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Abstract
Circular RNAs (circRNAs) have covalently closed loop structures at both ends, 
exhibiting characteristics dissimilar to those of linear RNAs. Emerging evidence 
suggests that aberrantly expressed circRNAs play crucial roles in hepatocellular 
carcinoma (HCC) by affecting the proliferation, apoptosis and invasive capacity of 
HCC cells. Certain circRNAs may be used as biomarkers to diagnose and predict 
the prognosis of HCC. Therefore, circRNAs are expected to become novel 
biomarkers and therapeutic targets for HCC. Herein, we briefly review the charac-
teristics and biological functions of circRNAs, focusing on their roles in HCC to 
provide new insights for the early diagnosis and targeted therapy of HCC.

Key Words: Hepatocellular carcinoma; Circular RNAs; Function; Diagnosis; Biomarkers; 
Targeted therapy
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Core Tip: Current studies have shown that aberrantly expressed circular RNAs 
(circRNAs) play crucial roles in hepatocellular carcinoma (HCC) by affecting the prolif-
eration, apoptosis and invasive capacity of HCC cells. Certain circRNAs may be used as 
potential biomarkers to diagnose and predict the prognosis of HCC. Therefore, 
circRNAs are expected to become novel biomarkers and therapeutic targets for HCC. 
Herein, we briefly review the characteristics and biological functions of circRNAs, 
focusing on their roles in HCC to provide new insights for the early diagnosis and 
targeted therapy of HCC.
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INTRODUCTION
Early hepatocellular carcinoma (HCC) usually lacks specific symptoms, and most patients have missed 
the opportunity for effective treatment because they are diagnosed at middle-to-advanced stages. The 
emergence of novel therapeutic strategies for HCC, such as immunotherapy and molecularly targeted 
therapies[1], can prolong the survival of HCC patients. Unfortunately, patients with advanced HCC are 
prone to metastasis and recurrence, and long-term prognosis remains poor[2]. Therefore, identifying 
new biomarkers for early diagnosis and effective therapeutic targets of HCC is critical.

Circular RNAs (circRNAs) are covalently closed loops generated by the back splicing of precursor 
mRNA (premRNA) molecules, which exist widely in mammalian cells and are characterized by 
stability, conservative evolution, and cell or tissue specificity. These characteristics endow circRNAs 
with many biological functions, such as acting as microRNA (miRNA) sponges, regulating the 
transcription of parental genes, binding RNA binding proteins (RBPs), and encoding proteins and 
peptides[3]. CircRNAs exert their biological functions mainly at the epigenetic, transcriptional and 
posttranscriptional levels[4,5]. Dysregulated circRNAs play crucial roles in various diseases, particularly 
with respect to the occurrence and development of tumors and tumor proliferation, apoptosis and 
metastasis[6-8]. Currently, aberrantly expressed circRNAs are closely associated with the proliferation, 
cell cycle, apoptosis, migration, epithelial-mesenchymal transition (EMT), invasion, metastasis, cancer 
stem cells (CSCs), glycolysis, microvascular invasion (MVI), angiogenesis, immune surveillance, 
immune escape, chemoresistance, and immunotherapy resistance of HCC. Thus, circRNAs may be 
promising biomarkers for the diagnosis and prognosis of HCC as well as effective therapeutic targets. 
Herein, we briefly review the characteristics and biological functions of circRNAs, focusing on their 
roles in HCC to provide new insights into the early diagnosis and targeted therapy of HCC.

CHARACTERISTICS, CATEGORIES AND GENERATION OF CIRCRNAS
Characteristics of circRNAs
Most circRNAs have the following characteristics: (1) High abundance: The abundance of circRNA 
expression varies greatly; in some cases, the abundance of circRNAs exceeds 10 times that of their linear 
RNA counterparts[9]; (2) Stability: The stability of circRNAs is 2.5-5 times higher than that of linear 
transcripts because the unique covalently closed loop of circRNAs lacks 3’ and 5’ ends, resulting in the 
absence of ribonuclease binding targets; therefore, circRNAs are not easily degraded[10]; (3) Conser-
vation: CircRNAs are widely present in different species and are evolutionarily conserved. Some studies 
suggest that most circRNAs in different species are evolutionarily conserved, while a few are not 
conserved[11]; and (4) Specificity: CircRNAs have tissue and cell specificity, with differential expression 
in different stages of ontogeny and disease progression[12].

Categories and generation of circRNAs
CircRNAs are categorized into four classes based on their origins: Exon circRNAs (ecircRNAs), intron 
circRNAs (ciRNAs), exon-ciRNAs (EIciRNAs), and intergenic circRNAs[13] (Figure 1). EcircRNAs are 
predominant and are mainly located in the cytoplasm. CiRNAs and EIciRNAs are located in the 
nucleus. The generation mechanism of circRNAs is very complex and has not yet been understood. 
Current studies have shown that the cyclization of circRNAs is principally driven by intron pairing, 
RBPs or transcription factors and lariat[14].

Intron pairing-driven cyclization or “direct back splicing” is the most common cyclization mode of 
ecircRNA and EIciRNA, where the special premRNA containing ALU repeats is sheared to form 
ecircRNA after reverse base complementary pairing[11]. Lariat-driven cyclization or “exon skipping” 
connects exons at both ends through donor and acceptor sites provided by spliceosomes to form lariat 
selective splicing to generate ecircRNA[11]. In RBP-driven circulation, RBPs bound to the comple-
mentary sequences on both sides of the intron of premRNA interact with each other to form a circular 
structure and promote the terminal connection at both ends of the head and tail to form ecircRNA[15]. 
EIciRNAs can be formed if introns are retained between exons during the above three mechanisms[16]. 
Self-cyclization of introns: When pre-RNA has a 7 nt guanine (G)- and uracil (U)-rich sequence near an 
exon and an 11 nt cytosine (C)-rich sequence near another exon, the introns escape branching and 
degradation during the splicing reaction to produce an intron lariat structure and cyclize to form a 
stable ciRNA[17].

https://www.wjgnet.com/1948-5204/full/v14/i6/1067.htm
https://dx.doi.org/10.4251/wjgo.v14.i6.1067
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Figure 1 Schematic diagram of biogenesis of circular RNAs. circRNAs: Circular RNAs; pre-mRNA: Pre-messenger RNA; ecircRNAs: Exon circRNAs; 
ciRNAs: Intron circRNAs; EIciRNAs: Exon-intron circRNAs; RBPs: RNA binding proteins.

