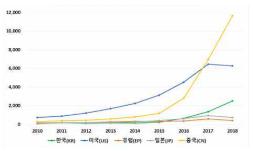
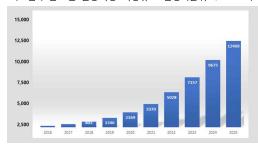
[별첨1. 연구계획서(연구내용) 파일 업로드 서식]

2021년도 상반기 중견연구(유형1, 유형2) 신규과제 연구계획서(연구내용)

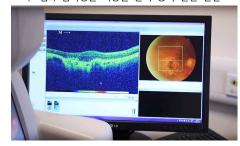

과제명	국문	인공지능을 이용한 근골격계 질환 환자 영상 판독 알고리즘 개발
	영문	The development of image reading algorithm for musculoskeletal disorders using artificial intelligence

1. 연구개발과제의 필요성


- 최근 산업의 여러분야에서 인공지능 알고리즘이 적용되고 있고 의료 분야의 연구자들의 관심도 최근 커지고 있고 실제 필요성도 증가하는 추세임 [1]. 하지만, 여러 산업에서의 인공지능 적용의 수준에 비해 의료 연구 분 야는 아직 미미한 상태임.
- 현재 의학의 여러 분야에 인공지능 적용이 연구되고 적용되고 있으나 근골격계 질환에 적용되는 사례는 적은 상태임.
- 영남대병원에는 20년 이상의 각 근골격계 질환별 이미지 데이터와 임상 자료가 축적되어 있음. 이는 근골격계 영상의학과 의사와 근골격계 질환 전문 의사가 평가한 결과로 자료의 질이 매우 우수함.
- 이 의료 빅데이터에 인공 지능 (Deep Learning) 기술을 접목하고자 함.
- 근골격계 질환은 우리나라를 포함한 세계 여러 나라에서 가장 흔한 질환으로 나이가 듦에 따라 한 가지 이상
 의 근골격계 질환을 대부분 가지고 있음. 의학의 지속적 발전과 함께 인구 구성이 점차 노령화됨에 따라 근골 격계 질환 환자 수가 늘고 있음 [2].
- 근골격계 질환은 환자의 일상생활에서의 기능을 떨어뜨리고 환자의 삶의 질과 밀접한 관계가 있음. 따라서 적 극적인 치료가 필수적이며, 치료 전 의사는 진단을 정확하게 하고 치료 계획을 정확하게 설정해야 함.
- 그러나, 실제 인상에서는 환자의 진단과 예후를 정확하게 평가 하지 못하는 경우가 있고, 이 이미지 영상의 판독의 판독지가 없는 경우 진단과 치료계획을 세우는데 어려움을 겪는 경우가 있음.
- 현재 흉부 X-ray, 골다공증 검사, bone age를 측정하는 인공지능 검사(알고리즘)는 있으나, <u>현재 근골격계 진단</u> 과 관련된 알고리즘은 개발되지 않음.
- <u>의료 빅데이터란</u> 의료 분야에서 전통적으로 사용해왔던 숫자 형태의 대량의 정형 데이터 (structured data) 뿐만 아니라 <u>MRI, CT와 같은 이미지 형태의 비정형 데이터(unstructured data)를 분석하여 기존의 분석 방법에서는 파악할 수 없었던 새로운 패턴과 인과관계를 밝혀내고 이를 통해 새로운 부가가치를 창출하는 분석 방법을 의미함.</u>
 - <u>최근 의료 빅데이터에 인공지능 기술이 접목된 융합 분야가 의료 연구의 새로운 지평을 여는 유망 연구</u> 분야로 많은 각광을 받고 있음.
 - Frost & Sullivan(세계적인 시장조사기관)의 조사 결과에 따르면 세계 의료 인공지능 분야의 시장수익규모가 2021년에 748조원으로 대폭 증가 할 것으로 예상되면서(참고: 2014년 기준 시장 규모는 약 7120억원 수준), 의료 빅데이터를 활용한 의료 인공지능에 대한 연구 수요가 급속히 증가하고 있음 (그림1, 그림2) [3].

