3-778 BD) showed a mean HBV DNA reduction of 1.72 Log10 IU/mL. The most 
significant mean reduction in serum HBV DNA levels was achieved from the 
combination treatment of 600 mg NVR3-778 BD + Peg-IFN 180 mg subcutaneous 
weekly (1.97 Log10 IU/mL). They concluded that NVR3-778 treatment for 28 d up to a 
dose of 1000 mg BD was well tolerated. Substantial and correlated decreases in serum 
HBV DNA and HBV RNA concentrations were demonstrated with the higher-dose 
cohorts and were notably most excellent for combination treatment with NVR3-778 
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and Peg-IFN. They do not evaluate serum HBsAg, HBeAg, immunomodulatory 
effects, and effects on cccDNA persistence. These encouraging data suggested that 
CAMs can result in a substantial reduction in HBV DNA and HBV RNA levels. 
Longer-term treatments alone or combined with other antiviral agents will be needed 
to investigate whether CAMs will result in HBeAg, HBsAg, and cccDNA loss (Table 1).

HBV transcription inhibitors
After HBV enters the infected hepatocytes, partially double-stranded DNA (pdsDNA) 
moves to the nucleus and is converted to cccDNA. Furthermore, it is wrapped by 
histones to form a mini-chromosome. RNA interference (RNAi) and antisense 
oligonucleotides are mechanisms in which a double-stranded RNA (dsRNA) inhibits 
gene expression by degrading mRNA or blocking a specific gene's translation 
pathway. RNAi can directly target HBV transcripts and induce their degradation, 
causing gene silencing. Antisense oligonucleotides are small nucleic acids comple-
mentary to the target transcript, that induce degradation after binding. Hence, 
targeting the viral mRNA using RNAi and antisense oligonucleotides may be an 
effective method to control HBV infection. Many studies of RNAi and antisense 
oligonucleotides are in progress[79-81].

In 2017, Schluep et al[82] conducted a phase 1 randomized, double-blind, placebo-
controlled study to evaluate the safety, tolerability, and pharmacokinetics of ARC-520 
injection in 54 healthy volunteers (36 ARC-520 vs 18 placeboes). They found that ARC-
520 was safe and well-tolerated. In the same year, Wooddell et al[83] conducted a 
phase 2 randomized, double-blind, placebo-controlled study to determine the safety, 
tolerability, and pharmacological effect of ARC-520 in 40 CHB patients with or without 
preceding nucleos(t)ide viral replication inhibitors (NUC) treatment. They found that 
ARC-520 resulted in a rapid and potent decrease in serum HBV DNA. However, the 
reduction of HBsAg was only demonstrated in HBeAg-positive patients. Follow-up 
studies in chimpanzees showed that the HBsAg being produced in the HBeAg-
negative patients was predominantly derived from an integrated virus, which ARC-
520 did not target.

In 2020, Yuen et al[84] conducted 2 randomized, multicenter studies to evaluate in-
depth HBsAg decline using 1 mg/kg or 2 mg/kg ARC-520 compared with placebo at 
four monthly doses in 58 HBeAg-negative and 32 HBeAg-positive CHB patients 
concomitantly with NUC. They found that both HBeAg-negative and HBeAg-positive 
high-dose groups had significantly reduced HBsAg compared with placebo, with 
mean reductions of 0.38 and 0.54 Log IU/mL, respectively. Moreover, HBsAg 
reductions persisted for 85 d in HBeAg-negative patients and > 85 d in HBeAg-
positive patients after the last dose of ARC-520. They concluded that ARC-520 was 
active in both HBeAg-negative and HBeAg-positive CHB patients treated by NUC. 
However, absolute HBsAg reductions were moderate, which may occur due to HBsAg 
expression from integrated HBV DNA.