BIOLOGICAL FUNCTIONS OF CIRCRNAS
CircRNAs serve in regulatory roles in different biological behaviors through different mechanisms, 
including acting as sponges of miRNAs, interacting with RBPs, and regulating gene transcription and 
translation (Figure 2). A recent review analyzed the functions of circRNAs in HCC, of which acting as 
miRNA sponges accounted for 79.6%[18].

Acting as miRNA sponges
As molecular sponges of miRNAs, circRNAs harbor many miRNA binding sites, which can compet-
itively bind to and restrain the activity of miRNAs[19], thereby regulating the expression of downstream 
target genes posttranscriptionally. Currently, clinical studies have mainly focused on circRNAs as 
miRNA molecular sponges[20]. Compared with other types of competing endogenous RNAs, circRNAs 
have the following advantages. First, circRNAs are not easily degraded by RNA enzymes (RNase or 
RNA exonucleases)[21,22], which makes the circRNA structure stable and enables the possibility to 
stably inhibit the performance of miRNA function, with a stronger adsorption capacity for miRNAs 
than linear mRNAs and long noncoding RNAs. Second, existing studies have shown that the majority of 
circRNAs are highly expressed and that they can contain substantial miRNA response elements in a 
single molecule[23-25]; therefore, circRNAs are able to instantly bind or release large amounts of 
miRNAs to efficiently exert their regulatory roles. For example, cirs-7, also known as CDR1as, is a 
circRNA containing more than 70 miR-7 binding sites[26], which can bind to miR-7 and act downstream 
of its mRNA. This molecular axis is widely expressed in various malignancies, including oral squamous 
cell carcinoma and lung cancer[27,28]. In addition, circRNAs may store and transport miRNAs[29]. For 
example, CDR1as has both miR-7 and miR-671 binding sites[30], and CDR1as first binds to miR-7 and is 
transported to subcellular locations, where CDR1as is then degraded by miR-671 to eventually release 
miR-7[26].

It is worth noting that only circRNAs meeting specific stoichiometric requirements can act as 
endogenous miRNA sponges, where the abundance of circRNAs as miRNA sponges must match that of 
miRNAs[31]. Thus, circRNAs as miRNA sponges may not be a universal phenomenon, but one unique 
to some circRNAs. Only ecircRNAs can act as miRNA sponges, while EIciRNAs and ciRNAs contain 
few miRNA binding sites that are relatively scattered; thus, EIciRNA and ciRNA may lack the miRNA 
sponge action ability possessed by ecircRNA[17]. The dysregulation of the circRNA-miRNA-mRNA 
axis, whether manifesting a promoting or inhibitory role, has been confirmed in many cancers. 
However, the specific biological mechanism of the circRNA-miRNA-mRNA axis in the occurrence and 
development of tumors and whether molecular targeted therapy can be improved by intervention in 
this approach remain to be further studied.

Regulating parental gene transcription
Although most circRNAs are located in the cytoplasm, a fraction exists in the nucleus and participate in 
regulating RNA transcription. CiRNAs are abundantly expressed in the nucleus and interact with 
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Figure 2 Schematic diagram of biological functions of circular RNAs. A: Acting as microRNA sponges; B: Interacting with RNA binding proteins; C: 
Regulating gene transcription; D: Encoding proteins and peptides. circRNAs: Circular RNAs; miRNA: MicroRNAs; RBPs: RNA binding proteins.

phosphorylated RNA polymerase II to change its transcriptional activity, thereby playing a role in 
transcriptional regulation[32]. For example, a circRNA (ci-ankrd52), derived from the intron of the 
ankyrin repeat domain 52 gene, can enhance the expression of its parent gene ankrin52 by interacting 
with the RNA polymerase II elongation complex[17]. EIciRNAs are intron-preserving circRNAs located 
near the promoter of their parent genes and bind to RNA polymerase II to improve transcription 
efficiency by interacting with the 5’ splicing site preserved in introns, thereby promoting the expression 
of their parent genes[33]. Interestingly, EIciRNAs can act as RBP sponges, like ecircRNAs, and regulate 
parental gene expression[34]. Additionally, circRNAs can also regulate the expression of parent genes 
through epigenetic modification. Recently, it has been found that certain circRNAs have N6-methyl-
adenosine (m6A) modifications, and these circRNAs will affect the stability of the parent gene[35].

Interacting with RBPs
RBPs are an important class of proteins that participate in posttranscriptional regulation. RBPs interact 
with circRNAs and play a role in circRNA splicing, replication, folding, stabilization, and localization. 
The combination of RBPs and circRNAs fulfills roles mainly in the following two ways: (1) RBPs are 
involved in the action of ceRNA: CircRNAs serve as miRNA “sponges” to modulate mRNA translation, 
and the potential of these “sponges” is higher than that of their linear counterparts because RBPs 
participate in the miRNA competition process[36]; and (2) CircRNAs competitively bind to RBPs: 
CircRNAs play biological roles by binding to RBPs through their specific sequence binding sites[37]. 
Here we present the most extensively studied RBP, human antigen R (HuR), as an example. HuR, as an 
RBP, can bind guanylate-rich elements in the 3’ untranslated region (UTR) to prevent mRNA from being 
degraded and accomplishes the function of stabilizing RNA structure[38,39]. HuR is widely expressed 
in eukaryotic tissues[40], and circE2F2 binds to HuR and enhances the stability of the mRNA of the HuR 
target gene E2F2[41]. In contrast, circRHOBTB3 binds to HuR and reduces the stability of the mRNA of 
HuR target gene PTBP1[42]. In addition, circBACH1 can bind to HuR, facilitate HuR translocation to the 
cytoplasm and inhibit p27 translation[43].

Encoding proteins and peptides
CircRNAs were previously considered to be noncoding RNAs that cannot be translated into proteins. 
However, emerging evidence suggests that circRNAs can also be translated into proteins and peptides
[44-46]. Some circRNAs initiate protein translation by binding to ribosomes via the internal ribosome 
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Figure 3 Schematic diagram of the role of circular RNAs in hepatocellular carcinoma. circRNAs: Circular RNAs EMT: Epithelial-mesenchymal 
transition.

entry site (IRES) sequence or after modifying m6A in the 5’UTR[45,47]. In addition, some circRNAs with 
an open reading frame (ORF) can initiate small proteins or micropeptides[48]. The 40S subunit of 
eukaryotic ribosomes binds to circRNA and directly initiates in vitro translation[49]. Furthermore, unlike 
other noncoding RNAs, a few ecircRNAs in the cytoplasm can be translated into functional proteins
[11]. Thus, the elements required for circRNA translation are IRES and an m6A sequence or ORF. 
Although circRNAs have translation ability, the translation efficiency is not high because of the 
influence of their special ring structure, and the functions of circRNA translation products (proteins and 
peptides) must be further explored.

