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Abstract
The integrity of the gastrointestinal mucosa plays a crucial role in gut 
homeostasis, which depends upon the balance between mucosal injury by 
destructive factors and healing via protective factors. The persistence of noxious 
agents such as acid, pepsin, nonsteroidal anti-inflammatory drugs, or Helicobacter 
pylori breaks down the mucosal barrier and injury occurs. Depending upon the 
size and site of the wound, it is healed by complex and overlapping processes 
involving membrane resealing, cell spreading, purse-string contraction, 
restitution, differentiation, angiogenesis, and vasculogenesis, each modulated by 
extracellular regulators. Unfortunately, the gut does not always heal, leading to 
such pathology as peptic ulcers or inflammatory bowel disease. Currently 
available therapeutics such as proton pump inhibitors, histamine-2 receptor 
antagonists, sucralfate, 5-aminosalicylate, antibiotics, corticosteroids, and 
immunosuppressants all attempt to minimize or reduce injury to the gastro-
intestinal tract. More recent studies have focused on improving mucosal defense 
or directly promoting mucosal repair. Many investigations have sought to 
enhance mucosal defense by stimulating mucus secretion, mucosal blood flow, or 
tight junction function. Conversely, new attempts to directly promote mucosal 
repair target proteins that modulate cytoskeleton dynamics such as tubulin, talin, 
Ehm2, filamin-a, gelsolin, and flightless I or that proteins regulate focal adhesions 
dynamics such as focal adhesion kinase. This article summarizes the pathobiology 
of gastrointestinal mucosal healing and reviews potential new therapeutic targets.

Key Words: Intestine; Mucosa; Repair; Restitution; Sheet migration; Stomach ulcer
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Core Tip: The integrity of the gastrointestinal mucosa is crucial in gut homeostasis, which depends upon 
the balance between mucosal injury by destructive factors and healing via protective factors. An excess of 
destructive agents breaks down the mucosal barrier. Upon injury, under physiological conditions, 
gastrointestinal mucosa heals itself by complex processes. However, the gut may not heal under 
pathological conditions. Currently available drugs attempt to minimize or reduce injury to the 
gastrointestinal tract. Recent studies have focused on improving mucosal defense or directly promoting 
mucosal repair. This article summarizes the pathobiology of gastrointestinal mucosal healing and reviews 
potential new therapeutic targets.

Citation: Oncel S, Basson MD. Gut homeostasis, injury, and healing: New therapeutic targets. World J 
Gastroenterol 2022; 28(17): 1725-1750
URL: https://www.wjgnet.com/1007-9327/full/v28/i17/1725.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i17.1725

INTRODUCTION
Upon injury, gastrointestinal (GI) epithelial tissue is capable of renewing itself within hours to months 
by replacing damaged or dead cells, depending on the site and size of the wound.  In order to 
appreciate potential new therapeutic targets, this review will first summarize the current understanding 
of the processes of mucosal healing and defense and describe their major extracellular regulators. Then, 
the importance of the quality of ulcer healing and novel approaches to promote such healing will be 
reviewed. This review focuses on mucosal injury and repair. Deeper injuries such as a deep ulcer, 
trauma, fistula, or surgical transection and anastomotic healing all require a complex interaction among 
endothelial cells, fibroblasts, and other cell types to reconstitute the submucosal and muscular layers of 
the bowel wall. This is beyond the scope of the current review but has been previously reviewed[1-5]. 
Angiogenesis is critical to these efforts, and requires a complex interaction between endothelial cells, the 
extracellular matrix, growth factors and cytokines, and other cell types[6,7].

PHYSIOLOGY OF MUCOSAL HEALING
The integrity of the gastrointestinal mucosa is crucial for gut homeostasis. The gut lining is continuously 
injured during normal gut function[8] by a variety of noxious luminal substances and abrasive 
interactions with luminal contents (Figure 1A). However, there is normally an equilibrium between gut 
injury, mucosal healing, and diverse factors that protect the mucosa[5]. This equilibrium favors healing 
in a healthy state. Under normal physiological conditions, GI epithelial cells migrate from the base of 
the crypt to the villi, where their interaction with each other and the extracellular matrix (ECM) is 
disrupted leading to epithelial cell shedding (anoikis)[9] (Figure 1B).

PROTECTIVE FACTORS FOR THE GASTROINTESTINAL MUCOSA
The gastrointestinal mucosa is protected at three levels: pre-epithelial, epithelial, and sub-epithelial 
defenses. Pre-epithelial protection, the first line of mucosal defense, is provided by the secretion of 
mucus, bicarbonate, phospholipids, prostaglandins, and trefoil peptides (Figure 1A and B). These 
factors not only neutralize the acid but also inactivate pepsin at the gastric mucosal surface. In addition, 
phospholipids secreted into mucus contribute to the hydrophobicity of mucus and prevent back-
diffusion of hydrogen ions[10]. Prostaglandins are abundant in gastric juice. They inhibit acid secretion 
and stimulate mucus and bicarbonate secretion[11]. Bicarbonate-rich mucus is secreted throughout the 
GI tract, by mucoid cells in the stomach and goblet cells in the intestines, creating a near-neutral pH at 
the epithelial surfaces in the GI tract, thereby protecting the GI mucosa against autodigestion by the 
gastric juice and other noxious agents in the lumen[12,13].

Intestinal epithelial cells consist of four important cell types (Figure 1E and F). Enterocytes and 
colonocytes are most common in the surface epithelium.  They are critical for the digestion and 
absorption of nutrients. Paneth cells are highly specialized cells located in small intestinal crypts. Paneth 
cells are essential for the secretion of antimicrobial peptides (AMP) such as defensins. These AMPs 
modulate the composition of the small intestinal microbiota. Goblet cells produce various types of 
mucin and are found throughout the GI tract. Similarly, enteroendocrine cells are scattered along with 
the epithelial cells of the GI tract. They produce and secrete more than 20 different hormones in 
response to nutrients in the lumen that regulate hunger, appetite, and satiety[14]. Intestinal epithelial 

