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Abstract
Lower back pain is a leading cause of disability and is one of the reasons for the 
substantial socioeconomic burden. The etiology of intervertebral disc (IVD) 
degeneration is complicated, and its mechanism is still not completely unde-
rstood. Factors such as aging, systemic inflammation, biochemical mediators, 
toxic environmental factors, physical injuries, and genetic factors are involved in 
the progression of its pathophysiology. Currently, no therapy for restoring 
degenerated IVD is available except pain management, reduced physical 
activities, and surgical intervention. Therefore, it is imperative to establish 
regenerative medicine-based approaches to heal and repair the injured disc, 
repopulate the cell types to retain water content, synthesize extracellular matrix, 
and strengthen the disc to restore normal spine flexion. Cellular therapy has 
gained attention for IVD management as an alternative therapeutic option. In this 
review, we present an overview of the anatomical and molecular structure and 
the surrounding pathophysiology of the IVD. Modern therapeutic approaches, 
including proteins and growth factors, cellular and gene therapy, and cell fate 
regulators are reviewed. Similarly, small molecules that modulate the fate of stem 
cells for their differentiation into chondrocytes and notochordal cell types are 
highlighted.

Key Words: Stem cell; Intervertebral disc; Degeneration; Inflammation; Cell therapy; Gene 
modification
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Core Tip: In this review, we presented a precise overview of the anatomical and 
molecular structure and surrounding pathophysiology of the intervertebral disc (IVD). 
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Modern therapeutic approaches including proteins and growth factors, cellular and 
gene therapy, and cell fate regulators are highlighted. In addition, different types of 
stem cells used for the implantation in IVD are reviewed. Furthermore, small 
molecules that modulate the fate of stem cells for their differentiation into 
chondrocytes and notochordal cell types are presented. In conclusion, this review 
highlights regenerative medicine-based approaches for the regeneration of interver-
tebral disc degeneration.
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INTRODUCTION
Intervertebral disc (IVD) degeneration is a progressive, inflammation-driven cascade 
that leads to structural and mechanical failure, strongly associated with lower back 
pain (LBP), representing a global health burden. The worst aspect(s) of degenerative 
disc disease (DDD) is/are pain, discomfort, emotional distress, and functional 
disability, affecting the quality of life and causing socioeconomic burden[1]. Altered 
cellular microenvironment within the disc, reduced cell viability due to structural 
failure, and functional inadequacy are the leading causes of the adverse condition in 
LBP[2,3]. IVD degeneration (IVDD) treatments can only mitigate painful symptoms 
and improve flexibility and body movements[4].

Around 84% of the population experience an event of LBP sooner or later in their 
life span; 50% of them are younger age group (18 to 44 years), otherwise adulthood (45 
to 64-years), and generate almost 80% of health care expenditure[5]. Even though the 
correct etiology of LBP remains obscure[6], IVDD results due to the loss of nucleus 
pulposus (NP) and/or annulus fibrosus (AF), which leads to the reduction in water 
content, diminished glycosaminoglycans (GAGs), and extracellular matrix (ECM), and 
collagen II deterioration in the NP region[7]. This remodeling results in reduced IVD 
height, osteophyte development, facet joint arthritis, and bending of vertebral bodies, 
which are  reflected through magnetic resonance imaging (MRI)[8]. Spine fusion is the 
only available option, but it greatly reduces the flexion of the body. With the disease 
advancement, pharmaceutical or otherwise postoperative intervention is needed to 
reduce symptomatic pain and reserve the flexion of the spine[9]. Despite the inn-
ovations in IVD surgery, patients with the progressive disorder cannot receive the 
benefits of surgical intervention because of the associated morbidities.

Perinatal stem cells and their derivatives can offer an improved therapeutic 
approach for the treatment of disc degenerated diseases. Mesenchymal stem cells 
(MSCs) are being utilized to rectify the pathogenesis of DDD[10]. This review presents 
an overview of IVD biology and how cellular signaling plays a role in IVD 
homeostasis. We also review the opportunities and challenges for the utilization of 
cell-based therapy for IVD regeneration.

CELLULAR SIGNAL IN IVD
The development of IVD in embryogenesis relies on the coordinated network of 
molecular signals arising in the notochord and neural tube plate[11]. Following 
signaling pathways are involved in the IVD.

Sonic hedgehog
Sonic hedgehog (Shh) signaling plays a vital role in tissue morphogenesis, regulation, 
presenting information about embryonic patterning, and degree of cell fate differen-
tiation and proliferation[12,13]. Somite stalks evolve in response to Shh and Wnt 
(wingless-related integration site) dependent regulatory pathways, while a sclerotome 
tissue generates only under the activating impact of the Shh pathway[14]. A specific 
attribute of the Shh intracellular signaling cascade works through synergistic 
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interaction with Noggin-cascade, a direct antagonist of the bone morphogenetic 
proteins (BMPs) pathway in the induction of sclerotome growth[14,15]. Noggin 
molecules are primitively expressed by the notochord cells blocking BMP signaling 
from developing vertebral bodies till the formation of the AF[16,17].

Paired box genes
Paired box (Pax) genes encode transcription regulators for proliferation, differen-
tiation, apoptosis, and migration of pluripotent cells during embryogenesis. 
Expression of Pax genes plays an essential role in subsequent cell differentiation of 
distinct populations of IVD[18-20]. It is proved that Pax1 and Pax9 genes are entirely 
involved in the IVD formation. When these genes are obliterated, IVD and vertebral 
bodies do not develop, forming an irregular cartilaginous core[21]. Pax1 gene 
expression in all sclerotome tissues is intervened by the activity of Shh and Noggin 
regulatory pathways in the notochord cells[22,23]. After IVD development, expression 
of the Pax1 gene arises exclusively in the tissue of IVD primordium (precursor of the 
AF) enclosing the notochord. Hence, the Pax1 gene impacts the notochord adva-
ncement by activating cell expansion which turns into the NP.

SRY-box genes
The SRY-box (Sox) family is involved in developing the vertebral column[24,25]. Sox5, 
Sox6, and Sox9 genes are of significant importance for IVD development and growth. 
Sox5 and Sox6 are present in the cells of the notochord and the sclerotome[26]. In the 
mice deprived of Sox5 and Sox6 genes, the development of the notochordal membrane 
was weakened. This is associated with the evidence that these genes are key players in 
genesis  IVD and intercellular proteins, including collagen II and aggrecan[26,27]. Lack 
of notochordal membrane prompts apoptosis of the notochordal cells (NCs) and 
disrupts the development of IVD segments. In the cells with knockout Sox9, notochord 
development starts, which is degraded due to the deprivation of the notochordal 
membrane matrix and inhibits the formation of sclerotome[28].