ROLE OF CIRCRNAS IN HCC
Recent studies have confirmed the different critical roles of aberrantly expressed circRNAs in HCC 
(Figure 3). Here, we summarize the roles of certain circRNAs in HCC (Table 1).

Proliferation, cell cycle and apoptosis
Aberrant cell cycle regulation, uncontrolled cell proliferation and blocked apoptosis are considered the 
main causes of malignant tumors. Accumulating studies have highlighted the important regulatory 
roles of circRNAs in HCC proliferation, the cell cycle and apoptosis, among which oncogenic circRNAs 
accelerate HCC proliferation and suppress cell cycle arrest and apoptosis. For example, circRNA ZFR 
serves as an oncogene to facilitate the proliferative ability of HCC by upregulating mitogen-activated 
protein kinase kinase1 (MAP2K1), a promoter of tumor cell proliferation[50,51]. Similarly, c-Myc, a 
promoter of cell proliferation[52], and hsa_circ_0091581, as an oncogene, facilitates the proliferation of 
HCC cells by promoting c-Myc expression through sponging miR-526b[53]. Furthermore, TXNDC5, a 
promoter of tumor cell proliferation and survival[54], and circ_0000517, an oncogene in HCC, promotes 
tumor growth and inhibits cell cycle arrest and apoptosis by upregulating TXNDC5 through sponging 
miR-1296–5p[55]. Conversely, the roles of tumor suppressive circRNAs are opposite those of oncogenic 
circRNAs. For example, MAPK14, a suppressor of cell proliferation in HCC cells[56], and circSETD3, a 
tumor suppressor of HCC, enhances MAPK14 expression by sponging miR-421 in HCC, thereby 
inhibiting proliferation and inducing G1/S arrest[57]. Similarly, exosomal circ-0051443, another tumor 
suppressor of HCC, upregulates the expression of BRI1-associated kinase 1, a regulator of cell death, by 
sponging miR-331-3p, stimulating apoptosis and impeding the cell cycle[58,59]. The above findings 
reveal the importance of circRNAs in regulating HCC cell proliferation, the cell cycle and apoptosis.

Migration, EMT, invasion, and metastasis
EMT is an important phenomenon in the occurrence and development of tumors and can promote the 
migration, infiltration and metastasis of tumor cells. Invasion and metastasis of tumor cells are the main 
characteristics of malignant tumors and together constitute the primary cause of death in patients with 
malignant tumors. Elucidating their molecular mechanisms will help to develop effective interventions 
for cancer. Recently, many circRNAs have been reported to regulate the progression of HCC cells by 
affecting migration, EMT, invasion and metastasis. For example, circ-101368 promotes high-mobility 
group (HMG) box 1 protein/advanced glycation end products signaling by sponging miR-200a, 
facilitating HCC cell migration[60]. Additionally, circ-CCND1 enhances HMGA2 expression by 
sponging miR-497-5p, thus promoting HCC proliferation, migration and invasion[61]. Similarly, 
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Table 1 Roles of circular RNAs in hepatocellular carcinoma

circRNAs Dysregulation

Mechanism by 
competitively binding 
miRNAs/RBP or m6A 
modification/mRNA 
braking

Targets/signaling pathways Biological functions Ref.

N/A MAP2K1 Promotes HCC prolif-
eration

Cedric et al[50]circRNA ZFR Up-regulated

miR-3619-5p CTNNB1 Wnt/β-catenin 
pathway

Promotes HCC prolif-
eration and EMT

Tan et al[99]

hsa_circ_0091581 Up-regulated miR-526b c-Myc Promotes HCC prolif-
eration

Wei et al[53]

miR-1296-5p TXNDC5 Promotes HCC 
growth and inhibits 
cell cycle arrest and 
apoptosis

Zang et al[55]circ_0000517 Up-regulated

miR-326 SMAD6 Promotes HCC 
invasion and 
metastasis

He et al[67]

miR-421 MAPK14 Inhibits HCC prolif-
eration and induces 
G1/S arrest

Xu et al[57]circSETD3 Down-regulated

N/A N/A Predicts MVI of HCC Wang et al[85]

Exosomal circ-0051443 Down-regulated miR-331-3p BAK1 Promotes HCC cell 
apoptosis and arrests 
the cell cycle

Chen et al[58]

cicrRNA_101368 Up-regulated miR-200a HMGB1/RAGE pathway Promotes HCC cell 
migration

Li et al[60]

circ-CCND1 Up-regulated miR-497-5p HMGA2 Promotes HCC prolif-
eration, migration and 
invasion

Zheng et al[61]

miR-877-5p PIK3R3 Yu et al[62]hsa_circ_0061395 Up-regulated

miR-656-3p SERBP1

Promotes HCC prolif-
eration, migration and 
invasion Li et al[63]

miR-377-3p FGFR1/ERK Zhan et al[64]circRNA-103809 Up-regulated

miR-1270 PLAGL2

Facilitates HCC 
migration, invasion 
and EMT Cao et al[65]

circ_MMP2 Up-regulated miR-136-5p MMP2 Promotes HCC 
metastasis

Liu et al[68]

mRNA braking PAX5circ-MALAT1 Up-regulated

miR-6887-3p JAK2

Promotes self-renewal 
of HCC stem cells

Chen et al[69]

circZKSCAN1 Down-regulated RBP: FMRP CCAR1, Wnt/β-catenin 
pathway

Inhibits HCC stem cell 
activity

Zhu et al[70]

circMEG3 Down-regulated m6A-METTL3 HULC and Cbf5 Inhibits malignant 
differentiation of 
human liver CSCs

Jiang et al[71]

circ-PRKCI Up-regulated miR-1294 and miR-186-5p FOXK1 Promotes HCC 
glycolysis

Chen et al[73]

circZFR Up-regulated miR-375 HMGA2 Promotes HCC 
glycolysis

Xu et al[75]

circMAT2B Up-regulated miR-338-3p PKM2 Promotes HCC 
glycolysis

Li et al[77]

circ-PRMT5 Up-regulated miR-188-5p HK2 Enhances HCC 
glycolysis

Ding et al[79]

circ_0001445 Down-regulated miR-942-5p ALX4 Inhibits HCC 
metastasis and EMT

Xu et al[81]