- 1 -

(그림1) AI 핵심기훌 특허 출원 동향 (건수)



(그림2) 글로벌 인공지능 시장규모 전망 (단위: \$Millions)

- 최근 들어 특히 영상과 자연어 인식 등에 딥러닝 기술을 적용하여 다양한 분야에서 있어 정확도와 효율성의 급속한 발전이 이뤄지고 있음.
- 과거에는 특정전공 분야 종사자들 중심으로 딥러닝을 적용하여 알고리즘을 개발하고 있었으나, 현재는 텐서플로우, 파이토치, 케라스를 이용하여 비전공자들도 딥러닝 분야에 대한 연구를 활발히 하는 추세임.
- 딥러닝 기반의 의료데이터 분석의 경우 현재까지 의료 영상 분석에서 가장 많은 연구 결과들이 발표되고 있으며, 진단영역에서의 결과들이 등장하고 있음 (그림 3).

(그림3) 딥러닝을 이용한 안과 망막 질환 진단

○ 의료 인공지능은 현재 연구 단계를 넘어 사업화 단계가 진행되고 있음

2. 연구개발과제의 목표 및 내용

1) 연구개발과제의 최종 목표

- 이미지 정보와 임상 데이터를 활용하여 인공지능 (deep learning)에 접목하여 이미지 판독 및 치료 정보를 제 공하는 generic learning algorithm을 개발하여 이후 특허 및 시작품 개발함.
 - 연구 종료 시점에 달성할 최종목표로는 다음과 같이 두 가지임

① SCI논문 10편

- 판독의 정확도에 대한 논문
- 치료 및 예후에 대한 정확도에 대한 논문
- · 임상실제 적용에 관한 pilot study
- 실제 의료진의 만족도

② 특허 2건

- 각 질환의 Algorithm 관련 특허
- 1년차: 최적의 신경망 알고리즘 선택, 알고리즘 튜닝, 모델 완성 (논문 5편, 특허 1건)
 2년차: 임상에 알고리즘 적용, 알고리즘 보완 (논문 5편, 특허 1건)

2) 연구개발과제의 내용

- 임상에서 매우 다양한 근골격계 통증 및 손상 환자를 볼 수 있으며 적절한 치료를 위해서는 영상검사의 정확 한 파독이 필수적임.
 - 근골격계 영상을 주로 판독하는 영상의학과 의사나 정형외과 의사의 경우 판독의 정확도가 높지만, 다른 전 공의 의사들의 경우 판독의 어려움을 겪는 경우가 많음.
 - 또한, 임상의사들은 근골격계 질환에 대한 치료의 컨설트가 정형외과에 필요한 경우가 많음.
- 이에 본 연구는 각 근골격계 질환의 영상자료 및 판독 데이터를 바탕으로 근골격계 질환 환자의 MRI나 X-ray 를 정확하게 판독하고 치료방법 및 예후에 대한 정보를 제공할 수 있는 인공지능 alglorithm을 개발하는 것을 목표로 함.
- Knee: MRI 이미지를 이용하여 anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament (MCL), lateral collateral ligament (LCL), meniscus 손상 판독 및 치료방법 제공

Hip: X-ray 이미지를 이용하여 avascular necrosis of hip, osteoarthritis 유무 판독 및 치료방법 제공

Ankle: MRI 이미지를 이용하여, talar dome, anterior taloficular ligament (ATFL), calcaneofibular ligament(CFL) 손상 유무 판독 및 치료방법 제공

<u>Shoulder.</u> MRI 이미지를 이용하여, superior labrum anterior to posterior lesion (SLAP), rotator cuff pathology 판독 및 치료방법 제공

Spine: MRI와 CT 이미지를 이용하여, 디스크 탈출 및 협착증을 판독하고 치료 예후를 제공

○ 영남대 병원에는 20년 이상의 근골격계 질환 영상 검사 결과와 판독자료, 임상정보가 있음.