https://www.wjgnet.com/1007-9327/full/v28/i17/1725.htm
https://dx.doi.org/10.3748/wjg.v28.i17.1725
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Figure 1 Normal gastrointestinal homeostasis, injury, and healing. A: Structure of gastric epithelium in healthy, injured, and repaired states. A healthy 
gastric barrier is essential to maintain gastric homeostasis. In a healthy state, there is an equilibrium between gastric injury and mucosal healing. An excess of 
destructive factors such as acid, pepsin, nonsteroidal anti-inflammatory drugs (NSAIDs), and H. pylori leads to gastric barrier disruption. These noxious agents then 
diffuse deeper into the mucosa and create wounds. Epithelial cells at the edge of the injury redifferentiate to a migratory phenotype and collectively migrate as a sheet 
to close the wound. After successful restitution, the migrated cells redifferentiate to more specialized phenotypes. B: A diagram depicting the structure and cell types 
of gastric epithelium. C: In the injured state, epithelial cells at the edge of the wound spread and redifferentiate to a migratory phenotype, losing their classical apical 
brush border and assuming a more squamous morphology. Then, they migrate as a sheet to cover the injured area, with cells at the front of the migrating sheet 
transmitting traction forces to cells farther back via cell-cell contacts.  Epithelial cells behind these migrating cells subsequently proliferate to provide more cells to fully 
cover larger wounds. D: Cells that have migrated across the defect may themselves then proliferate once the barrier has been reformed. In addition, following 
migration and proliferation, the migrated cells redifferentiate back to more specialized phenotypes. E: Structure of small intestinal epithelium in healthy and injured 
states. F: Structure of large intestinal epithelium in healthy and injured states. A healthy intestinal barrier is essential to maintain intestinal homeostasis. In the healthy 
state, there is an equilibrium between intestinal injury and mucosal healing. An excess of destructive factors such as NSAIDs, inflammation, bile acid, and toxic 
luminal substances leads to intestinal barrier disruption. These noxious agents then diffuse deeper into the mucosa and create wounds. Epithelial cells at the edge of 
the injury follow the processes described in the figure legends for in Figure 1C and D. IESC: Intestinal epithelial stem cells; EEC: Enteroendocrine cells; GC: Goblet 
cells; NSAIDs: Nonsteroidal anti-inflammatory drugs; H. pylori: Helicobacter pylori; PG: Prostaglandins; ECL cells: Enterochromaffin-like cells; PC: Paneth cells; 
IESC: Intestinal epithelial stem cells.
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stem cells (IESCs) are crucial to maintaining intestinal epithelial function and homeostasis in both the 
small intestine and large intestine. IESCs divide for self-renewal and generate progenitor cells that 
undergo differentiation into enterocytes, colonocytes, Paneth cells, goblets cells, and enteroendocrine 
cells[15].

Epithelial protection represents the second line of defense. GI epithelial cells are connected to each 
other via tight junctions and act as a physical barrier against acid or toxic luminal agents. In addition to 
stimulating mucus and bicarbonate secretion, prostaglandins reduce the permeability of the epithelium 
by closing the apical spaces between the epithelial cells, and thus decreasing the exposure of deeper 
layers along the GI tract to noxious agents by modulating these tight junctions[16]. Tight junction 
proteins are either transmembrane proteins such as occludin, claudins, and junction adhesion molecule 
proteins or cytoplasmic plaque proteins such as the zonula occludens proteins. The dysregulation of 
these proteins via toxin exposure or autoimmune diseases such as celiac disease may lead to disruption 
of gastrointestinal barrier function[17].  For example, ulcerative colitis may alter the intestinal barrier 
function via changing the phosphorylation of colonic claudins[18]. The architecture and function of tight 
junctions are slightly divergent between the different regions of the GI tract and also between different 
epithelial cells.  For example, disruption of occludin alters intestinal barrier function whereas occludin 
disruption does not cause barrier dysfunction in the stomach[19]. Moreover, the expression of tight 
junction proteins varies even among the different epithelial cells. For instance, IESCs and Paneth cells 
have high occludin levels whereas claudin-1, -2, and -7 expression is elevated in Paneth cells, IESCs, and 
enterocytes, respectively[20].

The final mucosal defense is sub-epithelial protection through augmentation of mucosal blood flow. 
Vascular flow not only removes acid rather than allowing it to diffuse deeper into the mucosa but also 
supplies necessary nutrients and oxygen to the epithelial cells for energy-consuming processes such as 
ion transport and secretion. Gut epithelial cells undergo continuous dynamic self-renewal in response to 
the damage caused by destructive factors under normal physiological conditions[21,22].

DRIVERS OF MUCOSAL INJURY
Although the gut epithelium can maintain normal homeostasis in the presence of modest or transient 
exposure to injurious stimuli, high level or extensive interactions with noxious factors such as excessive 
secretion of gastric acid and pepsinogen, the substantial inflammation caused by inflammatory bowel 
disease, or toxic luminal contents including ethanol or medication such as non-steroidal anti-inflam-
matory drugs (NSAIDs) can unbalance the equilibrium between mucosal injury and healing 
(Figure 1A).

Gastric juice includes mucus, hydrochloric acid (HCl), bicarbonate, pepsin, and intrinsic factor 
secreted by mucoid cells, parietal (oxyntic) cells, and chief (zymogenic) cells in the stomach (Figure 1B). 
Helicobacter pylori (H. pylori) infection, a gram-negative bacterium responsible for 90% of duodenal and 
gastric ulcers, impairs the bicarbonate secretion and promotes gastric acidity as well[23]. Such hypera-
cidity may injure the mucosa, causing gastritis, duodenitis, peptic ulcer disease (PUD), or gastroeso-
phageal reflux disease (GERD)[24].

The gastrointestinal mucosa is subjected to numerous physical forces such as strain and pressure 
during both normal gut function and illness. For instance, luminal chyme, peristalsis contractions, 
rhythmic villous motility, and some pathological conditions such as inflammatory bowel disease (IBD) 
may adversely impact GI mucosal healing by increasing luminal pressure[25-29]. Such pressure 
increases have been shown to inhibit mucosal healing, at least in mice, despite increased mucosal prolif-
eration, and appear to act by inhibiting the cell motility required for restitution[28].

The balance between mucosal injury and healing may also be shifted by drugs such as NSAIDs, 
corticosteroids, bisphosphonates, potassium chloride, steroids, and fluorouracil[23,30,31]. In particular, 
many studies have documented that NSAIDs decrease mucus hydrophobicity as measured by contact 
angle goniometry whereas prostaglandins, gastroprotective compounds, increase the contact angle of 
gastric mucosa[32,33]. NSAIDs, the most commonly prescribed medications, increase the development 
of ulcers in the upper and lower GI tract by two distinct mechanisms (Figure 2)[34-37].

NSAIDs injure the upper GI mucosa mainly by cyclooxygenase (COX)-1 inhibition, resulting in a 
decrease in prostaglandins, mucus, and bicarbonate secretion. Moreover, NSAIDs also alter another 
important component of mucosal defense, the gastric microcirculatory system. Upon irritation, the 
gastric mucosa normally increases blood flow to remove any toxins, bacterial products, or back-
diffusing acid. Impairment of this hyperemic reaction increases the vulnerability of gastric mucosa to 
damage[38]. Inhibition of prostaglandins, potent vasodilators, by NSAIDs leads to an increase in 
vascular tone and thus reduces gastric mucosal blood flow[39], consequently, increases ischemic tissue 
damage and exacerbating the mucosal injury[40]. NSAIDs may also induce local gastric mucosal injury 
independent of prostaglandin deficiency[41]. NSAIDs may lyse phospholipids from mucosal epithelial 
cells and may increase mucosal permeability, which then allows mucosal exposure to luminal 
aggressive factors such as bacteria and gastric acid[42].
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Figure 2 Non-steroidal anti-inflammatory drugs induce mucosal injury in the upper and lower gastrointestinal tract by two distinct 
mechanisms. In addition to principal luminal aggressors such as acid, pepsin, Helicobacter pylori in the stomach and acid, bile, and pathogens in the small 
intestine, nonsteroidal anti-inflammatory drugs (NSAIDs) increase mucosal damage in both upper and lower GI by two different mechanisms. In the stomach, the 
inhibition of COX-1 by NSAIDs reduces prostaglandin secretion which in turn reduces mucus and bicarbonate secretion and increases acid secretion, resulting in 
increased permeability and eventually mucosal damage. In the small intestine, NSAIDs bind to bile in the enterohepatic circulation. This potentiates the mucosal 
damage caused by bile. NSAIDs also increase mucosal damage in the small intestine by altering the gut microbiota. The NSAID-associated increase in enteric gram-
negative bacteria appears to contribute to intestinal lesions by increasing inflammation. NSAIDs: Nonsteroidal anti-inflammatory drugs.