Transforming growth factor-β genes
Transforming growth factor-β (TGF-β) signaling pathways are effectively involved in 
advancing IVD and vertebral bodies. TGF-β intercellular signaling cascade stimulates 
cellular migration, proliferation, differentiation, and IVD matrix synthesis[29]. TGF-β3 
is actively synthesized in the perichordal membrane during the condensation stage of 
embryogenesis and promotes the development of the AF and vertebral bodies. 
Blockage of the TGF-β2 receptors inhibits the synthesis of type II collagen leading to 
defective NP, the exterior part of the AF, and inadequate IVD mineralization. TGF-β2 
receptors participate in the differentiation of IVD tissue and vertebral bodies, 
producing spine[30].

IVDD
DDD is a complex, multifactorial process, the etiology of which is not well known. 
Thus, there are no particular criteria to differentiate the IVDD from the physiological 
retardation of development, maturation, or adaptive tissue remodeling[31]. IVDD has 
perhaps been best defined as an “aberrant cell-mediated response to progressive 
structural failure”[32]. Heredities, ecological causes, mechanical factors, aging, 
systemic and toxic mediators are identified as risk factors[33]. This mechanism begins 
with alterations to the cellular IVD microenvironment leading to structural and 
functional failure[34]. Interestingly, evidence showed that the early disappearance of 
NC density in NP is crucial for IVD stability and induces impairment in the ECM 
anabolic/catabolic proportion, resulting in the change of the IVD mechanical 
properties[25,35]. IVDD is related to expanded ECM disruption[36], abnormal matrix 
formation[37], cellular apoptosis[38], inflammation[39], and regulation of sensory 
nerve and blood vessel in-growth into a normal avascular and neural tissue[40].

The onset of the IVDD is believed to be mainly in the NP[41]. The decline of the key 
essential proteoglycan, aggrecan[42], reduces additional ECM production in the NP, 
and causes decreased hydration[43], a deficit of IVD height, and general failure to 
resist compressive burden[44]. Compression pressures are hence dispensed through 
the NP to the adjacent AF, which leads to altered biomechanical function of AF and 
structural failure with radial and circumferential tears in the AF[45]. These fissures 
and tears facilitate the in-growth of nociceptive nerves and blood vessels, resulting in 
the secretion of inflammatory pain-related mediators, thus leads to radial disc bulges 
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or herniation of the NP into the contiguous spine, causing LBP[34].
Although the IVDs degenerate with aging and can be asymptomatic, a pathological 

process of IVDD is followed by pain. It has been revealed that a large number of 
people with no pain show degenerative disc changes that further complicate the differ-
entiation of typical age-related degeneration from pathological conditions[46]. An 
increase in catabolic action of matrix-degrading proteases, pro-inflammatory 
cytokines, and contemporary immune cell infiltration is proposed to define disc 
degeneration factors[39]. Furthermore, lower disc pH, reduced nutrition, and calcified 
cartilaginous endplate (CEP) create an unfavorable environment for restoring the disc
[47]. Presently, there are symptomatic cures for advanced phases of DDD but no 
effective disease-modifying therapies[48].

Inflammation in degenerated IVD
Degenerated IVD cells produce higher concentrations of pro-inflammatory mediators, 
which suggest their role in the pathogenesis of IVD. A variety of cytokines, 
chemokines, and enzymes have been associated with IVDD, including interleukins 
(IL), interferons, tumor necrosis factor-alpha (TNF-α), matrix metalloproteinases 
(MMPs), prostaglandin E2 (PGE2), nitric oxide (NO), and aggrecanase. Among these, 
TNF-α and cytokines of the IL-1 family have been most widely investigated. Both TNF-
α and IL-1β are produced by IVD cells, and they acquire strong association in the 
pathogenesis of IVDD[49,50]. Degenerated and herniated discs exhibit upregulated 
expression of both pro-inflammatory chemokines, TNF-α and IL-1β[51]. Both have 
been found to activate ECM degrading enzymes and reduce ECM constituent 
synthesis in vitro[49,52]. Recent studies showed that both TNF-α and IL-1β molecules 
induce increased MMP expression, particularly MMP-1, -2, -3, -7, -8, and -13. These 
MMPs are well recognized for their proteolytic activity towards collagen and 
proteoglycans (PGs)[53]. Also, IL-1β, as a pro-inflammatory cytokine, upregulates the 
vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor, and 
nerve growth factor expressions to stimulate the neovascularization and neoi-
nnervation of IVD that eventually lead to inflammation and discogenic pain[24]. 
Another study concluded that IL-1β is a master regulator in the disc cells that influence 
other cytokines and chemokines[54]. IL-1β and TNF-α in NP cells contribute to the 
secretion of chemoattractant molecules such as C-C motif ligand 5/regulated 5 
(CCL5/CCR5), regulated upon activation, normal T cell expressed and presumably 
secreted (CCL5/RANTES) or chemokine C-X-C motif ligand 6 (CXCL6)[55], and are 
involved in the migration of MSCs.

Another pro-inflammatory cytokine that has been involved in the pathogenesis of 
IVDD is IL-6, which is also secreted by NP cells[56]. Indeed, degenerated IVD tissue 
samples contain a significantly higher expression of IL-6[57]. Notably, numerous 
genetic variations in cytokine genes have been correlated with IVD degeneration. 
Traditionally, inflammation has mainly been considered as a primary reaction to 
infection at the site of tissue injury; however, it is not sure if it is a cause or outcome of 
IVD degeneration and herniation[58]. During degeneration, increased aggrecan and 
collagen breakdown occur within the disc tissue with significant changes in IVD cell 
phenotype and increased levels of inflammatory cytokines[47]. With an advanced 
degeneration phase, clefts and tears are developed in the AF and NP, which leak into 
the external environment. This allows immune cell activation and the invading blood 
vessels to pervade the IVD through the clefts and tears of the AF[59].