- 현재 영남대 재활의학과에는 연구 데이터 및 분석 결과의 정보 보안이 확보되는 연구실을 확보하고 있고, 인 공지능(Deep Learning)용 IT 기자재(컴퓨터를 비롯한 관련 장비 일체: 딥러닝 전용 워크 스테이션, 대용량 RAID 저장장치 포함) 설치되어 있음. 이를 이용하여 이미지 및 임상 정보를 학습시키고 알고리즘을 개발하려고함.
- 각 구조물의 손상의 유무뿐만 아니라 손상의 정도도 학습시켜 이에 대한 정보를 제공하는 알고리즘을 만들어 각 분야 전문가의 실제 판독과 실제 비교하여 정확도를 측정할 계획임.

3. 연구개발과제의 추진전략 방법 및 추진체계

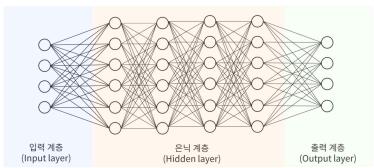
1) 연구개발과제의 추진전략 방법

- 성공적인 의료 인공지능 알고리즘 개발을 목적으로 하는 본 연구의 성공을 위해서는 의료 데이터, IT 기자재, 연구 경험이 필수적임
 - 영남대학교 병원에는 의료영상 및 임상데이터가 충분히 확보되어있고, 여러 국가 및 지역 연구 과제를 통하여 IT 기자제가 충분히 확보되어 있음 (그림4).
- 인공지능 개발의 연구 경험을 포함한 의학 연구경험이 풍부함.
- 국가 및 지역 연구 과제를 통해 인공지능을 이용한 알고리즘 개발 경험 다수
- Python을 이용한 프로그래밍 경험 다수 (뇌졸중 환자의 예후 알고리즘, 보조기사용 예측 알고리즘, MRI를 바탕으로 한 기능 예측 알고리즘)

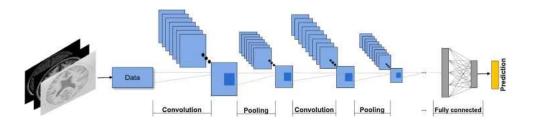
(그림4) 본 연구실의 딥러닝을 위한 IT 기자재

○ 우수한 의료 빅데이터 확보

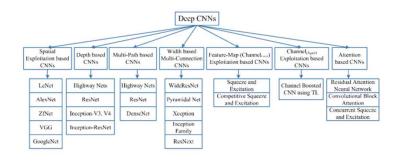
- 현재 영남대 병원에는 20년 이상의 근골격계 질환 이미지 데이터와 임상자료 (의료 빅데이터)가 축적되어 있음. 이는 이미지와 환자를 직접 보고 의사가 평가한 결과로 자료의 질이 매우 우수함. 본 연구의 책임연구자는 170편 이상의 SCI(E)논문을 출판 및 게재 확정함.
- 이미지 데이터 수집
 - 병원 내에 각 질환별 (질환코드를 이용) 환자 명단 및 각 MRI 및 X-ray 등의 영상 촬영을 한 환자의 명단을 수집 (그림5)
 - 각 질환 및 부위 별로 이미지 데이터 수집


(그림5) 각 부위 및 질환별 이미지 정보 수집

○ 임상데이터 수집


- 차트 분석 및 판독을 통하여 각질환의 severity, demographic data를 조사하고, 치료 방법 및 예후를 측정함.
- 인공 신경망 (artificial neural network, ANN)은 입력층(input layer), 출력층(output layer), 다수의 은닉층으로 구성되어 있는 심층신경망(deep learning network, DNN)임 [4].
 - 데이터가 입력이 되면 각 노드와 레이어가 학습을 통하여 가중치(weight, W)와 최적 편향(bias, B)을 결정하게 되고 이를 딥러닝(deep learning)이라 부름 (그림6).