The molecular and cellular mechanisms of NSAID-induced lower GI mucosal injury are clearly 
distinct from NSAID-induced upper GI injury[42,43]. As in the stomach, NSAIDs may inhibit COX-1 
and contribute to mucosal damage. However, unlike gastric injury, the bile acid and intestinal 
microbiota play a crucial role in the pathophysiology of NSAID-induced intestinal injury[42,44]. 
NSAIDs and gut microbiota have complex and dynamic interactions. The gut microbiota can alter the 
efficacy and toxicity of NSAIDs either directly by biotransforming them into metabolites or indirectly by 
altering the host metabolism (e.g., interfering with hepatic function)[45]. On the other hand, NSAIDs 
themselves can directly change the composition and function of the gut microbiota or indirectly by 
altering the physiological functions of the host[45]. For instance, NSAIDs alter the intestinal microbiome 
by increasing the total number of bacteria and the proportion of gram-negative bacteria, which seems to 
be linked to the activation of toll-like receptor (TLR) 4 that increases inflammation and contributes to an 
intestinal injury[46-48].

NSAIDs make complexes with bile acids by glucuronidation in the liver. This interaction alters the 
stability and structure of bile acids and potentiates bile acid toxicity in the lower GI tract[42]. These 
NSAID-bile acid complexes are secreted into the duodenum and subsequently reabsorbed back in the 
ileum via the enterohepatic circulation. Within the intestinal lumen, particularly, in the colon, 
conjugated primary bile acids are deconjugated into more toxic secondary bile acids, mainly by the 
gram-positive bacteria[49]. There is crosstalk between the microbiome and the bile acids because bile 
acids can control the composition of the intestinal microbiome, which in turn regulates the composition 
and size of the bile acid pool[50,51]. Alteration in the colonic microbiota may cause a shift towards to 
generation of more toxic secondary bile acids, which eventually increase intestinal permeability, partic-
ularly in the colon, bacterial translocation, and mucosal inflammation[52-54].
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NSAID-induced ulcers are traditionally treated with proton pump inhibitors (PPIs) or histamine-2 
receptor antagonists (H2-antagonists)[55,56], which permit ulcer healing by reducing gastric acid 
secretion without directly affecting mucosal restitution[5,57,58]. Although PPIs have historically been 
co-prescribed with NSAIDs to ameliorate gastroduodenal injury and are used to treat NSAID injury, 
such use may increase the risk of a different problem. There is no evidence that gastric acid plays a key 
role in the pathogenesis of NSAID-induced lower GI[42,59]. PPIs may worsen NSAID-induced 
enteropathy by increasing gastric pH and thus changing the enteric microbiome by increasing the 
number of gram-negative bacteria[35,42,60-62]. Thus, even though PPIs are still recommended to treat 
upper GI ulcers, their prophylactic use with NSAIDs to prevent upper GI injury is no longer 
recommended unless the patient has a moderate to high risk of peptic ulcer disease[62,63].  Similar 
concerns are likely to exist for H-2 blockers.

Inflammatory bowel disease is a broad term to describe disorders including Crohn’s disease (CD) and 
ulcerative colitis (UC) that are characterized by excessive activation of the mucosal immune system to 
normal microflora. This causes chronic inflammation and damages the gut mucosa[64,65]. Since the 
etiology of IBD is still unclear, the primary goal of treatment is centered on the elimination of inflam-
mation with medical therapies such as 5-aminosalicylate, antibiotics, corticosteroids, immunosup-
pressants, and biological therapy[66-68]. Management of IBD with targeted therapies has been 
discussed in detail in a recent review[68]. However, none of these therapies is perfect, and even if 
patients achieve symptomatic remission, maintaining that remission can be challenging[69]. Recent 
evidence highlights the importance of mucosal healing over and above symptomatic remission in the 
quality of life and long-term prognosis of IBD patients[70-72].

MUCOSAL HEALING PROCESSES
Once an injury has occurred, diverse processes such as redifferentiation to a migratory phenotype[73-
75], migration, proliferation, and eventual redifferentiation back to more specialized cells after healing 
are all regulated by various factors including growth factors, cytokines, physical forces, and the 
extracellular matrix itself. These coordinate healing of the injury (Figure 1). At the subcellular level, 
wounding of the apical plasma membrane is common in the epithelial cells of the intact, normal 
functioning stomach and intestines in vivo after mechanical and chemical stressors[8,76,77]. Since 
maintenance of plasma membrane integrity is essential for cell viability, the wounded cell rapidly 
repairs the injury to restore internal homeostasis and prevent cell death. Plasma repair processes such as 
tension reduction, budding, patch, endocytosis, and exocytosis may be triggered by the toxic level of 
Ca2+ influx through the plasma membrane wound to then reseal the injured plasma membrane[78,79].

Relatively small or superficial multicellular mucosal injury undergoes complex wound healing 
processes that quickly reconstitute the mucosal barrier, depending on the size and depth of the injury. 
Small wounds, less than eight cells in size, may close by the spreading of neighboring cells and 
formation of new cell-cell contacts[80,81] or by purse-string wound closure, which involves the 
formation of a multicellular actin cable purse string around the wound, with actin cables that parallel 
the wound edge. This then contracts, pulling the adjacent cells together[5,82].

Mucosal injury involving more than eight cells is generally too large for purse-string wound closure. 
This then requires restitutive epithelial sheet migration to close the injury. Depending on the size and 
depth of these larger wounds, wound closure will require a longer healing time and may require one or 
more complex overlapping processes such as differentiation, proliferation, and angiogenesis for wound 
healing[5,83,84].