In 2019, GSK3389404, an antisense oligonucleotide, was studied by Han et al[85]. 
The investigators conducted a randomized, double-blind, phase 1 study to assess the 
safety and pharmacokinetics of GSK3389404 in healthy subjects. Four single 
ascending-dose cohorts (10 mg, 30 mg, 60 mg, and 120 mg subcutaneously) and three 
multiple ascending-dose cohorts (30 mg, 60 mg, and 120 mg once weekly for 4 wk) 
each comprised 6 subjects randomized to GSK3389404 and 2 subjects randomized to 
placebo. They reported that there were no serious adverse events (SAEs) or 
withdrawals due to SAEs. GSK3389404 dosing has been tested up to 120 mg for 4 wk 
with an acceptable safety and pharmacokinetic profile and suitable for further clinical 
evaluation in CHB patients.

In 2018, Mueller et al[86] reported that RG7834, a novel oral HBV gene expression 
inhibitor, could reduce the levels of viral proteins and lower viremia. RG7834 is a 
small-molecule compound belonging to the dihydroquinolizinones chemical class 
similar to RNAi but through a different mechanism. They found that oral treatment of 
HBV-infected humanized mice with RG7834 Led to a mean HBsAg reduction of 1.09 
Log10 compared to entecavir, which had no significant reduction on HBsAg levels. In 
2020, Menne et al[87] conducted a study to evaluate the potency of RG7834 alone and 
in combination with ETV or woodchuck interferon-α (wIFN-α) in the woodchuck 
model of chronic HBV infection. RG7834 could reduce woodchuck hepatitis virus 
(WHV) surface antigen (WHsAg) by a mean of 2.57 Log10 from baseline and WHV 
DNA by a mean of 1.71 Log10. ETV + wIFN-α reduced WHsAg and WHV DNA by 2.40 
Log10 and 6.70 Log10, respectively. RG7834 combined with ETV and wIFN-α 
significantly decreased WHsAg and WHV DNA concentrations by 5.0 Log10 and 7.46 
Log10, respectively. However, WHsAg and WHV DNA rebounded to baseline after 
stopping treatment, and WHsAb was not observed. Notably, both RNAi and antisense 
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oligonucleotides do not eliminate cccDNA, and rebound of HBsAg levels to 
pretreatment points after stopping treatment has been reported. Therefore, it is likely 
to be used in combination with other drugs (Table 1).

HBsAg release inhibitors
HBsAg release inhibitors function under the same exact mechanism as the RNAi and 
antisense oligonucleotides that block the release of subviral HBsAg particles. 
Circulating HBsAg is an immunoinhibitory factor that blocks the innate immune 
response. Clearance of circulating HBsAg is a crucial step in the functional control of 
HBV infection and permits anti-HBs seroconversion. In 2016, Al-Mahtab et al[88] 
conducted two studies to evaluate REP 2055 and REP 2139-Ca, nucleic acid polymers 
(NAPs), in 8 and 12 CHB patients, respectively. The results from both studies showed 
that NAP monotherapy was accompanied by 2-7 Log10 reductions of HBsAg levels, 3-9 
Log10 reductions in HBV DNA levels, and the appearance of serum hepatitis B surface 
antibody (HBsAb) (10-1712 mIU/mL). Eight of the nine patients treated with the 
combination of NAP and immunotherapy experienced HBsAg loss, and all nine 
patients experienced substantial increases in serum HBsAb antibody titers before 
treatment was stopped. Moreover, 1 year after the REP 2055 therapy was stopped, a 
rebound of serum HBV DNA > 1000 copies/mL or HBsAg > 1 IU/mL was not 
observed in 3/8 CHB patients. Suppression of serum HBV DNA > 1000 copies/mL or 
HBsAg > 1 IU/mL was further maintained for 290 and 231 wk in 2 of these patients. 
For REP 2139-Ca treatment, 8 patients achieved HBV DNA < 116 copies/mL after 
treatment withdrawal. The rebound of serum HBV DNA > 1000 copies/mL or HBsAg 
> 1 IU/mL occurred over 12 to 123 wk in 7 patients but was still absent in 2 patients at 
135 and 137 wk of follow-up. The authors concluded that NAP could elicit significant 
antiviral responses during treatment which may improve the effect of immuno-
therapy. NAPs may be a potentially useful component of future combination therapies 
for the treatment of CHB.