THERAPEUTICS FOR DEGENERATIVE INTERVERTEBRAL DISCS
Modern treatments for IVDD remain a subject of debate. Despite the known con-
sequences of the IVD pathological cascade, the treatment options for IVDD are limited. 
The traditional conservative therapy for chronic LBP involves a wide range of 
treatment modalities, including bed rest, physiotherapy, analgesic and anti-inflam-
matory medications, acupuncture, and chiropractic[60]. Approximately, 75%-90% of 
chronic LBP patients obtain satisfactory results with conservative treatment[34,61]. The 
pain symptoms can be overcome by administering anti-inflammatory mediators, for 
example, opioids, steroids, non-steroidal anti-inflammatory drugs, and muscle 
relaxants[39]. These anti-inflammatory drugs have effective short-term alleviation for 
back pain, but they cannot reverse the progression of IVDD[62]. If conservative 
management does not have the desired effect, the constant pain sensation progresses 
because of the nerve compression[63].
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Interventional procedures for IVDD include spinal surgical interventions, such as 
discectomy, spine fusion, and total disc replacement to manage the degenerated disc. 
The main surgical treatment alternatives for IVDD are spinal fusion and the 
replacement of the whole disc. Spinal fusion surgery, fusing two vertebrae, provides 
stability to the spine, which can be attained by a range of surgical interventions, such 
as posterolateral fusion, anterior and posterior lumbar interbody fusion. The 
minimally invasive methods to the lumbar spine for interbody fusion include lateral 
lumbar interbody fusion[64]. Spinal fusion is considered as a gold standard treatment 
option for LBP[65]. The results of three randomized controlled trials, which compared 
spinal fusion with conservative treatment, showed substantial clinical improvement in 
only a limited number of patients[45].

Moreover, spinal fusion could accelerate the degenerative process in adjacent 
vertebrae[66], and it mitigates painful symptoms, irrespective of repairing disc 
structure and mechanics; therefore, its efficacy remains controversial. Disc arthroplasty 
has the advantage of removing the degenerated IVD and restoring it with a prosthesis 
that can permit flexibility between the discs[67]. Moreover, disc arthroplasty does not 
restore the mechanical movement of the native joint[61]. The additional motion-
preserving surgical procedure includes posterior dynamic stabilization. These surgical 
procedures contain the installation of pedicle screws over a motion segment associated 
with a flexible graft. These devices intend to limit motion over the interspace to control 
discogenic pain[68]. The disadvantages of the surgical therapies can be extreme 
invasiveness, the increased possibility of recurrences, and failure of mechanical 
properties with contiguous segment degeneration. In most cases, some surgical 
intrusions and conservative treatments have low efficiency with lack of sustainable 
long-term effects. Instead of targeting the pathophysiology of the degenerative 
progression, they target the clinical symptoms[69].

Recent surgical treatment options for symptomatic degenerated IVD are still far 
from optimal outcomes. Hence, there is a substantial necessity for new therapies that 
focus on relieving painful symptoms and reestablishing IVD structure and mechanical 
loading capacity by explicitly addressing the underlying biological causes of DDD.

NOVEL THERAPEUTIC APPROACHES
The advancements in research and development have encouraged scientists to search 
for innovative pharmacological therapies in the regeneration of the IVD that mitigate 
painful symptoms by restoring and maintaining mechanical function. Depending on 
the stage of degeneration, different biological treatment options are used that alter the 
cascaded events at the molecular level. Figure 1 summarizes various therapeutic 
options for disc degeneration diseases. The three major groups of biological 
approaches for disc regeneration are divided as follows: (1) In the early stage of IVDD 
(grade II-III), growth factor injections may be effective; (2) In the intermediate stage of 
degeneration (grade IV), gene therapy or cell therapy may be required; and (3) In the 
advanced stage of IVDD (grade V), tissue engineering approaches are needed[70].

Growth factor therapy
The therapeutic use of growth factors enhances the matrix synthesis and delay 
degeneration by reducing inflammation[71,72]. Growth factors are the peptides or 
polypeptides that target specific receptors present on the surface of the cell, thereby 
influencing cell proliferation, differentiation and increasing their ability to synthesize 
the ECM[73,74]. Specific growth factors that include BMPs and TGF-β family members 
are used to stimulate osteogenic and chondrogenic differentiation[75,76].

The first successful exogenous administration of TGF-β1 in animal models showed 
the enhanced synthesis of PGs in the NP. Several in vitro and in vivo analyses on BMP-
2 and -7, TGF-β, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), 
growth and differentiate factor 5 (GDF-5), and insulin-like growth factor 1 (IGF-1) 
revealed that they stimulate the synthesis of ECM[77-82].

In chronic conditions of IVDD, cocktails of growth factors may be needed because 
the growth factors have a short half-life and are unstable that limits their use as direct 
injection into the IVD. The administration of multiple injections of growth factors 
could enhance gradual release at target site or gene-based delivery system to obtain 
the desired effect. Currently, the primary focus is on platelet-rich plasma (PRP) that is 
used as a possible therapeutic option to promote IVD regeneration[83-86]. Some 
limitations like the absence of standardization of the dosage, the process of 
preparation, and identification of mode of action need to be settled[87].
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Figure 1 Different approaches used for restoring a degenerated disc. MSCs: Mesenchymal stem cells; ESCs: Embryonic stem cells; iPSCs: Induced 
pluripotent stem cells; IVD: Intervertebral disc; HSCs: Hematopoietic stem cells; PRP: Platelet-rich plasma.

Gene-based therapy
In the last few decades, gene-based therapy has achieved wide research applications to 
focus on the regeneration of the IVD structures. The introduction of genes encoding 
the chondrocyte-specific proteins is directly transferred into the effectual host tissues
[88]. The gene-dose impact needs to be characterized for a safe and effective treatment. 
In contrast, certain findings have revealed inadequate outcomes of direct gene 
approach into the host cells[89]. Nonetheless, there are limited investigations that 
support the efficacy of this approach[90-93]. Recently, lentiviruses are believed to be 
competent vectors for gene transfer because they can deliver a substantial quantity of 
genetic material into the host cell's genome. The most frequently studied factors are 
TGF-β3, Sox-9, GDF-5, BMP family including 2, 7, and 12, connective tissue growth 
factor (CTGF), Wnt, IL-1, tissue inhibitor of metalloproteinases (TIMP-1), and LIM 
mineralization protein 1 (LMP-1), that are reported to enhance the synthesis of 
collagen type II and aggrecan in NP cells[94-106]. Genes involved in the development 
of IVD are summarized in Table 1.