(그림6) 심층 인공지능 신경망의 간략한 구조


○ 최근 convolutional neural network (CNN) 모델 (그림7) 의 발전을 통하여 이미지 정보를 학습하여 이미지 정 보에 기반한 여러 알고리즘이 개발되어 연구 및 산업에 이용되고 있음 [5].

(그림7) convolutional neural network 의 간략한 구조

- 본 연구의 중요 연구 성과 중 하나는 딥 러닝 알고리즘 별 학습 성과 비교를 통한 의료 이미지 데이터 학습에 최적화된 신경망 알고리즘 선택이 될 것임.
- CNN의 대표적인 모델 및 알고리즘을 사용하여 개발할 예정임 (그림8). 딥 러닝 알고리즘 별 학습 성과 비교를 통한 의료 이미지 데이터 학습에 최적화된 신경망 알고리즘 선택이 될 것임.

(그림8) 대표적 합성곱 신경망(convolutional neural network, CNN) 아키텍처

- 본 연구에서 20년 이상 영남대병원에서 모여진 대규모 환자 데이터 의학영상이미지 학습에 적합한 신경망 모델 선택, 최적화를 통해 임상 적용이 가능한 수준의 뇌졸중 환자 예후 진단 및 예측 모델 개발과 임상 적용을 통한 검증을 수행할 예정임.
- 본 연구에서는 이러한 잠재적 문제점 해결과 예측모형의 정확도 향상, 과적합 위험을 낮추기 위해 의료 이미지 데이터 셋 학습을 통한 모델(training from scratch)과 대규모 일반 이미지 데이터를 통해 학습된 범용 이미지 인식 및 분류 모델의 학습성과를 이용한 모델, 선학습된 지식을 이전하여 추가로 의료 이미지 데이터 셋을 추가 학습한 모델(pre-training model for transfer learning)을 개발할 예정임.
 - 두 모형의 성과 벤치마크를 통해 의료 이미지 딥러닝에 가장 문제가 되는 데이터 부족 문제 해결 가능성을 탐색할 예정임.
 - 데이터를 바탕으로 Deep Learning을 시켜 generic algorithm을 통해 진단 및 치료 계획 수립을 위한 알고리즘을 개발할 예정임.

개발된 프로그램의 결과를 실제 임상에서 각각의 환자에게 적용하여 실제 결과와 비교하고 의사에게 인공지능이 환자를 치료하는데 실제로 도움이 되었는지를 평가할 예정임.

2) 연구개발과제의 추진체계

○ 연구개발 추진 일정

AL.	연구개발의 내용		추진일정										
연도			4	5	6	7	8	9	10	11	12	1	2
	환자 비정형/정형 데이터 추출 및 클렌징												
1 # 4	최적의 신경망 알고리즘 선택/대표적 신경망 알고리즘 성능 벤치마킹												
1차 년도	선택된 알고리즘 튜닝												
	데이터 학습 및 알고리즘 구축 및 보완												
	논문작성 및 특허												
	Algorithm 정확도 및 실용성 평가												
	평가 데이터 정리												
	Algorithm 보완												
2차 년도	자료정리, 특허, 논문작성												
	실용화												
	임상 적용												
	운동기능 이외의 기능에도 적용												

3) 연구기가 및 연구비 적정성

직접비: 55,000,000 원/년 간접비: 8,400,000 원/년

1) 필요인력 및 인건비: 30,000,000 원/년

		월 급여	man-month 투입 총량	총 액	비	고
학생	박사과정	2,500,000	12개월*0.5=6.0	15,000,000		
학생	박사과정	2,500,000	12개월*0.5=6.0	15,000,000		
	합 계		24	30,000,000		