In 2017, Bazinet et al[89] conducted an open-label, non-randomized, phase 2 trial to 
assess the safety and efficacy of REP 2139 and Peg-INF-α-2a in 12 patients with CHB 
HDV co-infection. The results showed that 6 patients had HBsAg concentrations < 50 
IU/mL by the end of treatment. Five patients maintained the level of suppression at 
the end of 1-year follow-up. Six patients had HBsAb titers > 10 mIU/mL at the end of 
treatment (five had maximum HBsAb levels of 7681-86532 mIU/mL during 
treatment), which were maintained at the end of 1-year follow-up. By the end of 1-year 
follow-up, normalization of serum aspartate aminotransferase (AST) and ALT 
occurred in 9 of 12 patients. They concluded that combined REP 2139 and Peg-INF-α
-2a therapy is well-tolerated, safe, and establishes functional control of HBV and HDV 
co-infection and normalization of serum AST and ALT in a high proportion of patients 
1 year after therapy. In 2020, Bazinet et al[90] performed an open-label, phase 2 study 
of the safety and efficacy of REP 2139 or REP 2165 combined with TDF and Peg-INF-α
-2a in 40 HBeAg-negative CHB patients. Forty patients were randomly assigned to 
groups that received 48 wk of experimental therapy (TDF + Peg-INF-α-2a + REP 2139-
Mg or REP 2165-Mg) or 24 wk of control therapy (TDF + Peg-INF-α-2a) followed by 48 
wk of experimental therapy. At 48 wk, when patients completed the TDF + Peg-INF-α
-2a + NAPs regimen, HBsAg concentrations were ≤ 0.05 IU/mL in 24 of 40 (60%) 
patients, while all of the patient’s achieved seroconversion with HBsAb up to 233055 
mIU/mL. During 48 wk of treatment-free follow-up, virologic control persisted in 13 
of 40 (32.5%) patients, whereas functional cure persisted in 14 of 40 (35%) patients with 
persistent HBsAg loss. They concluded that the addition of NAPs to TDF + Peg-INF-α
-2a significantly increased rates of HBsAg loss during therapy and functional cure 
after therapy. However, these results should be carefully applied for Asian race 
because Van Hees et al[91] found that Caucasian patients had more than 6-fold 
increased chance of HBsAg loss compared to other ethnicities. Further studies 
regarding ethnicity and HBsAg loss are needed. Thus, NAPs alone or combined with 
TDF or Peg-INF-α-2a may allow better functional control of HBV infection (Table 1). A 
longer duration of NAPs treatment would be needed to identify their sustained 
virological effects and potential risk for adverse events.

CONCLUSION
Tremendous progress has been explored in understanding the pathophysiology and 
treatment of CHB over the past 20 years. The CHB current treatment with a potent and 
a high genetic barrier NA (ETV, TDF, and TAF) can suppress the viral replication to an 
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undetectable level in most CHB patients. They also prevent the progression of CHB to 
cirrhosis and markedly reducing the rates of HBV-related HCC. Regardless of viral 
suppression by NAs, there are many obstacles to achieve a functional cure or HBsAg 
loss in CHB patients. HBV could persist in the hepatocyte nucleus by continuously 
replenishing the cccDNA with a long half-life and the integrated forms of viral DNA. 
Moreover, the defective immune response and the ine�cient innate immune response 
prevent HBV-infected hepatocytes from being cleared by host immunity.

HBsAg loss with or without HBsAb seroconversion is one of the most desired 
endpoints of new drug development. Targeting HBsAg by inhibiting the entry of HBV 
into hepatocytes, disrupting or silencing HBV cccDNA, modulating nucleocapsid 
assembly, interfering HBV transcription, and inhibiting HBsAg release are the primary 
targets for functional cure in CHB patients. However, newly developed drugs still 
have limitations in being used alone without IFN and NAs to induce HBsAg loss. 
Interestingly, a new strategic therapy in treating chronic HBV infection is to use a 
combination of multiple drugs, including a backbone of a NA, one or more new direct-
acting antiviral drugs, and at least one immunomodulator. With the collaborative 
efforts of basic research scientists and clinical experts, the ultimate elimination of CHB 
infection is likely to be achieved soon.
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