Restitution requires a phenotypic redifferentiation. Although some authors describe the initial steps 
of this process as dedifferentiation, it is the firm opinion of the senior author that this should rather be 
considered a redifferentiation toward a migratory phenotype. The gut epithelium normally consists of a 
monostratified layer of differentiated epithelial cells. At the edge of a mucosal wound, epithelial cells 
change their phenotype from differentiated columnar enterocytes or gastric cells to a migratory 
phenotype. They lose their typical morphology and (for enterocytes and parietal cells) their microvilli
[85], disassemble their apical specialized membrane components[86], flatten out and extend 
lamellipodia toward the defect. Such migrating cells adopt a squamous morphology with altered 
integrin[87-89] and cytoskeletal organization[73,85] and specialized cell signaling pathways[90-93] that 
adapt these cells toward motility (Figure 1C)[73,85,94-96] Moreover, it is worth noting that these 
signaling events are not only regulated by the activation of signaling proteins but also by the distri-
bution and the amount of the signaling proteins within the migrating cells. For instance, both the actual 
amount of total focal adhesion kinase (FAK) and the amount of active FAK decrease while the ratio of 
activated to total FAK increases both in vitro[94] and in vivo[92] as the epithelial cells shift to the 
migratory phenotype[73]. Similarly, both paxillin protein and tyrosine-phosphorylated paxillin decrease 
in migrating cells compare to static cells[94]. (Paxillin is an adapter protein critical to focal adhesion 
complex assembly and disassembly in response to various stimuli.)[97-100]. Total p38, ERK1, and ERK2 
proteins do not show differences between migrating and static cells[94]. However, phosphorylated p38 
increases, and phosphorylated ERK1 and ERK2 decreases in motile cells compared with nonmigrating 
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cells[94].
Furthermore, the distribution of these signaling proteins also changes in migratory phenotype. In 

confluent cells, FAK localizes mainly in a perinuclear pattern while FAK appears explicitly at the cell 
borders contacting other cells in motile cells, with FAK immunoreactivity decreasing toward the 
migrating lamellipodia that face the wound edge[94]. In contrast to FAK, paxillin is localized at the 
lamellipodial edges in migrating cells[94]. The difference is more than semantic because considering 
these migratory cells as a specialized phenotype opens up the possibility for therapy to modulate that 
phenotype and thereby promote mucosal healing.

The transverse actin cables that drive purse-string closure for smaller wounds line up parallel to the 
wound edge at the migrating front, connected by cell-cell contacts, and unite the migrating front, so that 
these redifferentiated cells collectively migrate as a sheet, a.k.a., restitution, to close the wound 
(Figure 1C)[101-103].  Slightly deeper wounds that injure the basement membrane expose the cells to the 
interstitial extracellular matrix. While the basement membrane is predominantly laminin and type IV 
collagen, the deeper interstitial matrix is rich in type I collagen, across which the cells may migrate more 
rapidly[104,105].

After the closure of the wound by successful restitution, the migrating cells must redifferentiate back 
to the more specialized phenotypes required for the normal biology of the mucosa (Figure 1D)[102]. 
Tarnawski et al[106] have demonstrated the critical relationship between defective redifferentiation of 
these migratory cells and subsequent ulcer recurrence. This will be considered in more detail below.

If the wound surface area is extensive, restitution will likely be insufficient to seal the wound. In this 
situation, epithelial cell proliferation increases behind the migrating cells to create a larger pool of 
epithelial cells that can then migrate across and cover the defect (Figure 1C)[107]. However, if the 
wound extends into deeper layers such as the submucosa and muscularis, these must also be 
reconstructed for healing by processes beyond the scope of this review. In particular, the reconstitution 
of nutrient vessels in the submucosa is critical for mucosal wound healing because these provide oxygen 
and nutrients to the mucosa and remove waste products from the wound site[108,109]. This neovascu-
larization can occur by two distinct processes called angiogenesis and vasculogenesis[110-114]. 
Angiogenesis refers to the process where new blood vessels are formed from preexisting blood vessels 
from the wound’s adjacent vasculature by sprouting and forming tube-like structures and networks. 
Vasculogenesis is the de novo formation of new blood vessels from the differentiation of bone marrow-
derived progenitor stem cells.

RESTITUTION AND QUALITY OF ULCER HEALING AS THE SINE QUA NON FOR WOUND 
HALING
GI ulcers have traditionally been assessed in clinical settings by a superficial visual endoscopic 
examination that cannot assess the histological and ultrastructural characteristics of the mucosa or 
deeper layers. Ulcer recurrence is, unfortunately, common, with rates exceeding 60% if the underlying 
problem has not been successfully addressed[23]. Recurrence of GI ulcers may be related to many 
factors including gastric acid secretion, H. pylori, NSAIDs, hormonal complications, size and depth of 
ulcers, anti-ulcer treatment, age, gender, comorbidity, alcohol consumption, and smoking[115-118]. In 
1991, Tarnawski et al[119] drew attention to the relationship between recurrence of ulcers and 
ultrastructural abnormalities of deeper layers such as poor `redifferentiation, dilation of glands, reduced 
mucosal height, and disorganized microvascular network after ulcer healing and proposed the concept 
of the quality of ulcer healing (QOUH)[119-121]. QOUH is defined as ideal ulcer healing, demonstrating 
flat ulcer scar, high functional restoration, and histological maturity of the regenerated tissue[115,122]. 
Many patients treated with PPIs for GI ulcers still suffered from a recurrence of ulcers despite 
continuous anti-ulcer therapy[115,122-124]. It appears that acid inhibition by PPIs or H2-antagonists may 
be insufficient for successful high-quality gastroduodenal ulcer healing because low levels of 
prostaglandins and high levels of oxygen free radicals entail poor QOUH and thus potentiate ulcer 
recurrence[122,125,126].

Overall, cumulative data highlight the necessity of QOUH for successful and permanent ulcer healing 
and point out that contemporary treatments such as PPIs and H2-antagonists do not always provide 
such high-quality healing. Therefore, to improve QOUH and decrease the rate of recurrence of GI 
ulcers, new antiulcer drugs need to be developed to address this. Investigation of the endogenous 
biologic regulation of mucosal healing, suggests new therapeutic targets, both extracellular and 
intracellular.
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REGULATORS OF MUCOSAL HEALING AND POTENTIAL NEW THERAPEUTIC TARGETS
Supplementing available therapeutic modalities that attempt to minimize or reduce injury, investigators 
have more recently focused on enhancing mucosal defense or promoting mucosal repair. Both mucosal 
defense and mucosal healing processes such as restitution, proliferation, angiogenesis, and vasculo-
genesis can be influenced by acid secretagogues, growth factors, trefoil peptides, cytokines, angiogenic 
factors, luminal nutrients, and the gastrointestinal microbiota[5,25,127]. In addition, physical forces like 
strain and pressure, engendered by peristalsis, villous motility, and interaction with luminal contents 
can influence intestinal epithelial migration and proliferation in a complex manner influenced by the 
deposition of fibronectin at the site of injury[25,128,129].

Acid secretagogues
Under physiological conditions, the stomach protects itself against various forms of endogenous and 
exogenous injury, primarily by gastric acid. Gastroprotective mechanisms could be triggered by acid 
secretagogues such as gastrin, histamine, and thyrotropin-releasing hormone (TRH)[130-132]. 
Pentagastrin, synthetic gastrin, stimulates gastroprotection in acidified aspirin-induced gastric injury in 
rats, likely through the activation of histamine-2 receptors, since this is abolished by ranitidine[133]. 
However, exogenous gastrin protects the rat gastric mucosa against ethanol-induced lesions but not 
against aspirin-induced gastric damage in rats[134]. Several studies have shown that exogenous 
histamine-stimulated acid secretion also exerts a protective effect on the gastric mucosa against erosions 
induced by exogenous HCl in rabbits and frogs by stimulating a greater alkaline tide[135,136]. The 
central vagal activation by intracisternal injection of the thyrotropin-releasing hormone analog RX77368 
enhances mucosal resistance as well by stimulating mucosal blood flow via prostaglandin-independent 
manner which eventually results in the removal of diffused acid from the subepithelial interstitial space
[137]. In addition, RX77368 increases the thickness of the mucus gel via prostaglandin-dependent 
manner which slows down the acidification of surface cells[137]. The potential therapeutic adaptation of 
molecules like RX77368 and other acid secretagogues awaits the further exploration of the disparities 
between results depending on how the ulcers are induced, as well as challenges with their pharma-
cologic delivery.