PIK3CD/p70S6K/mTOR ciRS-7 Up-regulated miR-7 Predicts hepatic MVI Xu et al[83]
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pathway

hsa_circ_0068669 Down-regulated N/A N/A Predicts hepatic MVI Yao et al[84]

circCRIM1 Up-regulated miR-378a-3p SKP2 Promotes HCC 
angiogenesis

Ji et al[86]

hsa-circ-0046600 Up-regulated miR-640 HIF-1α Promotes HCC 
angiogenesis

Zhai et al[87]

hsa_circ_0000092 Up-regulated miR-338-3p HN1 Promotes HCC 
angiogenesis

Pu et al[89]

circGFRA1 Up-regulated miR-149 N/A Promotes HCC 
angiogenesis

Yu et al[91]

circARSP91 Down-regulated N/A ULBP1 Enhances HCC innate 
immune surveillance

Ma et al[93]

circTRIM33-12 Down-regulated miR-191 TET1 Inhibits HCC immune 
escape 

Zhang et al[96]

hsa_circ0007456 Down-regulated miR-6852-3p ICAM-1 Inhibits HCC immune 
escape

Shi et al[97]

hsa_circ_104348 Up-regulated miR-187-3p RTKN2 Wnt/β-catenin 
pathway

Promotes HCC 
resistance to sorafenib

Huang et al[100]

circβ-catenin Up-regulated Translation Wnt/β-catenin pathway Facilitates HCC cell 
growth

Liang et al[101]

hsa_circ_0004018 Down-regulated miR-626 DKK3 Wnt/β-catenin pathway Restrains HCC prolif-
eration and migration 

Zhu et al[102]

circRNA-ITCH Down-regulated miR-7 or miR-214 c-myc and cyclinD1Wnt/β-
catenin

Inhibits HCC prolif-
eration and apoptosis

Yang et al[103]

circ-0003418 Down-regulated miR-7 and miR-383 Wnt/β-catenin pathway Increases HCC 
sensitivity to cisplatin

Chen et al[104]

circ-IGF1R Up-regulated N/A PI3K/AKT pathway Promotes HCC cell 
proliferation

Fu et al[106]

hsa_circ_0079299 Down-regulated N/A CCNB1PI3K/Akt/mTOR 
pathway

Inhibits HCC growth Zheng et al[107]

circSOD2 Up-regulated miR-502-5p DNMT3A JAK2/STAT3 
pathway

Promotes HCC 
growth, cell migration 
and cell cycle 
progression

Zhao et al[108]

miR-184 HAMP JAK2/STAT3/Akt 
pathway

Inhibits HCC prolif-
eration, migration, 
invasion, EMT and 
glycolysis

Wu et al[109]circ_0004913 Down-regulated

N/A N/A Predicts better 
prognosis of HCC

Li et al[150]

circ_0031242 Up-regulated miR-924 POU3F2 Enhances HCC 
resistance to cisplatin

Fan et al[112]

circARNT2 Up-regulated miR-155-5p PDK1 Promotes HCC 
resistance to cisplatin

Li et al[115]

circ-G004213 Down-regulated miR-513b-5p PRPF39 Facilitates HCC 
sensitivity to cisplatin

Qin et al[117]

circUBE2D2 Up-regulated miR-889-3p LDHA Promotes HCC 
resistance to sorafenib

Huang et al[121]

circFN1 Up-regulated miR-1205 E2F1 Facilitates HCC 
resistance to sorafenib

Yang et al[122]

circRNA-SORE Up-regulated RBP: YBX1 AKT, Raf1, ERK, c-Myc, and 
TGF-β1

Promotes HCC 
resistance to sorafenib

Xu et al[124]

circMEMO1 Down-regulated miR-106b-5p TCF21 Increases HCC 
sensitivity to sorafenib

Dong et al[126]

circUHRF1 Up-regulated miR-449C-5p TIM-3 Promotes HCC 
resistance to PD1 
immunotherapy

Zhang et al[131]
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circMET Up-regulated miR-30-5p Snail/DPP4/CXCL10 axis Promotes HCC 
resistance to PD1 
immunotherapy

Huang et al[133]

Exosomal circ_0070396 Up-regulated N/A N/A Serves as a biomarker 
of early diagnosis of 
HCC

Lyu et al[139]

circ_104075 Up-regulated miR-582-3p YAP Serves as a biomarker 
of early diagnosis of 
HCC

Zhang et al[140]

has_circ _00224 and 
hsa_circ _00520

Up-regulated N/A N/A Serves as biomarkers 
of early diagnosis of 
HCC with HCV 
infection

Matboli et al
[141]

hsa_circ_0000976

hsa_circ_0007750

hsa_circ_0139897

Up-regulated N/A N/A Serves as biomarkers 
of early diagnosis of 
HCC with HBV 
infection

Yu et al[142]

hsa_circ_0091579 Up-regulated N/A GPC3 Zhang et al[144]

circ_0000798 N/A N/A

Predicts poorer 
prognosis of HCC

Lei et al[145]

circ_0000267 miR-646 N/A Pan et al[146]

circASAP1

Up-regulated

miR-326, miR-532-5p MAPK1

Predicts poorer 
prognosis of HCC

Hu et al[147]

circ-ZNF652 Up-regulated miR-203/miR-502-5p Snail-mediated EMT Predicts poorer 
prognosis of HCC

Guo et al[148]

hsa_circ_0001649 Down-regulated N/A N/A Predicts better 
prognosis of HCC

Zhang et al[149]

circSETD3 miR-421 MMP1 Predicts better 
prognosis of HCC

Xu et al[57]

hsa_circ_0036683

Down-regulated

N/A N/A Sunagawa et al
[151]

hsa_circ_0005986 Down-regulated N/A N/A Predicts better 
prognosis of HCC

Kim et al[152]