2) 장비 및 재료 구입 필요성 및 비용: 15.000.000 위/년

1차 년도: 15,000,000 원

- AI 분석용 IT 장비 (딥러닝 분석용 컴퓨터, GPU)

2차 년도: 15,000,000 원

- AI 분석용 IT 장비 (딥러닝 분석용 컴퓨터, GPU): 분석 데이터 양이 늘어남에 따라 장비 확충 픽요

3) 기타 비용

- 연구 활동비 및 연구과제 추진비: 10.000.000 원/년

	구 분	금 액 (원)					
1	여비	교 수: 100,000원 x 10회 = 1,000,000원 연구원: 60,000원 x 10회 = 600,000원					
2	수용비 및 수수료	논문게재료 및 수수료 6,000,000원					
3	회의비	회의당 70,000원 x 30회 = 2,100,000원					
4	문헌구입비	논문, 도서 등 300,000원					
	합 계	10,000,000 원					

4. 연구자의 연구 수행역량

○ 최근5년 대표 연구 실적

성명	연구자 등록번호	번 호	논문제목	논문제목 저널명		게재 년월	역 할 (제1, 교신, 공동)	비 고
장민철	10864685	1	The effects of 10-Hz repetitive transcranial magnetic stimulation on depression in chronic stroke Stimu		1935- 861X	201705	교신	IF (6.56 5)
장민철	10864685	2	Effects of Diabetes on Motor Recovery after Cerebral Infarct: A Diffusion Tensor Imaging Study	Journal of Clinical Endocrinology & Metabolism	0021- 972X	201909	교신	IF(5. 399)
장민철	10864685	3	Attitudes Toward Blockchain Journal of Technology in Managing Medical Medical Internet Information: Survey Study Research		1438- 8871	201912	교신	IF(5. 034)
장민철	10864685	4	Chronic Pain: Structural and Functional Changes in Brain Structures and Associated Negative Affective States	hronic Pain: Structural and International unctional Changes in Brain Journal of Structures and Associated Molecular		201906	교신	IF(4. 556)
장민철	10864685	5	The effectiveness of nonsteroidal anti-inflammatory drugs and cetaminophen in reduce the risk f amyotrophic lateral sclerosis? A meta-analysis		2045- 2322	202009	제1저 자	IF(3. 998)

- Callosal disconnection syndrome in a patient with corpus callosum hemorrhage: a diffusion tensor tractography study. JAMA Neurology 2012년 1저자 게재 (IF: 13.608)
- SCI(E) 논문 주저자 (제1저자, 교신저자) 총 172개 게재, 게재승인

○ 수상

2020년 대한재활의학회 학술상

2019년 영남대학교 우수연구자상

2015년 대한재활의학회 젊은연구자상

2020년 한국의지보조기학회 최우수 구연상 (인공지능을 활용한 보조기 필요성 예측 알고리즘의 개발)

○ 창업 FUNNELS 대표, 인공지능 소프트웨어 회사

○ 의료 빅데이터를 이용한 뇌졸중 환자의 운동 기능 회복 예측 인공지능, 삼킴장애 Videofluoroscopic Swallowing Study 판독 및 처방 인공지능 개발 연구 과제 진행

5. 연구개발과제의 활용방안 및 기대효과

1) 연구개발과제의 활용방안

- 개발된 algorithm이 실제 근골격계 질환 분야에서 적용가능하게 함.
 - 이미지 판독 및 치료 방법에 대한 정확한 정보를 알려 줌으로서 진단의 정확도와 치료의 질을 높일 수 있음. 또한, 질환의 severity 에 대한 정확한 정보를 얻음으로써 치료 계획을 정확하게 수립할 수 있음. 더욱 전문 적이고 정확한 치료를 가능하게 함.
- 환자와 환자 보호자에게도 질환의 진단과 예후에 대한 보다 더 정확한 정보를 제공할 수 있게 될 것으로 예상됨. 본 연구를 통해 개발된 인공지능 algorithm은 특허화하고 제품화 할 수 있을 것으로 생각됨.