Growth factors, trefoil peptides, and cytokines
Growth factors have diverse pathophysiologic effects, including cytoprotection against destructive 
agents, epithelial wound healing in response to injury[102,138-140], and angiogenesis[141-144]. 
Epidermal growth factor (EGF) and transforming growth factor TGF-α are structurally related but 
different polypeptide growth factors[145]. They both bind to the same cell-surface EGF/TGF-α -receptor 
and induce generally similar effects[145].

EGF may act in a cytoprotective fashion against mucosal injury by increasing secretion of mucus and 
bicarbonate[146-148], enhancing blood flow[149-151], or releasing other cytoprotective agents such as 
prostaglandins[152]. Pretreatment of the stomach[153,154], small intestine[146,155], and colon[149,150] 
tissues, both in vivo and in vitro, with EGF decreases mucosal damage by various noxious agents. TGF-α 
is similarly cytoprotective against gastric injury by ethanol, acetic acid, or aspirin[156,157]. Pretreatment 
of Caco-2 cells with EGF prevents deoxycholate-induced cellular damage, at least in part, by changes in 
intracellular calcium content[158], suggesting that EGF exerts direct cytoprotective effects on the 
epithelium in addition to its effects on blood flow and mucus secretion. Furthermore, because this EGF-
induced cytoprotection was observed following only 30 minutes of pretreatment (insufficient for prolif-
eration), these results also suggest that this protection is independent of the mitogenic effects of EGF
[158]. Consistent with this idea, adding EGF to the basal surface of rabbit primary gastric epithelial cell 
monolayers cultured on collagen-coated inserts enhances cytoprotection against apical surface acid by 
opening the plasma membrane calcium channels and increasing intracellular calcium[159].

In addition to their cytoprotective effects, EGF and TGF-α also promote mucosal healing after injury, 
stimulating both cell motility and cell proliferation[104,140,154].  Indeed, part of the epithelial mucosal 
shift to a phenotype adapted to wound healing may be an increase in sensitivity to these growth factors. 
A recent study demonstrated a 75-fold increase in the number of cells expressing detectable EGF-
receptors at the ulcer margin after gastric ulcer induction in rats[160]. Either parenteral or local 
submucosal intra-ulcer injection of EGF caused a comparable acceleration in the healing of acetic-acid-
induced rat gastric ulcers, at least in part by increasing gastric blood flow, decreasing gastric acid 
secretion, and upregulating COX-2 expression[161]. This is in agreement with previous reports 
suggesting that COX-2 -influences mucosal healing by regulating both the hyperemic response and 
epithelial cell proliferation[162,163].

The trefoil peptides may also offer new opportunities for therapy because they are important both for 
mucosal defense[164-166] (by increasing the viscoelasticity of mucus[167,168]) and mucosal repair[169-
171] (by influencing reepithelization[171] and inflammation[172]). The trefoil factor (TFF) family 
includes TFF1 (also called pS2) expressed in gastric surface mucous cells, TFF2 (also called a spasmolytic 
polypeptide or SP) produced by mucus-producing gastric mucous neck cells, antral gland cells, and 
duodenal Brunner’s glands, and TFF3 (also called intestinal trefoil factor or ITF), predominantly 
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produced by goblet cells of the small and large intestine and found abundantly within the mucus. A 
trefoil domain consists of three loops created by disulfide bonds and all TFFs are comprised of two 
trefoil domains[173]. Trefoil peptides have been detected in different forms including monomers, 
dimers, and complexes with other molecules. This influences the strength of their association with 
mucin[173]. In particular, TFF dimers tightly interact with mucin, increasing the viscosity and elasticity 
of mucus in comparison to the effect of TFF monomers[167,174].

The TFFs are mostly distributed to the basolateral domain of gastric neck cells and parietal cells in the 
stomach, the Paneth cells in the small intestine, and the crypt cells in the colon[175]. TFF interactions 
and specific functions have been discussed in detail in a recent review[176].  A specific TFF receptor has 
not yet been described.  However, some binding and functional studies propose potential TFF receptors 
that may influence epithelial restitution. TFFs have been reported to bind to transmembrane proteins 
such as the β1 integrin subunit, CRP-ductin, CXC chemokine receptor (CXCR) 4, CXCR7, proteinase-
activated receptor (PAR) 2, PAR4, leucine-rich repeat and Immunoglobin-like domain-containing 
protein (LINGO) 2, LINGO3, and EGFR[177-181]. TFF3 enhances wound healing by activating EGFR 
and inducing MAPK[182] and PI3K/Akt signaling pathways in vitro[183] whereas TFF2 directly 
activates CXCR4 and enhances the phosphorylation of ERK1/2  and Akt in gastric epithelial cells[184]. 
Indeed, the CXCR4 antagonist AMD3100 blocks TFF2-dependent gastric epithelial repair[170]. TFFs, 
specifically TFF2 and TFF3, regulate epithelial motility via integrin-binding and activating focal 
adhesion kinase as well[175]. TFF2 also promotes cell migration via PAR4[185], while TFF3 activates 
PAR2[186]. Furthermore, TFF2 peptide may be required for optimum activity of EGFR and/or EGF 
signaling in the stomach because heparin-binding EGF and TGF-α do not induce EGFR activation in the 
stomachs of Tff2 KO mice[177].

Oral administration of trefoil peptides, recombinant human SP, or rat ITF protects the gastric mucosa 
against ethanol or indomethacin-induced injury in a prostaglandin-independent manner[164]. Similarly, 
a more recent study has also shown that both parentally and topically applied trefoil peptides reduce 
ethanol-induced gastric damage, assessed by measurement of gastric mucosal Na+ leakage and area of 
macroscopic injury in rats[187]. Complementing these results, transgenic mice that overexpress human 
TFF1 display increased resistance to indomethacin-induced small intestinal damage[188] whereas ITF-
deficient mice are more prone to ulceration and hemorrhage after oral administration of dextran sulfate 
sodium (DSS)[189], suggesting that trefoil peptides play an important role in GI mucosal protection. 
There are likely to be several mechanisms by which the trefoil peptides promote mucosal healing. For 
instance, exogenous recombinant TFF2 increases epithelial wound healing by decreasing inflammation 
by negatively regulating IL-12 production from macrophages and dendritic cells[172] whereas 
exogenous TFF3 activates epithelial wound healing via the Na/H exchanger-2[171] and accelerates 
gastric repair via a mechanism that does not require cyclooxygenase activation[170].