HCC: Hepatocellular carcinoma; ceRNA: Competitive endogenous RNA; CircRNAs: Circular RNAs; miRNAs: MicroRNAs; RBPs: RNA binding proteins; 
m6A: N6-methyladenosine; EMT: Epithelial-mesenchymal transition; MAP2K1: Mitogen-activated protein kinase 1; CTNNB1: Beta-catenin 1; Wnt/β-
catenin: Wingless/beta-catenin; TXNDC5: Thioredoxin domain-containing 5; SMAD6: SMAD family member 6; MAPK14: Mitogen-activated protein 
kinase 14; MVI: Microvascular invasion; BAK1: BRI1-associated kinase 1; HMGB1/RAGE: High-mobility group box 1 protein/advanced glycation end 
products; HMGA2: High mobility group A2; PIK3R3: Phosphoinositide-3-kinase regulatory subunit 3; SERBP1: SERPINE1 mRNA binding protein 1; 
FGFR1/ERK: Fibroblast growth factor receptor 1/extracellular signal-regulated kinase; PLAGL2: PLAG1 like zinc finger 2; MMP2: Matrix 
metalloproteinase 2; PAX5: Paired box protein 5; AUF1: AU-rich binding factor 1; FMRP: Fragile X mental retardation protein; CCAR1: Cell division cycle 
and apoptosis regulator 1; METTL3: Methyltransferase-like 3; HULC: Highly upregulated in liver cancer; Cbf5: Centromere-binding factor 5; CSCs: Cancer 
stem cells; FOXK1: Forkhead box K1; PKM2: Pyruvate kinase M2; HK2: Hexokinase 2; ALX4: Aristaless-like homeobox 4; PIK3CD/p70S6K/mTOR: 
PI3Kdelta catalytic p110delta/Ribosomal protein S6 kinase/mammalian target of rapamycin; SKP2: S-phase kinase-associated protein 2; HIF-1α: Hypoxia 
inducible factor-1α; HN1: Hematological and neurological expressed 1; ULBP1: UL16-binding protein 1; TET1: Ten-eleven translocation 1; ICAM-1: 
Intercellular adhesion molecule-1; RTKN2: Rhotekin 2; DKK3: Dickkopf-3; PI3K/Akt: Phosphoinositide-3-kinase/protein kinase B; CCNB1: Cyclin B1; 
DNMT3A: DNA methyltransferase 3A; JAK/STAT: Janus kinases/signal transducer and activator of transcription; JAK2/Stat3: Janus kinase 2/signal 
transducers and activators of transcription; HAMP: Hepcidin; POU3F2: POU class 3 homeobox 2; PDK1: Pyruvate dehydrogenase kinase 1; PRPF39: Pre-
mRNA splicing factor 39; LDHA: Lactate dehydrogenase A; E2F1: E2F transcription factor 1; YBX1: Y-box-binding protein 1; Raf1: Proto-oncogene 
serine/threonine-protein kinase-1; ERK: Extracellular signal-regulated kinase; TGF-β1: Transforming growth factor beta1; TCF21: Transcription factor 21; 
Tim-3: T cell immunoglobulin and mucin domain 3; PD1: Programmed cell death protein 1; DPP4: Dipeptidyl peptidase 4; CXCL10: Chemokine C-X-C 
ligand 10; Yap: Yes-associated protein; HCV: Hepatitis C virus; HBV: Hepatitis B virus; GPC3: Glypican-3 protein; MAPK1: Mitogen-activated protein 
kinase 1; MMP1: Matrix metallopeptidase 1; MAPK1: Mitogen-activated protein kinase 1; AFP: Alpha fetoprotein; AFP-L3: Alpha-fetoprotein variants; 
DCP: Des-carboxy prothrombin; OS: Overall survival; RFS: Recurrence-free survival; PFS: Progression-free survival; N/A: Not applicable.

hsa_circ_0061395 upregulates the expression of PIK3R3 and SERBP1 by sponging miR-877-5p and miR-
656-3p, respectively, promoting HCC proliferation, invasion and migration[62,63]. Furthermore, 
circRNA-103809 up-regulates the expression of FGFR1/extracellular signal-regulated kinase and 
PLAGL2 by sponging miR-377-3p and miR-1270, respectively, and facilitates HCC migration, EMT and 
invasion[64,65]. Additionally, circ_0000517, another oncogenic circRNA, is related to poor HCC 
prognosis[66]. Another subsequent study has investigated the possible mechanism of action of 
circ_0000517 by enhancing the expression of SMAD6 by sponging miR-326 to promote HCC cell 
invasion and metastasis[67]. Circ_matrix metalloproteinase (MMP) 2 can also promote HCC metastasis, 
which is the result of enhancing MMP2 expression by sponging miR-136-5p[68]. Thus, circRNAs are 
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critical for regulating HCC migration, EMT, invasion and metastasis.

CSCs
CSCs are considered the root cause of tumor occurrence, invasion, metastasis, recurrence, and resistance 
to radiotherapy and chemotherapy because of their self-renewal ability, sustained proliferation potential 
and therapeutic resistance. CircRNAs and tumor stem cells are closely related to cancer. For example, 
the high expression of circ-MALAT1 in HCC CSC samples mediated by RBP AU-rich binding factor 1 is 
closely associated with the regeneration of HCC CSCs. Mechanistically, circ-MALAT1 blocks paired box 
protein 5 mRNA translation on the ribosome and forms a trimer with the ribosome and mRNA to 
facilitate self-renewal of CSCs. This blocking mechanism is known as “circRNA braking” and has 
become another posttranscriptional regulatory mechanism in addition to the function of circRNA 
subsponges[69]. Additionally, circZKSCAN1 inhibits HCC stem cell activity by mediating the function 
of fragile X mental retardation protein (FMRP). Regarding the mechanism, circZKSCAN1 competes with 
FMRP, which serves as RBP, for the target gene cell division cycle and apoptosis regulator 1 (CCAR1), 
thereby inactivating the Wingless (Wnt) pathway[70]. Similarly, circMEG3 inhibits malignant differen-
tiation of CSCs by restraining highly upregulated in liver cancer and centromere-binding factor 5 in 
HCC CSCs[71]. The above findings indicate that circRNAs may provide novel treatment strategies for 
HCC by targeting CSCs.