Cell therapy approaches
Regardless of the development of various treatment alternatives, the conservative and 
surgical therapeutic approaches are not exceptionally valuable for treating deg-
enerated disc disease. These are usually incapable of delivering any solution to 
reestablish the structural and mechanical function of degenerated IVD. This situation 
has prompted the advancement of a regenerative medicine-based approach that 
substitutes the apoptotic and necrotic cells and limits cell death in IVD by targeting 
different cellular and molecular events[107]. Out of several approved cellular and 
molecular approaches, the utilization of stem cell therapies has shown superior 
outcomes, and stem cell transplantation is being used to restore the degenerated IVDs
[70]. Stem cells are undifferentiated cells that can differentiate into particular cell types 
and are broadly utilized as a cell therapy approach. Stem cells exist in a quiescent 
condition, and they self-renew in the propagation process. Stem cells are being 
researched in vitro and in vivo according to the need for the desired effect. Stem cell 
research has reformed the eventual fate of regenerative medicine because of its 
capability to recover impaired and damaged organs from treating various debilitating 
syndromes. The sources of stem cells and their properties are summarized in Table 2. 
Investigations are being made to comprehend the mechanism of regeneration at the 
molecular level to address the possible solutions for degenerative diseases and 
understand the basic pathogenesis and progression of different disorders.
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Table 1 Modifying genes essential for the development of intervertebral disc

Ref. Protein (Gene) Key findings

Choi et al[14], 2012 Sonic Hedgehog (SHH) Sclerotome tissue formation, annulus fibrosus formation, chondrogenesis of sclerotome 
cells 

Wijgerde et al[15], 
2005

Noggin (NOG) Antagonist of the BMP pathway, promotes Shh intracellular signaling cascade and Pax1 
gene activation

Murtaugh et al[16], 
1999

Bone Morphogenetic Protein (BMP) 
family 

In the presence of Shh, promotes chondrocyte differentiation of somite-derived IVD 
progenitors

Peters et al[21], 1999 Paired Box 1 (PAX1) Chondrogenic commitment of sclerotome cells

Sugimoto et al[27], 
2013

SRY-Box 9 (SOX) Regulates IVD tissue growth and development

Sohn et al[30], 2010 Transforming growth factor-β (TGF-β) Development of vertebral bodies

Pearson et al[31], 2005 Homeodomain Protein (HOX) Somite Patterning

IVD: Intervertebral disc.

Table 2 Variation in properties of different sources of stem cell types

Properties MSCs ESCs iPSCs

Sources Perinatal and adult tissues Embryo at blastocyst stage Genetically reprogrammed specialized cells

Plasticity Multipotent Pluripotent Pluripotent

Teratoma formation No Yes Yes

Growth Limited High High

Ethical concerns No Yes No

Immune rejection No Yes No

Cell transplantation Autologous and allogenic Allogenic Autologous

Clinical trials in human patients Ongoing Limited In vitro/in vivo only

Use in genetic disorder Deficient (Carry mutated gene) Superior Deficient (Carry mutated gene)

Ease of isolation Yes No No

MSCs: Mesenchymal stem cells; ESCs: Embryonic stem cells; iPSCs: Induced pluripotent stem cells.

STEM CELLS FOR IVD REGENERATION
Stem cells from different sources are involved in the regeneration of disc diseases. A 
comparison of MSCs and other cell types is presented in Table 3. Different cellular 
approaches used for the regeneration of IVDs are highlighted in Table 4.

Hematopoietic stem cells
Hematopoietic stem cells (HSCs) possess the capability to differentiate into blood cells. 
HSCs express CD34 molecules, while non-hematopoietic stem cells, including MSCs, 
do not show CD34 expression. These cells were injected into the rat IVDD model to 
investigate which population of cells might acquire disc-identical cells for treating 
IVDD. It is reported that HSCs can survive in the NP of host IVDs up to 42 d, while 
non-HSCs were detected up to 21 d only[108]. However, this was nullified by further 
confirmation that HSCs cannot cure DDD. Although HSCs can only induce blood cells 
and cannot differentiate into chondrocyte-like cells and repair disintegrated NP, this 
has begun a novel era of scientific investigation for tissue regeneration. It is demo-
nstrated that HSC transplantation of autologous pelvic bone marrow (BM) cells for the 
degenerated disc in clinical trials yielded no efficient recovery[109].

MSCs
The therapeutic use of MSCs is based on their two basic characteristics, i.e., they can be 
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Table 3 Human umbilical cord-derived mesenchymal stem cells compared with other stem cells sources

Properties Perinatal Adult Embryonic

Ability to differentiate into various cell type √ √ √

Plastic adherence √ √

High in vitro proliferation ability √ √

Low risk of tumorigenicity √ √

Ethical issues √

Lower risk of viral contamination √ √

Capacity for autologous transplantation √ √

Established/proven treatment in human patients √ √

Ease of collection √ √

Less need for stringent antigen typing √ √

used to treat different diseases and can be isolated from the autologous source. MSCs 
are considered as a treatment choice for several diseases like DDD, stroke, myocardial 
ischemia, diabetes, and neurodegenerative diseases[110-113]. MSCs can be readily 
isolated due to their adherent property. MSCs possess the excellent capability to differ-
entiate into three mature lineages, namely bone, adipose, and cartilage, as well as into 
endothelial, myogenic[114-116], epithelial[117], and neural cell types[118] under 
specific conditions when guided by appropriate growth factors or pharmacological 
inducers. They possess the remarkable proliferative capability in cell culture with 
excellent stability in their phenotype and differentiation potential[119].

Furthermore, they can be smoothly transformed with the ability to home at the 
transplantation site. MSCs are immunologically inactive, which makes them ideal 
candidates for transplantation[120]. MSCs have great capability to differentiate into 
chondrocyte-like cells that phenotypically resemble NP cells in chondrogenic 
induction conditions[121-123]. MSCs promote the regeneration of endogenous tissue 
by secreting cell survival factors[124].

Tissue-specific stem cells
CEP, AF, and NP-derived stem cells are isolated from the adult IVD, namely cartilage 
endplate stem cells, AF stem cells, and nucleus pulposus stem cells (NPSCs), 
respectively. These cells are effective candidates for IVD recovery. Trials with disc 
stem cells revealed remarkable advantages in homing and retention in the IVD niche, 
differentiation capability, and functional competency. However, limitations in 
harvesting, separation, and proliferation of disc stem cells and low potency hinder 
researchers from using them for therapy[125]. Studies to overcome IVD injury using 
disc derived stem cells showed their ability to replace affected tissue by producing 
disc-specific collagen type II and proteoglycan, and restoring disc hydration to 
physiological state[126,127].