TGF-β expression increases in affected mucosa from patients with IBD[190], and at the edge of human 
gastric and colonic ulcers[92]. Intravenous administration of recombinant bone morphogenetic protein 
(BMP)-7, a subfamily of TGF-β superfamily,  for five days significantly accelerates the healing of 
trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats by decreasing the expression of pro-inflam-
matory cytokines (IL-6, TNF-b, ICAM-1)[191]. It should be noted that all of these growth factors and 
cytokines mentioned in this section interact in a complex fashion, and TGF-β potentiates many of them
[127,192,193]. TGF-β also stimulates the synthesis of FAK, a key intracellular signal protein for cell 
motility and proliferation[92].

Basic fibroblast growth factor (bFGF) and hepatocyte growth factor (HGF) stimulate the healing of 
acetic acid-induced gastric lesions in rats similarly when administered intraperitoneally or by local 
submucosal injection at the ulcer site, suggesting that these growth factors also accelerate mucosal 
repair[161]. The healing of gastric ulcers by bFGF and HGF may involve enhancement of gastric blood 
blow around the ulcer, suppression of gastric acid secretion, and upregulation of COX-2 expression
[161].

When the mucus barrier fails due to overexposure to the noxious agents, acid-back diffusion occurs. 
In healthy mucosa, increased blood flow response rapidly increases the circulation of pH neutral or 
slightly alkaline blood through the mucosa to neutralize the diffused acid[103]. Moreover, new 
vasculature is needed to perfuse and support the newly forming tissue. Therefore, wounds deeper than 
the epithelial layer also require the formation of new blood vessels in granulation tissue for mucosal 
healing. Like restitution and proliferation, neovascularization is also modulated by growth factors. 
Vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), nerve growth factor 
(NGF), fibroblast growth factor (FGF), and angiopoietin-1(Ang1) are essential for blood vessel 
regeneration via angiogenesis and vasculogenesis following mucosal damage[141-144] and can therefore 
facilitate deep wound healing[112,193-195]. VEGF, the most potent angiogenic factor, is an indi-
spensable regulator of angiogenesis, making it potentially an ideal candidate to induce angioge-
nesis/vasculogenesis in mucosal healing. Since VEGF is digested in the lumen by proteolytic enzymes, 
Jones et al[141] used a single injection of a nonviral naked DNA plasmid encoding VEGF and Ang1 
directly into the injured area to reduce such deleterious effects. They demonstrated that local gene 
therapy with a combination of VEGF and Ang1 cDNAs increases gastric ulcer healing and generates 
more mature vessels and a more complete epithelial structure in acetic acid-induced gastric injury in 
rats, suggesting that a combination of growth factors may have better therapeutic potency than the use 



Oncel S et al. Gut homeostasis, injury, and healing

WJG https://www.wjgnet.com 1734 May 7, 2022 Volume 28 Issue 17

of any individual factor[141]. Similarly, local gene therapy with serum response factor (SRF) accelerates 
ulcer healing as well as muscle restoration in acetic acid-induced gastric ulcers in rats[196]. A recent 
study indicated that angiogenesis and vasculogenesis go hand in hand while forming new vessels in 
granulation tissue[197]. Delivering such naked genes to a damaged site at endoscopy may be a 
promising tool to treat such ulcers by increasing the bioavailability of essential GFs.

Cytokines are also involved in the regulation of mucosal barrier function at multiple levels including 
mucosal homeostasis and inflammation[198]. Proinflammatory cytokines such as tumor necrosis factor 
(TNF) and IL-13 are upregulated in the inflamed mucosa of IBD patients. Anti-TNF therapy promotes 
mucosal healing in many patients, but not all patients respond to anti-TNF therapy. Many investigators 
have therefore focused on other cytokines to improve mucosal barrier function. Unfortunately, many of 
these attempts have ended disappointingly. For instance, experimental colitis in mice is controlled by 
using ROR-gamma null Th17 cells, which cannot produce IL17A/F and not induce colitis[199]. 
However, an anti-IL17A monoclonal antibody not only failed to improve CD in clinical trials but 
actually aggravated adverse symptoms[200]. IL-13 has seemed similarly promising in pre-clinical 
studies[201-204], but a trial of IL-13  blockade in UC failed[205]. Such failures of blockade of pro-inflam-
matory cytokines have recently prompted attempts to use anti-inflammatory IL-10 family cytokines to 
promote colonic mucosal healing. IL-10 is a major anti-inflammatory cytokine that targets hematopoietic 
cells in various autoimmune diseases[206]. Gene therapy with a single intravenous injection of an 
adenoviral vector encoding IL-10 (AdvmuIL-10) diminishes TNBS-induced colitis in mice, decreasing 
histological injury scores, weight loss, stool markers of inflammation (IL-1β and TNFR-II), and serum 
amyloid protein in comparison to empty cassette virus (Adv0) or PBS treated mice in TNBS-induced 
colitis model[207]. Gelatin microspheres containing IL-10 have been developed to increase local 
bioavailability as a sustained release preparation[208]. Gelatin-microsphere-IL-10 treatment remarkably 
decreases colonic inflammation in IL-10(-/-) mice compared to treatment with IL-10 alone treatment, at 
least in part by decreasing IL-12 mRNA expression and down-regulating CD40 expression in 
macrophage-1 positive cells[208]. However, recombinant IL-10 did not improve clinical symptoms in 
Crohn’s disease[209]. Such disappointing results raise the possibility that manipulating a single cytokine 
may have unpredictable results because of its effects on the web of compensatory pro-inflammatory and 
anti-inflammatory cytokine pathways in the inflamed mucosa[198].

One cytokine that may be promising is IL-22. Even though it belongs to the IL-10 family of cytokines, 
IL-22 is unlike IL-10 in that it targets non-hematopoietic epithelial cells. IL-22 is produced by, apart from 
the adaptive T cell, innate cells including innate lymphoid cells (ILCs), specifically ILC3 cells in the GI 
tract. IL-22 has dual roles in inflammation. It can act as a protective (anti-inflammatory) cytokine or a 
pathological (pro-inflammatory) cytokine[210]. IL-22 influences various tissue epithelial functions such 
as inflammation[211,212], barrier integrity, regeneration, wound healing[213-215], and host defense 
against pathogens[216,217]. Beneficial effects of IL-22 have been demonstrated in various murine colitis 
models[210,218]. However, IL-22 actually appears to worsen the anti-CD40-induced colitis model, in 
that neutralization of IL-22 reduces the weight loss and colitis scores caused by the anti-CD40 injection 
and administration of IL-22 then recreates the colitis[219]. Thus, although most animal studies raise the 
possibility that recombinant human (rh) IL-22 might be a promising therapy for IBD, it remains unclear 
which effect will be seen in human disease. However, as for other cytokines, the short half-life of rhIL-22 
(less than 2 h) limits its clinical applications. Several groups have sought to overcome this obstacle by 
engineering recombinant fusion proteins with a half-life of 1-2 wk to improve the cytokine’s pharma-
cokinetic properties. Currently, seven IL-22 clinical trials have been investigated for different 
indications. UTTR1147A is a human IL-22 fusion protein that links the human IL-22 with the Fc portion 
of human immunoglobulin (Ig) G4, which is prepared for IBD studies[220]. Extensive in vitro and in vivo 
studies suggest that UTTR1147A decreases histologic colitis severity by a pathway involving STAT3 
activation[220]. These pre-clinical studies demonstrate that UTTR1147A is well tolerated and is not 
associated with increased inflammatory cytokines in mouse, rat, and monkey studies[220]. A 
randomized phase-I healthy volunteer study of UTTR1147A demonstrated satisfactory safety and 
pharmacokinetic profile[221]. A phase-II open-label extension study to evaluate the long-term safety 
and tolerability of UTTR1147A in patients with moderate to severe UC and CD continues with an 
estimated completion date in 2025[222].