Glycolysis
Aberrant glucose metabolism is the most prominent feature of tumor metabolism. In recent years, 
numerous studies have shown that circRNAs regulate glucose metabolism, among which oncogenic 
circRNAs promote glycolysis in HCC cells. For example, Forkhead box K1 (FOXK1) is an inducer of 
aerobic glycolysis[72], and circ-PRKCI promotes HCC glycolysis by enhancing FOXK1 expression by 
sponging miR-1294 and miR-186-5p[73]. Similarly, HMGA2 promotes HCC tumor growth and 
metastasis[74], and circZFR promotes glycolysis in HCC cells by inhibiting miR-375 and increasing 
HMGA2 expression[75]. Furthermore, PKM2 serves as a mediator of aerobic glycolysis of cancer cells
[76], and circMAT2B facilitates HCC glycolysis by strengthening PKM2 expression by acting as a sponge 
of miR-338-3p[77]. Hexokinase 2 (HK2) is also a regulator of aerobic glycolysis in HCC[78], and circ-
PRMT5 promotes HCC glycolysis by sponging miR-188-5p to increase HK2 expression[79]. In contrast, 
tumor suppressive circRNAs impede HCC glycolysis. For example, aristaless-like homeobox 4 (ALX4) 
inhibits HCC proliferation and invasion[80], and circ_0001445, a tumor suppressor, enhances ALX4 
expression by sponging miR-942-5p, thus inhibiting HCC glycolysis[81]. Collectively, circRNAs have 
become important regulatory factors in glycolysis in HCC cells, but the specific mechanism of their 
regulation of metabolism remains to be elucidated. Considering the characteristics of circRNAs in 
regulating glycolysis in HCC cells, it is possible to interfere with the abnormal expression of 
downstream genes and some key action sites of specific circRNAs, thereby altering the metabolic 
pathways of HCC cells and opening up novel therapeutic approaches for HCC.

MVI
MVI is a characteristic of HCC and an independent risk factor affecting the prognosis of HCC patients. 
The exact mechanism by which MVI occurs in HCC has not been fully elucidated. Emerging evidence 
suggests that circRNAs play important roles in the MVI process of HCC. For example, ciRS-7 (Cdr1as), 
an oncogene in HCC[82], facilitates HCC MVI by competitively inhibiting miR-7 and interfering with 
the PI3Kdelta catalytic p110delta/ribosomal protein S6 kinase/mammalian target of rapamycin (mTOR) 
pathway[83]. Conversely, the downregulation of hsa_circ_0068669, a tumor suppressor, is correlated 
with HCC MVI[84]. Similarly, low expression of circSETD3, another tumor suppressor, in HCC is 
associated with the existence of MVI[85]. In summary, circRNAs are associated with the occurrence of 
MVI in HCC and can be used as indicators for the early detection of MVI and clinical intervention to 
reduce recurrence and improve the survival rate of patients with HCC.

Angiogenesis
HCC is a solid tumor rich in blood vessels with obvious vascular hyperplasia and vascular abnor-
malities in HCC. Tumor angiogenesis refers to tumor-induced capillary angiogenesis and the formation 
of microcirculation networks within the tumor. Tumor angiogenesis is responsible for HCC prolif-
eration, invasion and metastasis. Nevertheless, the regulatory mechanism underlying HCC angiogenesis 
is unclear, although multiple studies have found that circRNAs can regulate angiogenesis. For example, 
circCRIM1 can promote HCC angiogenesis by upregulating SKP2 expression via sponging miR-378a-3p
[86]. Additionally, hsa-circ-0046600 affects malignant angiogenesis in HCC cells by sponging miR-640 to 
facilitate the expression of hypoxia inducible factor-1α, a promoter of angiogenesis[87,88]. Similarly, 
hsa_circ_0000092 facilitates HCC angiogenesis by competitively binding to miR-338-3p to elevate the 
expression of hematological and neurological expressed 1, a promoter of tumor growth and invasion[89,
90]. Furthermore, circGFRA1 promotes the angiogenic activity of HCC by binding to miR-149[91]. Taken 
together, the above findings confirm that circRNAs play an essential role in HCC angiogenesis, thus 
contributing to clarification of the regulatory mechanism of HCC angiogenesis and highlighting the 
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usefulness of circRNAs in targeted therapy for HCC angiogenesis.

Immune surveillance and immune escape
Abnormal circRNAs may act as tumor antigens in immunocytes to activate antitumor immunity[92]. 
Natural killer (NK) cells play a pivotal role in tumor immune surveillance. CircARSP91 increases the 
cytotoxicity of NK cells by elevating UL16-binding protein 1 in HCC, thereby enhancing innate immune 
surveillance[93].

The immune system monitors and kills tumor cells through specific and nonspecific pathways. When 
malignant cells appear in the body, the immune system recognizes and eliminates these cells specifically 
through the immune mechanism to resist the occurrence and development of tumors. However, in some 
cases, malignant cells can escape the recognition and attack of the immune system through various 
mechanisms to achieve immune escape in order to survive and proliferate in the body[94]. Current 
studies have shown that circRNAs play a critical role in tumor immune escape, which is closely 
associated with drug resistance and tumor recurrence[95]. For example, the low expression of tumor 
suppressive circTRIM33-12 promotes the immune escape ability of HCC cells by upregulating ten-
eleven translocation 1 expression through sponging miR-191[96]. Similarly, hsa_circ0007456, another 
tumor suppressor, shows low expression in HCC and can promote tumor immune escape by regulating 
the expression of intercellular adhesion molecule-1 by sponging miR-6852-3p[97]. These findings 
indicate that circRNAs that regulate immune escape are promising immunotherapeutic targets for HCC.

Modulating the malignant progression of HCC by mediating signaling pathways
Various circRNAs mediate the Wnt/beta-catenin (Wnt/β-catenin), phosphoinositide-3-kinase/protein 
kinase B (PI3K/Akt) or Janus kinase 2/signal transducers and activators of transcription (JAK2/Stat3) 
pathways by sponging miRNAs to modulate the malignant progression of HCC. In addition to 
circRNA-miRNA regulation, no study has investigated circRNAs modulating these signaling pathways 
through direct regulation of processes such as gene transcription and protein translation.

Wnt/β-catenin pathway: Aberrant activation of this pathway is prevalent in HCC occurrence and 
progression, and this is considered the most frequently activated carcinogenic pathway in HCC[98]. 
Emerging evidence suggests that circRNAs affect the malignant progression of HCC by mediating the 
Wnt/β-catenin pathway, among which oncogenic circRNAs can promote HCC progression by 
triggering the Wnt/β-catenin pathway. For example, circZFR upregulates beta-catenin 1 and activates 
the Wnt/β-catenin pathway by sponging miR-3619-5p to promote the proliferation and EMT of HCC 
cells[99]. Similarly, hsa_circ_104348 facilitates HCC proliferation, migration, and invasion by sponging 
miR-187-3p to elevate rhotekin 2 expression and activate the Wnt/β-catenin pathway[100]. In particular, 
circβ-catenin, an oncogenic circRNA in HCC, facilitates HCC cell growth by activating the Wnt/β-
catenin pathway[101]. Instead, tumor suppressive circRNAs can restrain HCC progression by inhibiting 
the Wnt/β-catenin pathway. For example, hsa_circ_0004018 enhances Dickkopf-3 expression and 
inhibits the Wnt/β-catenin pathway by sponging miR-626, thereby restraining HCC proliferation and 
migration[102]. Similarly, circRNA-ITCH restrains the Wnt/β-catenin pathway and decreases c-myc and 
cyclin D1 expression by sponging miR-7 or miR-214, thereby inhibiting HCC proliferation and apoptosis
[103]. Intriguingly, circ-0003418 plays a tumor suppressor role in HCC and enhances cisplatin sensitivity 
of HCC cells by restraining the Wnt/β-catenin pathway[104].