Embryonic stem cells
Embryonic stem cells (ESCs) originate from the inner cell mass of blastula and possess 
an excellent tendency to differentiate into different cell types. They proved themselves 
as stable and relatively better source for disc regeneration involving in vitro production 
of NCs. These NCs are the first to form NP during the embryogenesis of the disc. 
Researchers have successfully differentiated ESCs into chondrocyte-like cells[128]. 
However, ESCs display tumorigenic properties, can cause teratoma formation, and 
also pose ethical concerns because of their embryonic origin, which limit their 
application for IVDD therapy[69].

Induced pluripotent stem cells
Induced pluripotent stem cells (iPSCs) are derived from genetically reprogrammed 
somatic cells to an embryonic-like state. The introduction of pluripotency genes and 
factors in adult terminally differentiated cells is a major discovery of this era. In 2006, 
mouse iPSCs were first reported by Shinya Yamanaka together with his co-invest-
igators who revealed that fibroblasts might be reprogrammed to an ESC-like cells by 
four pluripotent gene-induced expressions i.e. Sox2, octamer-binding transcription 
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Table 4 Summary of studies on cellular therapeutic approaches for regenerative potential of the degenerated disc

Type of stem cells Gene Preconditioning outcomes Ref.

In vitro human cultured NP cells and 
MSCs

TGF-β1 TGF-β1 stimulates collagen-1 expression in 
cultured NP cells and in MSCs, increased collagen-
1 and sox-9 expression. Co-cultured MSCs with NP 
cells showed high expression of collagen-1, 
aggrecan and sox-9 expression via TGF-β-
dependent effect

[126]

Chick periosteum-derived MSCs 
Rabbit bone marrow-derived MSCs 
Rat MSCs

TGF-β1 Stimulate chondrogenesis and inhibits 
osteogenesis. Facilitates in vitro chondrogenic 
differentiation of rabbit BM-MSCs. Increased 
MAPK activity and upregulation of mRNA 
expression of sox-9, aggrecan, and collagen type II

[190,122,123]

Human adipose-derived MSCs and 
bone marrow-derived MSCs

TGF-β3, GDF-5, or GDF-6 In the presence of GDF-6, AD-MSCs leads to 
differentiation into an NP-like phenotype and 
results in a richer proteoglycan matrix with low 
rigidity

[158]

Human bone marrow-derived MSCs TGF-β1, and GDF-5 Hypoxic TGF-β1 and GDF-5 both increased 
aggrecan and collagen II mRNA levels and GAGs 
accumulation

[159]

In vitro human bone marrow-derived 
MSCs

TGF-β3, dexamethasone, and 
ascorbate

Preconditioned BM-MSCs expressed higher level of 
chondrocytes differentiation markers than culture-
expanded human IVD cells and articular 
chondrocytes

[193]

In vivo murine IVD cells TGF-β3, GDF-5, FGF, or IGF-1 After four weeks of GDF-5 treatment, showed 
significantly increase in IVD height

[72]

Human adipose-derived MSCs TGF-β1 and GDF-5 Both distinctly efficient in promoting an NP cell 
phenotype

[160]

Human cultured NP cells TGF-β1, and IL-1β TGF-β1 improved NP cell proliferation, 
downregulation of mRNA expression of ADAMTS-
4 and -5, upregulation expression of TIMP-3. IL-1β 
inhibited NP cells proliferation, increase of 
ADAMTS-4 and -5

[161]

Canine cultured NP cells TGF-β, and IL-10 Suppressed IL1-β and TNF-α expression inhibiting 
inflammatory reaction

[200]

In vitro human cultured NP cells. E19 
rat cultured AF cell

TGF-β1, and IGF-1 Stimulation of human NP cells in a dose and time-
dependent manner. TGF-β1 pushed AF cells to 
fibrocartilaginous phenotype. IGF-1 showed an 
upregulation of ECM

[79,162]

Murine ESCs TGF-β, IGF, ascorbic acid, and cis-
retinoic acid

All promotes differentiation toward chondrogenic 
lineage

[175]

Human bone marrow-derived 
stromal cells

TGF-β1, rhGDF-5, or bovine NPCs Stimulates cytokeratin-19 and aggrecan/type II 
collagen ratio distinguish chondrogenic from IVD 
cell phenotype

[163]

Human bone marrow-derived MSCs TGF-β3, and dexamethasone Notochordal cell conditioned medium expressed 
higher level of NP-like phenotype markers and 
GAGs deposition than chondrogenic medium or 
TGF-β groups

[194]

Human cultured NP cells TGF-β3, and dexamethasone Enhanced NP proliferation, cell metabolism and 
reduce catabolism

[195]

Rabbit cultured NP cells TGF-β1, and BMP-2 Robust restoration of ECM. Increased mRNA 
expression of aggrecan, type I and type II collagen

[133]

In vitro porcine cultured AF cells BMP-2, and TGF-β1 Decrease in MMP-1 and increase in aggrecan 
synthesis

[73]

Mouse MSCs BMP-2, 7, 13 Proliferate and differentiate into osteoblastic and 
chondrogenic lineages and no adverse effects on 
proliferation on undifferentiated MSCs

[164]

Human bone marrow-derived MSCs BMP-7 Promotes both chondrogenic and osteogenic 
differentiation of MSCs

[165]

In vitro rat cultured AF cells BMP-2 Increased mRNA expression of aggrecan and type 
II collagen. Also, up-regulates BMP-7 and TGFβ-3 
mRNA expression

[166]
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Mouse embryonic-derived MSCs BMP-4, Insulin, triiodothyronine, or 
TGF-β3

All BMP-4, Insulin, and triiodothyronine 
suppressed adipogenesis and develop osteogenic 
phenotype. TGFβ-3 promotes chondrogenesis

[128]

In vitro human bone marrow-derived 
MSC cocultured with human 
cultured NP cells

BMP2, BMP4, BMP6, and BMP7 BMP4 showed a high potential for IVDs 
regeneration. Although, BMP2 and BMP7 showed 
no potent inducer for degenerated human NP cell’s 
regeneration

[167]

Human bone marrow-derived MSCs BMP-13 Inhibited osteogenic differentiation of human BM-
MSCs and increased proteoglycan synthesis

[168]

Human adult MSCs BMP-3, and TGFβ-1 Enhanced cell proliferation, GAGs content and 
differentiation into NP-like phenotype. 
Upregulated smad-3 signaling pathway

[126]

Human adipose tissue-derived MSCs BMP-2, BMP-6, BMP-7, and TGF-β2 Both TGFβ-2 and BMP-7 induces chondrogenic 
potential

[76]