Therapeutic use of growth factors (except BMP-7) may be limited by their low protein stability[144]. 
In addition, despite their beneficial effects on the GI tract, long-term or systemic use of any growth 
factors, trefoil peptides, or cytokines that stimulate cell proliferation, either for cytoprotection or for 
mucosal healing, may raise concerns about inducing hyperproliferative or dysplastic lesions and 
potential tumorigenesis. This remains an open issue for such mitogens.

Luminal nutrients and GI microbiota
Luminal nutrients and microbiota are also crucial for the maintenance and repair of the gut mucosa. 
Short-chain fatty acids (SCFAs) are produced by commensal microbiota, mostly by gram-positive 
anaerobic bacteria, and are essential for perpetuating intestinal health[223,224]. These SCFAs, especially 
butyrate, are a major energy source for enterocytes and support gut homeostasis[225-227]. SCFAs may 
stimulate the differentiation of epithelial cells and their proliferation in vivo[228-230], whereas they 
promote only differentiation in cell culture models but inhibit proliferation and migration[231-235]. 
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Long known as an energy supply for colonocytes and enterocytes, SCFAs have attracted may also 
enhance gut barrier function. SCFAs decrease acid-back diffusion by dilating arterial walls and 
increasing blood flow in gut mucosa[236,237]. In addition, several studies have documented improved 
intestinal barrier function after SCFA supplementation[238-240]. The SCFAs activate 5’ adenosine 
monophosphate (AMP) kinase and therefore promote tight junction assembly, which in turn enhances 
intestinal barrier function[241,242]. However, a recent clinical study found no evidence that butyrate 
monotherapy or a combination of three SCFAs offered any advantage over placebo in improving the 
disease activity index in ulcerative colitis patients receiving maintenance oral anti-inflammatory 
medication[243].

Amino acids such as arginine, histidine, and glutamine promote enterocyte proliferation and decrease 
mucosal permeability by regulating tight junction proteins[244-247]. A recent study proposed that 
histidine and arginine play an important role in stimulating intestinal restitution, probably stimulating 
FAK via the TGF-β/Smad2 signaling pathway[248]. Glutamine modulates the phenotype of gut 
epithelial cells by stimulating proliferation and decreasing differentiation in vitro[249]. Similarly, many 
studies have been shown that glutamine also promotes cell proliferation of intestinal epithelial cells in 
weanling mice[250] and weaning piglets[251], prevents mucosal injury, and regulates enterocyte 
restitution following acetic acid-induced intestinal injury in rats[252].

Biologically active phospholipids in milk, phosphatidylcholine (PC) and phosphatidic acid (PA), and 
their metabolites such as lysophosphatidic acid (LPA), all act to increase the barrier function of GI 
mucosa by increasing the hydrophobicity of the mucus[253]. This makes the tissue non-wettable[10] and 
provides mucosal protection against aspirin-induced gastric injury in mice[253]. Dietary essential 
omega-6 fatty acids can enhance the biosynthesis of prostaglandins and increase the GI mucosal barrier
[254]. Milk fat globule-epidermal growth factor 8 (MFG-E8), a glycoprotein found in mammary 
epithelial cells but also produced by lamina propria macrophages, also plays a vital role in modulating 
enterocyte migration along the crypt-villus axis[255].

Extracellular matrix
Epithelial sheet migration during gut-healing requires crosstalk between focal adhesion (FA) complexes 
in the lamellipodium and the ECM. The extracellular matrix is an extremely dynamic meshwork 
comprised of proteins, glycosaminoglycans, and glycoconjugates. Its composition and organization 
differ between tissue types and with physiological and pathological conditions[256,257]. Besides its 
structural support, the ECM has a direct role in gastrointestinal wound healing by inducing extensive 
signaling cascades[258-260]. Plasma and tissue fibronectin accumulating in deeper wounds also help to 
shift the cells to a phenotype that responds to repetitive deformation by increased motility rather than 
by classical differentiation[129,261]. ECM remodeling is performed by matrix proteinases such as matrix 
metalloproteinases (MMPs), lysyl oxidases, and heparanases[262]. The gelatinases, a subgroup of 
MMPs, consist of two proteinases gelatinase A (MMP-2) and gelatinase B (MMP-9). In particular, MMP-
9 is upregulated in the inflamed intestinal mucosa of IBD patients[263-267]. Furthermore, anti-gelatinase 
neutralizing antibodies have been reported effective in murine DSS-induced colitis[268]. However, a 
phase II, randomized, placebo-controlled study found that the MMP-9 inhibitor andecaliximab did not 
induce a significant symptomatic or endoscopic response in patients with active Crohn’s disease[269]. 
This lack of efficacy in Crohn’s disease prompted the termination of another clinical trial of the same 
agent in active ulcerative colitis[270]. Thus, while modulation of matrix metalloproteinases remains an 
attractive target in IBD, further exploration of the science involved and the reasons for the failure of the 
clinical trial are needed.

Regulation of cytoskeleton
Epithelial restitution begins at the edge of the wound with the redifferentiation of epithelial cells. 
Reorganization of the actin cytoskeleton is controlled by the Rho family of GTPases including RhoA, 
Rac1, and Cdc42 (Figure 1C)[93,271-273].  Epithelial cells then form protrusions called lamellipodia with 
new focal adhesions (FAs) at the leading edge of the motile cells. The migrating cell increases its 
contractile forces and disassembles focal adhesions at the rear edge allowing the entire cell to move 
forward[274-276]. Cell-cell linkages[276] transmit this force to other cells behind the migrating front and 
stretch the epithelial layer across the wound as a sheet.  This sheet migration is characteristic of 
epithelial cells and differs from the individual cell motility displayed by other cell types.