PI3K/Akt/mTOR pathway: Aberrant activation of this pathway frequently occurs in HCC and is closely 
related to HCC growth[105], invasion and metastasis. Current studies support that circRNAs mediate 
the PI3K/AKT or PI3K/AKT/mTOR pathway to modulate HCC progression. For example, circ-insulin-
like growth factor 1 receptor promotes HCC cell proliferation by activating the PI3K/AKT pathway
[106]. Additionally, the overexpression of tumor-suppressive hsa_circ_0079299 inhibits HCC growth 
and retards cell cycle progression partly by mediating the PI3K/Akt/mTOR pathway[107].

JAK2/STAT3 pathway: As a signal transduction pathway stimulated by cytokines, activation of the 
JAK/STAT pathway is closely related to tumor cell proliferation, apoptosis and differentiation. The 
JAK2/STAT3 pathway, an important component of the JAK/STAT pathway, is activated in diverse 
malignant tumors, including HCC. For example, circSOD2 enhances DNA methyltransferase 3A 
expression and activates the JAK2/STAT3 pathway by sponging miR-502-5p, thereby promoting the 
growth, migration and cell cycle progression of HCC cells[108]. Additionally, CIRC_0004913 
upregulates hepcidin expression and inhibits the JAK2/STAT3/Akt pathway by sponging miR-184 and 
suppressing HCC proliferation, migration, invasion, EMT and glycolysis[109]. Taken together, the 
above findings demonstrate that circRNAs modulate the malignant progression of HCC by mediating 
signaling pathways, such as the Wnt/β-catenin, PI3K/Akt/mTOR and JAK2/Stat3 pathways. These 
pathway-associated circRNAs may serve as novel therapeutic targets in HCC.

Chemoresistance
Chemotherapy is a comprehensive treatment for advanced HCC, although the drug resistance of HCC 
cells considerably limits its efficacy. Multidrug resistance is the principal factor leading to the failure of 
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chemotherapy for HCC, and its mechanism is extremely complex. Therefore, clarifying the mechanisms 
of drug resistance to improve the drug resistance of patients with HCC is critical. Recent evidence has 
prioritized the importance of abnormally expressed circRNAs in the chemotherapy resistance of HCC.

Cisplatin resistance: Cisplatin is one of the few most common chemotherapy drugs used to treat HCC. 
However, thus far, the drug resistance of HCC cells during chemotherapy has been revealed to be the 
main factor affecting chemotherapy failure[110,111]. Therefore, how to control the occurrence of 
cisplatin resistance in HCC cells and improve drug sensitivity and therapeutic effects are critical to 
prolonging the survival of patients with advanced HCC. Current studies have confirmed that circRNAs 
impact HCC cisplatin resistance. For example, circ_0031242 enhances cisplatin resistance in HCC by 
sponging miR-924 to enhance the expression of POU class 3 homeobox 2, a promoter of tumor 
progression and metastasis[112,113]. Additionally, pyruvate dehydrogenase kinase 1 (PDK1), a 
glycolytic enzyme, is closely associated with chemotherapy resistance[114]. As an oncogene, circARNT2 
promotes cisplatin resistance in HCC cells, an activity mechanistically achieved by upregulating PDK1 
through sponging miR-155-5p[115]. Analogously, PRPF39 is closely associated with cisplatin sensitivity
[116], circ-G004213 promotes HCC cisplatin sensitivity by sponging miR-513b-5p to increase PRPR39 
expression[117].

Sorafenib resistance: Sorafenib is an oral multikinase multitarget inhibitor and an important targeted 
therapy for advanced HCC[118]. However, sorafenib resistance is a common problem in clinical applic-
ations, substantially limiting its application[119]. The mechanism leading to sorafenib resistance 
remains incompletely understood. Therefore, further research on the possible mechanisms of sorafenib 
resistance and reducing its resistance are crucial for the treatment of HCC. CircRNAs also affect 
sorafenib resistance in HCC. For example, overexpression of lactate dehydrogenase A (LDHA), an 
oncogene, facilitates cancer cell invasion and metastasis[120]. CircUBE2D2 promotes sorafenib 
resistance to HCC, possibly because of the upregulation of LDHA by sponging miR-889-3p[121]. 
Additionally, circFN1 contributes to sorafenib resistance in HCC cells by elevating the expression of 
E2F1, a transcription factor associated with cancer chemotherapy resistance, by acting as a miR-1205 
sponge[122,123]. Analogously, circRNA-SORE induces sorafenib resistance in HCC by binding to Y-
box-binding protein 1, a regulator of EMT in cancer cells[124,125]. In particular, circMEMO1 promotes 
the sensitivity of HCC to sorafenib by upregulating transcription factor 21 (TCF21) expression by 
sponging miR-106b-5p[126].

Although the existing evidence partially reveals the critical role of circRNAs in HCC chemotherapy 
resistance, it suggests that circRNAs associated with chemotherapy resistance offer potential value in 
predicting and monitoring the efficacy of HCC and even reversing chemotherapy resistance. However, 
further clinical samples and in vivo experiments are needed to validate the relevant molecular 
mechanisms involved.