Human cultured NP and AF IVD 
cells

rhBMP-2, rhBMP-12, and 
adenoviralBMP-12

Both rhBMP-2 and rhBMP-12 increased NP 
collagen and proteoglycan but least effects on AF. 
Though, adenoviral BMP-12 increased ECM 
protein formation in equally NP and AF

[99]

Human and bovine cultured NP cells BMP-7/OP-1 with BMP-2 Enhanced GAGs production and NP cells 
proliferation

[77]

Human cultured NP cells rhBMP-7 Inhibited apoptotic effects, decreased caspase-3 
activity and maintained ECM production

[169]

Bovine cultured NP cells BMP-7, and IGF-1 Both BMP-7 and IGF-1 induces Smad signaling 
pathways and suppresses noggin expression via 
PI3-kinase/Akt pathways

[170]

Human cultured NP and AF IVD 
cells

BMP-2 Improved newly synthesized proteoglycan and 
increased mRNA expression of aggrecan, type I 
and type II collagen

[171]

In vitro cultured NP cells IGF-1 Increase of matrix synthesis in well-nourished 
regions

[180]

In vitro canine cultured IVD cells IGF-1, FGF, EGF, or TGF-β3 TGF-β3 and EGF both produced higher 
proliferative responses than FGF. Also, IGF-1 
showed a slightly significant responses in NP but 
no contribution in AF and transition zone

[74]

Horse cultured articular cartilage 
cells. Bovine cultured NP cells

IGF-1 Maintained differentiated chondrocyte 
morphology and enhanced synthesis of ECM 
molecules. Increased proteoglycan synthesis

[178,191]

Bovine cultured AF and NP cells IGF-1, bFGF, and PDGF Strengthened cell proliferation [81]

Human cultured AF cells IGF-1, and PDGF Significant reduced in apoptotic cell level [182]

Chondroitinase ABC injection rabbit 
model

OP-1 Increase in disk height and matrix synthesis [172]

Rabbit cultured NP and AF IVD cells OP-1 Restored collagens and upregulated proteoglycan 
synthesis

[173]

Human cultured NP and AF cells OP-1 Improved in the proteoglycan contents, total DNA, 
and collagen

[174]

Human cultured NP cells OP-1 Partially repaired GAGs content, depends on a 
very high doses

[175]

Gene therapy, in vitro human IVD 
cells. Gene therapy, in vivo rabbit IVD

TIMP-1 Increased proteoglycan synthesis. Less MRI and 
histologic evidence of degeneration

[102,103]

In vitro cultured AF cells and 
chondrocytes

LMP-1 Increased proteoglycan synthesis, upregulation of 
mRNA expression of aggrecan, collagen types I 
and II, BMP-2 and -7

[105]

Human synovium derived stem cells FGF-2, and FGF-10 FGF-2 stimulates chondrogenic gene expression, 
GAGs deposition and promotes both chondrogenic 
and osteogenic lineages

[176]

Ovine bone marrow-derived MSCs FGF-2, and FGF-18 Promotes both chondrogenic and osteogenic 
lineages of MSCs

[177]

In vitro cultured human NP cells FGF2 Increased proliferative potential, redifferentiation 
gene expression and GAGs deposition

[178]

Greater survival and repair effect on the Bone marrow-derived MSCs bFGF, TGFβ-1 and TCH gel [179]
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degenerated IVDs

In vitro rat cultured NP cells rGDF-5 Dose-dependency high expression of aggrecan and 
collagen type II genes was induced by rGDF-5 disc 
cells from GDF-5-deficient mouse

[82]

In vitro bovine cultured. NP and AF 
cells, in vivo rabbit IVD model

rhGDF-5 Increased DNA and proteoglycan level in vitro. In 
vivo, rhGDF-5 injection improved IVD height, MRI 
and histological grade score

[183]

In vivo mice and rabbit model GDF-5 Structural and functional maintenance of IVD [184]

Canine BM peri-adipocyte cells (BM-
PACs)

GDF-5, TGFβ-1, BMP-2, and IGF-1 GDF-5 promoted GAGs production and collagen 
type II without increasing collagen-10 mRNA 
expression

[199]

Adult bone marrow-derived MSCs EGF In the presence of EGF, promotes osteogenic 
differentiation and enhance paracrine secretion of 
BM-MSCs both in vitro and in vivo

[80]

In vivo rat bone marrow-derived 
MSCs

rhGCSF Increase of end plates cell proliferation but no 
contribution in IVD regeneration or maintenance

[185]

Human synovium-derived MSCs IL-1β, and TNF-α Enhanced synovial MSCs proliferation and 
chondrogenic ability

[205,206]

Human bone marrow-derived MSCs. 
In vitro cultured porcine AF cells

IL-1β, and TNF-α Both IL-1β and TNF-α suppressed chondrogenesis 
in a dose-selective manner. Increased expression of 
MMP-1

[73,207]

Gene therapy, in vitro cultured NP 
cells

IL-1 and IL-1Ra IL-1Ra decreased extracellular matrix degradation [101]

Mouse bone marrow-derived MSCs SOX-9 Stimulate chondrogenesis [95]

Gene therapy, in vivo in rabbit IVD SOX-9 Chondrocyte phenotype of IVD, restored 
architecture of NP

[96]

Gene therapy, in vitro bovine AF cells Sox-9, and BMP Increased proteoglycan and/or collagen type II 
synthesis

[97]

Gene therapy, in vitro human NP 
cells

WNT-3A, WNT-5A, and WNT-11 Increased expression of redifferentiation NP genes 
and GAGs accumulation

[100]

Human bone marrow-derived MSCs WNT-3A and FGF2 Synergistically both promoted MSC proliferation, 
chondrogenesis and cartilage formation

[186]

VEGFR-1 and VEGFR-2 lacZ/+ NP 
cells

VEGF Raise NP survival [208]

Rhesus monkey cultured NP cells CTGF Stimulation of collagen type II and proteoglycan 
synthesis

[187]

Human cultured NP cells PRP Enhanced NP proliferation and differentiation into 
chondrogenic lineage

[134]

Porcine cultured NP and AF cells; 
Porcine IVDD organ

PRP Stimulation of IVDD cells proliferation. Increased 
mRNA expression levels of chondrogenesis and 
matrix formation

[83,84]

Bovine cultured AF cells PRP Upregulation of cell numbers and matrix synthesis [85]

In vitro porcine cultured AF cells PRP and other cytokines Decreased enzymes expression causing 
degradation and increased matrix proteins 
synthesis

[86]