2) 연구개발과제의 기대효과

구분	기대 효과
기술적 측면	○ 이미지 정보를 바탕으로 각 근골격계 질환의 진단 및 치료 방법, 예후를 판단함 으로써 각 환자에 대한 정확한 진단 및 치료 방법을 세움으로써 더 전문적이고 정확한 진료를 가능하게 한다. 또한, 환자와 환자 보호자에게도 질환에 대한 더 정확한 정보를 제공할 수 있게 될 것임. - 이 algorithm 개발로 비정형 빅데이터의 활용도를 높일 수 있을 것임. ○ 또한, 이 기술을 바탕으로 향후 내과, 진단검사의학과, 소아과, 외과 등 타과와 협력하여 인공지능관련 적용 분야를 넓힐 수 있는 기본 기술적 토대가 될 것으 로 사료됨.
경제적 산업적 측면	 이 연구로 만들어진 algorithm을 통하여 근골격계 질환을 담당하는 재활의학과, 신경과, 신경외과, 통증의학과, 정형외과 의료진이 이 algorithm을 이용할 수 있을 것이며, 특허 및 제품화를 통한 수익창출도 가능할 수 있을 것으로 예상됨.
사회적 측면	

6. 기타

- 해당 없음

7. 연구개발 안전 및 보안조치 이행계획

1) 안전조치 이행계획

- 연구자는 의무 기록에 대해 개인 정보 보호 및 기밀유지, 보안을 철저히 하도록 한다.

2) 보안조치 이행계획

- 연구자는 의무 기록에 대해 개인 정보 보호 및 기밀유지, 보안을 철저히 하도록 한다. 개인정보의 안전한 관리를 위하여 연구에 필요한 대상자의 정보를 암호화된 저장소 내에 보관하고, 병원 외 반출을 삼가도록 한다. 또한 출력된 문서를 연구실에 보관하되 연구가 종료된 시점으로부터 3년간 보관 후 파쇄하도록 한다.

3) 그 밖의 조치사항 이행계획

- 본 연구를 위하여 수집된 대상자의 신상 정보 또는 검사 결과 등의 자료는 연구 목적 이외의 다른 용도로 사용하지 않을 것이며, 본 연구의 결과가 출판되거나 언론에 노출될 경우에도 대상자의 신상이 비밀로 유지 될 수 있도록 철저히 관리한다.

- 참고문헌(Reference)

- [1] Ran M, Banes D, Scherer MJ. Basic principles for the development of an AI-based tool for assistive technology decision making. Disabil Rehabil Assist Technol. 2020 Dec 4:1-4. doi: 10.1080/17483107.2020.1817163. Epub ahead of print. PMID: 33275457.
- [2] Latina R, Petruzzo A, Vignally P, Cattaruzza MS, Vetri Buratti C, Mitello L, Giannarelli D, D'Angelo D. The prevalence of musculoskeletal disorders and low back pain among Italian nurses: An observational study. Acta Biomed. 2020 Nov 30;91(12-S):e2020003. doi: 10.23750/abm.v91i12-S.10306. PMID: 33263343.
- [3] 의료 인공지능 현황 및 과제. 이관용, 김진희, 김현철, 보건산업통계시스템, 2016
- [4] Dey P. The emerging role of Deep learning in cytology. Cytopathology. 2020 Nov 22. doi: 10.1111/cyt.12942. Epub ahead of print. PMID: 33222315.
- [5] Zadeh Shirazi A, Fornaciari E, McDonnell MD, Yaghoobi M, Cevallos Y, Tello-Oquendo L, Inca D, Gomez GA. The Application of Deep Convolutional Neural Networks to Brain Cancer Images: A Survey.
 J Pers Med. 2020 Nov 12;10(4):224. doi: 10.3390/jpm10040224. PMID: 33198332; PMCID: PMC7711876.