Immunotherapy resistance
Immunotherapy is currently an effective therapeutic modality for advanced HCC. Immunotherapy 
enhances antigen presentation, activates the immune response and improves the immunosuppressive 
status of the tumor microenvironment in different ways, thus improving survival benefits. However, 
increasing clinical evidence indicates that only 20%-30% of patients treated with programmed death 1 
(PD1) and programmed death-ligand 1 are sensitive to immunotherapy, and 70%-80% of patients show 
an ineffective response because of drug resistance[127]. Therefore, further exploration and under-
standing of the mechanism of immunotherapy resistance may provide important insight to guide 
clinical practice. T cell immunoglobulin and mucin domain 3 (TIM-3) is an immunoregulatory receptor 
that binds to NK cell-dominated ligands in tumor cells and the microenvironment to inhibit NK cell-
mediated antitumor immunity in various cancers, including HCC[128-130]. CircUHRF1, an exosome 
derived from HCC, upregulates TIM-3 expression in NK cells by sponging miR-449C-5p in patients’ 
resistant to PD1 immunotherapy, leading to NK cell dysfunction and driving HCC resistance to PD1
[131]. Additionally, circMET is an oncogene in the chromosome 7q21-7q31 region, and the amplification 
of this region is considered to be related to HCC prognosis[132]. CircMET overexpression induces the 
development and immune tolerance of HCC through the miR-30-5p/Snail/dipeptidyl peptidase (DPP) 
4/chemokine C-X-C ligand (CXCL) 10 axis, while DPP4 inhibitors such as sitagliptin block the 
progression of the pathway, which can enhance the efficacy of PD1 inhibitors in the treatment of HCC
[133]. Taken together, the above findings demonstrate that circRNAs participate in regulating HCC 
immunotherapy resistance, and that intervention by circRNAs may be an effective means to improve 
the immunotherapy tolerance of HCC cells.

BIOMARKERS FOR HCC DIAGNOSIS AND PROGNOSIS
CircRNAs are characterized by high abundance, stability and conservatism. CircRNAs are not easily 
degraded by RNA enzymes and stably exist in human tissues, serum, saliva and urine. Additionally, the 
expression profiles of circRNAs in HCC patients are significantly different from those of normal 
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controls. Thus, abnormally expressed circRNAs may be utilized as biomarkers to diagnose and predict 
the prognosis of HCC patients[134-136].

Biomarkers of the early diagnosis of HCC
There are certain limitations of commonly used clinical diagnostic markers for HCC, such as alpha-
fetoprotein (AFP), AFP variants (AFP-L3) and Des-carboxy prothrombin (DCP), and only approximately 
1/3 of patients can be diagnosed early[137,138]. The high mortality rate of HCC indicates that exploring 
new biomarkers for the early diagnosis of HCC is the most reliable strategy to improve the survival rate 
of HCC patients.

Emerging evidence thus far supports the possibility of utilizing circRNAs as ideal biomarkers to 
diagnose HCC. For example, exosome CIRC_0070396 has better diagnostic accuracy than AFP with 
respect to HCC patients[139]. Analogously, the sensitivity (96.0%) and specificity (98.3%) of serum 
circ_104075 to predict HCC are higher than those of AFP, DCP and AFP-L3, indicating the possibility of 
employing circ_104075 as an effective serum biomarker for HCC diagnosis[140]. Additionally, 
compared with AFP, hsa_circ_00224 and hsa_circ_00520 show higher sensitivity and specificity in 
diagnosing HCC patients with hepatitis C virus infection[141]. Furthermore, the accuracy of plasma 
hsa_circ_0000976, hsa_circ_0007750, and hsa_circ_0139897 is superior to AFP in diagnosing HCC 
patients with hepatitis B virus infection[142].

Although the existing evidence supports the feasibility of using specific circRNAs as noninvasive 
circulating diagnostic biomarkers for the early detection and screening of HCC, further analysis of their 
sensitivity and specificity and suitable patient populations is warranted. The pathogenesis of HCC is 
extremely complex and varies among ethnic and regional populations, and circRNAs that can be used 
as biomarkers in single-center studies may not be applicable to other ethnic and regional populations. 
Therefore, multicenter trials and large-scale studies are required to verify the performance of serum or 
plasma circRNAs as biomarkers. Additionally, it is necessary to establish accepted standards, unified 
detection and analysis methods and to use a rigorous experimental design with the best clinical samples 
to determine universally representative and practical diagnostic circRNA molecules.

Prognostic biomarkers of HCC
Because of the delay in diagnosis and the high rates of postoperative recurrence and metastasis, the 
prognosis of HCC patients remains poor[143]. Therefore, exploring more effective HCC markers for 
prognosis assessment is crucial. Existing evidence has shown the feasibility of circRNAs as biomarkers 
to predict HCC prognosis. Among these circRNAs, oncogenic circRNAs are associated with worse 
overall survival (OS) or worse OS and recurrence-free survival (RFS). For example, high expression of 
hsa_circ_0091579 or circ_0000798 is correlated with shorter OS of HCC patients[144,145]. Similarly, high 
expression of circ_0000267 or circASAP1 is closely related to poorer OS in HCC patients[146,147]. 
Additionally, high circ-ZNF652 (hsa_circ_0003258) expression indicates shorter OS and RFS of HCC 
patients[148]. Conversely, tumor suppressive circRNAs are associated with better OS and RFS or better 
OS and progression-free survival (PFS). For example, high expression of hsa_circ_0001649 or 
circ_0004913 signifies longer OS in HCC patients[149,150]. Furthermore, high circSETD3 or 
hsa_circ_0036683 expression indicates better OS and RFS in HCC patients[57,151]. Moreover, high 
hsa_circ_0005986 expression implies better OS and PFS in HCC patients[152]. The above findings 
support the feasibility of the use of circRNAs as biomarkers for predicting HCC prognosis.

CONCLUSION
In conclusion, circRNAs play important roles in HCC and are expected to be ideal diagnostic 
biomarkers and therapeutic targets for HCC. However, problems persist that must be solved. First, 
determining the exact mechanism underlying certain circRNAs in pathogenesis is challenging because 
of the different nomenclatures of circRNAs, mechanisms of action and tumorigenicities. Second, current 
studies on circRNAs mainly focus on the function of circRNAs as molecular sponges. We should further 
explore the biological functions of circRNAs, such as regulating the transcription of parental genes, 
binding RBPs, and encoding proteins and peptides, in the context of the malignant behavior of HCC. 
Third, some studies have only investigated circRNA expression in HCC cell lines without detection in 
clinical samples, and the clinical value of such circRNAs is uncertain. Fourth, most of the studies only 
knocked down the expression level of circRNAs but did not perform reverse verification by overex-
pression of circRNAs. Fifth, presently, studies on the pathogenesis of circRNAs in HCC remain in the 
preliminary stage. The pathogenesis of HCC is complex and heterogeneous, and the disease states of 
different HCC patients may involve different primary pathogenetic pathways and pathogenic 
molecules. Exploring the pathogenesis of a certain class of HCC patients with stronger homogeneity at 
the beginning of the experimental design is crucial to obtain more reproducible conclusions. In 
summary, we must improve these issues to better clarify the roles and mechanisms of circRNAs in HCC 
so that circRNAs can become useful diagnostic indicators and therapeutic targets for HCC.
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