IVD: Intervertebral disc; BMP: Bone morphogenetic protein; EGF: Epidermal growth factor; FGF: Fibroblast growth factor; IGF-1: Insulin-like growth 
factor-1; OP-1: Osteogenic protein-1; PDGF: Platelet-derived growth factor; TGF-β1: Transforming growth factor-β1; ADAMTS: A disintegrin and 
metalloproteinase with thrombospondin motifs; TIMP: Tissue inhibitor of metalloproteinases; TNF-α: Tumor necrosis factor-α; MMP: Matrix 
metalloproteinase; IL-1β: Interleukin-1 beta; IL-1Ra: IL-1 receptor antagonist; SOX-9: SRY-box transcription factor-9; rhGDF-5: Recombinant human growth 
and differentiation factor-5; LMP-1: LIM mineralization protein-1; WNTs: Wingless-related integration site; VEGFR: Vascular endothelial growth factor 
receptor; LacZ: β-galactosidase; CTGF: Connective tissue growth factor; GCSF: Granulocyte colony-stimulating factor; PRP: Platelet-rich plasma; AF: 
Annulus fibrosus; GAGs: Glycosaminoglycans; NP: Nucleus pulposus; ECM: Extracellular matrix; IVDD: Intervertebral disc degeneration; MSCs: 
Mesenchymal stem cells; BM: Bone marrow; AD: Adipose tissue; ESCs: Embryonic stem cells; NPCs: Nucleus pulposus cells; MRI: Magnetic resonance 
imaging; DNA: Deoxyribonucleic acid; mRNA: Messenger ribonucleic acid; TCH: Temperature-responsive chitosan hydrogel; MAPK: Mitogen-activated 
protein kinase; PI3: Phosphatidylinositol 3; Akt: Protein kinase B.

factor 3/4 (Oct3/4), Kruppel-like factor 4 (Klf4) and Myelocytomatosis (c-myc). These 
iPSCs were identical to the mouse ESCs because they express pluripotent markers and 
can differentiate into any cell lineage[119,129]. In subsequent years, they performed 
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several experiments using human fibroblasts and successfully reprogrammed them to 
iPSCs by applying the same factors. A different team of researchers attained a similar 
achievement with minor alterations of Lin-28 and Nanog rather than c-myc and Klf4
[130]. iPSCs possess a great tendency to differentiate into each of the three germ layer 
cells containing NCs[131,132]. Despite their ability to induce chondrogenesis, iPSCs 
might be susceptible to tumorigenesis because of their extreme pluripotent nature.

Tissue engineering-based therapy 
MSCs face challenges like survival following transplantation, inadequate paracrine 
secretion, and limitations in cell homing. These hindrances in the effectiveness of 
MSCs can be overcome by improving their potential of migration, homing, 
propagation, and differentiation into the preferred cell type. Thus, selecting an 
appropriate scaffold for stem cells can better serve for the re-development of the lost 
tissue. Injectable bio-materials or micro and nanoscale scaffolds are preferable for 
biocompatibility, cell infiltration, and remodeling of the transplanted cells. Upon 
preconditioning, the fully biocompatible material can also target cell attachment, 
proliferation, normal morphology, and elevated expression of desired factors. Thus, 
the strategy has the advantage of inducing differentiation in vitro and transplanting 
cells in vivo[133,134].

CURRENT ISSUES RELATED TO TREATING DEGENERATIVE INTER-
VERTEBRAL DISC
IVD is the largest avascular structure in the human body that has limited efficiency for 
regeneration. Due to a vascular nature of IVD, tendency to develop strategy for their 
treatment and regeneration is low[135]. Rehabilitation, surgical interventions, post-
trial treatment, and standardized procedures for the subjects should be deemed 
mandatory. In the case of the local treatment, a small incision should be made[136]. 
Therefore, surgeries for injecting therapeutic cells should be minimally invasive. In 
addition, safety concerns such as high intensity of neuropathic pain and secondary 
infections and genuine diagnosis of complications are significant. One of the critical 
aspects of designing clinical trials with lower back injuries is the level of injury-
induced cases[137]. In selecting subjects with an exclusively specific level of damage, 
the distance of the injured spinal segment, route of administration, and phenomenal 
interaction of cell or drug action should be considered[138]. Therefore, long term 
patient follow-up with standardized measurement scales, such as the American Spinal 
Injury Association Scale for neurological levels, Normal Rating Scale (pain and spinal 
cord independence level), Modified Ashworth Scale (for spasticity), and International 
Association of Neurorestoratology Spinal Cord Injury Functional Rating Scale (for the 
report of functionality) are essential[139]. Current IVDD animal models are of limited 
significance as most are different from human disc degeneration[140]. Factual 
information can be obtained from animal models; however, the limitations are that the 
studies were generally applied on young rodents with the recently damaged disc in 
which normal tissue repair mechanisms are still active to heal the degeneration. It is 
also difficult to quantify the amount of pain. Therefore, researchers use alternate 
methods to examine disc regeneration or repair success by performing biochemical, 
molecular, and histological assessments.

Few ethical concerns should be considered while performing pre-clinical studies to 
translate into clinical trials. Using scientific validity, fair subject selection, favorable 
distribution of risks-benefits ratio, and informed consent is necessary to make clinical 
research ethical, which is considered challenging in disc diseases[141]. Typical 
successful measurements comprise proportions of morphology (e.g., IVDs height, AF 
delamination, and IVD degeneration grade through MRI and histology), cellularity, 
ECM quality and quantity, cytokine levels, and biomechanics (e.g. pressure/volume 
testing, compressive strength, and range of motion)[142]. Further, leakage of the 
delivering cells or drugs is a concern because small escape is possible while injecting. 
Cell therapy may upregulate the production of some growth factors, which may not be 
suitable for disc repair, as the cells intrinsically express a high level of growth factors, 
for example, TGF-β1 and bFGF, that can mediate blood vessel formation, trigger 
inflammatory mechanism and regulate abnormal disc cell differentiation. Therefore, 
extensive studies related to the toxicity of biochemical factors in the intervertebral disc 
are necessary before they are applied in clinical trials. Furthermore, safety with any 
type of gene therapy is a major consideration. These limitations make direct 
application of biological approaches difficult to treat disc injuries from animals to 
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humans[143,144].

ENHANCING THE IVD REGENERATION POTENTIAL BY HUMAN 
PERINATAL MSCs
The implantation of MSCs is considered a promising therapeutic approach for IVD 
regeneration. MSCs are primarily found in adipose tissue, dental pulp, BM, and 
peripheral blood. Recent advances with MSCs have shown that they can be isolated 
from a variety of postnatal organs such as skin, bone, cartilage, periodontium, 
pancreatic islets, skeletal muscle, periosteum, and synovial membrane/fluid as well as 
from perinatal tissues like umbilical cord tissue, umbilical cord blood (UCB), AF, and 
placenta[107,145,146]. The human perinatal umbilical cord is an optimistic source of 
MSCs. Like BM stem cells, human umbilical cord-derived MSCs (hUC-MSCs) are the 
noncontroversial source. The cells have rapid self-renewal properties and possess 
various advantages, making them promising therapeutic candidates[147]. Some of the 
advantages are as follows: (1) They are accessible in massive amounts, considering 
plenty of umbilical cord (UC) with around 135 million births globally every year; (2) 
They can be effectively collected and manipulated without any adverse effect on the 
infant or mother; (3) There are no predetermined ethical issues that need to be 
managed in contrast with ESCs; (4) They show more significant proliferative potential 
compared to BM-MSCs[148]; (5) They possess minimal immunogenicity[149]; (6) There 
is minimal possibility of viral contamination[150]; (7) They possess a relatively large 
harvest size as compared to MSCs from BM[151]; and (8) They need less stringent 
antigenic typing, and there may be less rejection[152].

Studies have shown that MSC isolation and characterization from Wharton’s jelly 
(WJ) tissue can be easily performed[153,154]. In addition, several current clinical trials 
explain the utilization of UC matrix-derived MSCs. It is early to relate in vivo research 
of tissue regeneration utilizing MSCs derived from UCB compared to other sources to 
understand better the capability of hUC-MSCs to regenerate degenerative discs. 
Clinical trials showed that hUC-MSC transplantation could be a promising substitute 
for the treatment of prolonged discogenic LBP[155] due to better survival in the 
avascular niche of the IVD[156] with differently manipulating transplanting cells[157].

DIFFERENTIATION of MSCs TOWARDS CHONDROGENESIS 
Stem cells have been treated with small molecules to improve their renewing 
capability. Numerous proteins and small molecules have been examined in this 
perspective such as TGF-β[158-163], BMPs[164-171], osteogenic protein (OP)[172-175], 
bFGF[176-179], IGF[180-182], GDF-5[183,184], granulocyte colony-stimulating factor 
(GCSF)[185], Wnt[186], CTGF[187], decalpenic acid, β-glycerophosphate, isobutyl 
methylxanthine, purmorphamine, ascorbic acid, and heparin-binding growth-
associated molecule (HB-GAM)[188,189]. TGF-β has been found to lead periosteum-
derived stem cells towards chondrogenic lineage and inhibit osteogenic differentiation 
in extreme density culture[190]. High concentrations of IGF-1 can impose the 
expression of chondrogenic proteins in BM-derived MSCs[191]. Ascorbic acid, non-
organic phosphates, and dexamethasone increase the differentiation potential of BM-
derived stem cells towards osteoblasts in CEPs[192-195]. Similarly, pleiotrophin (PTN) 
has also been reported to differentiate stem cells derived from human BM into 
chondrocytes[196]. Dexamethasone, insulin, and soluble factors have also been shown 
to stimulate chondrogenic differentiation of MSCs in vitro[197].

Chemical treatment to improve cell survival
Cell survival at the transplantation site is the most critical challenge. Numerous cells 
die soon after implantation at the site of injury[156]. Direct stimulation of stem cells 
into specific lineage by using growth factors and small molecules to increase their 
survival in host tissue is the most practical approach. Investigations showed that the 
expression of particular cell survival factors could enhance cell feasibility and survival 
in diseased tissue[198,199]. TGF-β is a growth factor associated with several cellular 
processes including cell proliferation and differentiation[200]. The rabbit model of 
IVDD induced through nucleus aspiration and infused with a combination of TGF-β1, 
fibrin glue, and rabbit MSCs, produced improved results[201]. Similarly, in vitro trans-
differentiation phenomenon of MSCs into different cell types showed that tra-
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nsplanted cells could combine with native cells to give better performance in the 
damaged tissue[202].

Chemical treatment to improve stem cell homing 
For enhanced regeneration, proficient cell homing is essential because the curative 
impact primarily depends on the effective cell engraftment following transplantation. 
Various investigators have utilized chemokine/cytokines receptors associated with 
MSC homing to enhance cell attachment at degenerated tissues[203], including CCR1, 
2, 4, 7, 9, and in addition, CXC chemokine receptor-5, -6[204]. CCL5/RANTES has 
been identified as a chemoattractant secreted by degenerative IVD in organ culture
[55]. Moreover, the possibility of different cytokines associated with the pathogenesis 
of IVD degeneration, specifically TNF-α and IL-1β, play an important role in 
controlling MSC recruitment to the IVD[101,205-207]. In vitro and in vivo research 
studies showed that molecular pre-requisite of MSCs with growth factors like TNF-α 
and stromal-derived-factor-1 (SDF-1) represent primary signaling cues to elevate 
VEGF production[208]. MSC conditioned medium improved neuronal survival in 
several neurological disorders such as neurodegenerative diseases, stroke, and spinal 
injuries[209]. Moreover, the conditioned medium acquired from articular cartilage 
stimulated the chondrogenic potential of MSCs and ECM development. The paracrine 
influence of prominin-1 or CD133+ endothelial progenitor cells from cord blood 
releases biologically active molecules in the conditioned medium along with 
microvesicles, which stimulate cell growth and homing. CD133+ cell derivatives with 
microvesicles possess messenger RNAs for various pro-angiopoietins and anti-
apoptotic factors, containing bFGF, receptor tyrosine kinase (c-kit) ligand, IGF-1, 
VEGF, and IL-8, contributing to withstand harsh microenvironment of the disc[210].

CONCLUSION
In conclusion, this review highlights regenerative medicine-based approaches for the 
regeneration of IVDD. Numerous potential therapeutic options were identified for the 
development of cellular therapies. The harsh microenvironment of the degenerative 
disc poses challenge to the survival of implanted cells. Therefore, possible strategies 
are needed to enhance the ability of the transplanted cells by preconditioning, 
chemical modification, genetic manipulation, and augmentation of growth and 
survival factors to help cells withstand the harsh disc microenvironment. The ultimate 
goal is to ensure that the transplanted cells survive, integrate and differentiate into 
desired cell types to regenerate and restore the normal physiological function of the 
IVD.
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