The cytoskeleton, a complex and dynamic network of actin filaments, microtubules, and intermediate 
filaments, is also an important factor in wound healing[277]. Epithelial restitution relies on the 
coordination of forward protrusions and retraction forces at the rear edge, which is orchestrated by the 
actin and microtubule cytoskeleton[278]. In the lamellipodium, the elongating actin filaments produce 
the driving forces for the protrusion while microtubules form a polarized network that permits 
organelle and protein transport throughout the cell during cell migration[279,280]. Intermediate 
filaments, however, are generally considered for the maintenance of the overall cell shape[280]. Altern-
atively, or in combination with therapy to reduce ongoing injury by improving mucus barrier function 
and promoting angiogenesis, one could consider attempting to directly stimulate restitution in order to 
accelerate barrier reconstitution. Thus, proteins that modulate cytoskeleton dynamics might be targeted 
for optimal wound repair. Fidgetin-like 2 (FL2), a microtubule-severing enzyme, regulates the 
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Figure 3 Focal adhesion kinase structure, phosphorylation sites, and its associated proteins. Focal adhesion kinase (FAK) contains an N-terminal 
band 4.1-ezrin-radixin-moesin (FERM) domain comprised of three lobes (F1, F2, and F3), a central kinase domain, a C-terminal FAT domain, and two linker domains 
with three PR regions that bind SH3 domain containing protein such as p130Cas. Y397 is the site of the FAK autophosphorylation, crucial for FAK activation, which 
interacts with proteins containing the SH2 domain such as Src and PI3K. Subsequently to the SH2 binding, Src binds to the PR1 SH3 domain (PXXP) and further 
phosphorylates the Y576/577 sites on FAK, which are crucial for the maximal catalytic activity of FAK. Further FAK phosphorylation at Y925 creates a binding site for 
Grb2. The phosphorylation of FAK-Y-925 and subsequent Grb2 binding disassociates paxillin from FAK, which results in FAK release from FAs, thus stimulating FA 
disassembly. The FERM domain regulates the interactions of FAK with growth factor receptors and integrins. The FAT domain recruits FAK to FAs by associating 
with paxillin. FERM: Band 4.1-ezrin-radixin-moesin; FAT: Focal adhesion targeting; PR: Proline-rich region; SH: Src homology; P: Phosphorylation.

organization of the microtubule cytoskeleton for faster and successful repair of murine wounds[281]. 
Actin remodeling proteins such as talin[282], Ehm2[283], filamin-a[284], gelsolin[285], and flightless I 
(Flii)[286] have also been identified as potential new targets for improved wound healing. Unlike other 
members of the gelsolin family, Flii inhibits actin polymerization and FA turnover, thus decreasing 
migration[286,287]. Flii neutralizing antibodies (FnAb) decreased wound area with a quicker rate of 
healing in porcine and murine models of wound healing, respectively[288,289].

Regulation of FAs
Cell migration, and consequently wound healing, depend critically on the dynamics of assembly and 
disassembly of FAs. The subunit composition of integrin receptors and the downstream signaling 
pathways may vary in different scenarios[290-293]. Nevertheless, integrin binding to ECM triggers focal 
adhesion formation by recruiting many structural and signaling proteins including FAK, a non-receptor 
tyrosine kinase[294-298]. FAK regulates FA dynamics both by recruiting other FA proteins such as Src to 
FA sites and by phosphorylating other signaling and adapter FA proteins such as paxillin and p130Cas
[299-301]. FAK also influences the cytoskeletal remodeling essential for cell migration by regulating the 
Rho family of small GTPases such as Cdc42, Rac1, and RhoA[302-305]. Inhibition of FAK inhibits cell 
migration[94,298].

Although FAK appears to activate cell motility and promote restitution, and FAK is indeed activated 
during cell motility, levels of both activated FAK and total FAK protein (including both active and 
inactive FAK) actually decrease in migrating GI epithelial cells in vitro and at the edge of human gastric 
and colonic ulcers in vivo even though the proportion of activated FAK increases (at least in vitro)[92,
94]. This reflects decreased FAK synthesis in cells that have adopted the migratory phenotype[306]. This 
apparently paradoxical reduction in this important protein makes FAK an attractive target for possible 
therapeutic intervention to promote mucosal healing.

FAK is a 125 kDa protein comprised of an N-terminal FERM (band 4.1-ezrin-radixin-moesin) domain, 
a central kinase domain, three proline-rich regions that are binding sites for Src homology 3 (SH3) 
domain-containing proteins, and a C-terminal focal adhesion targeting (FAT) domain (Figure 3).

The FAT domain consists of a four-helix bundle[307] and is critical for targeting FAK to FAs via 
binding to paxillin[308]. In an inactive (autoinhibited) state there is an interaction between the FERM 
and kinase domains which prevents FAK autophosphorylation at Y397[309]. Upon competitive binding 
of candidate activating proteins such as the cytoplasmic regions of β-integrins or growth factor receptors 
on the F2 domain of FERM, the autoinhibited conformation of FAK is disassembled[310]. This conform-
ational change allows Y397 phosphorylation, a key event in FAK activation[311]. In a subsequent step, 
Src is recruited and activated via SH2 binding to pY397 and SH3 binding to the PxxP sequence in the 
linker region, an essential step in promoting cell migration[311]. Then, Src phosphorylates the activation 
loop residues Y576 and Y577 of FAK and it acquires full catalytic activity after phosphorylation of the 
activation loop[312]. Phosphorylation of FAK at tyrosine 925  residue creates an SH2 binding site for the 
growth factor receptor-bound protein 2 (Grb2), adaptor protein[313]. The Grb2 binding site at FAK-Y-
925 overlaps with one of the paxillin binding sites in the FAT domain of FAK[313]. The binding of Grb2 
disassociates paxillin from FAK and potentiates the release of FAK from FAs[313].  On the other hand, 
paxillin acts as a scaffold protein for ERK signaling[305]. Subsequently, ERK may modulate FA turnover 
by further phosphorylating paxillin[305]. Therefore, Paxillin and Grb2 are critical FA proteins that 
interact with FAK and play an important role in FA turnover[97,313].
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Figure 4 Focal adhesion kinase plays a crucial role in several signaling pathways that promote migration, proliferation, and survival. Upon 
its activation, focal adhesion kinase (FAK) directly binds PI3K, leading to the activation of Akt. Activated Akt then stimulates numerous cellular functions including cell 
survival, proliferation, and migration via various signaling cascades depending on the cell type and species. In addition, FAK may recruit Grb2 and subsequently 
activate the Ras/Raf/MAPK pathway, enhancing cell proliferation and motility. Finally, FAK may directly bind to paxillin and p130Cas, promoting lamellipodium 
formation, and thus migration via Rac GTPase activation.

Figure 5 Current and promising new therapeutic approaches to gastrointestinal mucosal healing. Green represents currently available drugs. 
Red represents promising new therapeutic approaches that increase mucosal defense. Blue represents promising new therapeutic approaches that promote mucosal 
repair. Purple represents promising new therapeutic approaches that stimulate both mucosal defense and repair. PPIs: Proton pump inhibitors; H2-antagonists: 
Histamine-2 receptor antagonists; RX77368: The thyrotropin-releasing hormone analog; SCFAs: Short-chain fatty acids; FAK: Focal adhesion kinase; MFG-E8: Milk 
fat globule-epidermal growth factor 8; Flii: Flightless I.

FAK has both a structural role as a scaffold for protein-protein interactions and a kinase function that 
phosphorylates many substrates in diverse signaling events[314,315]. Its non-kinase scaffolding function 
allows several different proteins to bind its N-terminal FERM domain and C-terminal FAT domain, 
tethering them into complexes (Figure 3). For instance, FAK may regulate cell migration serving as a 
scaffold for Src phosphorylation of p130Cas[316] in FAs. Similarly, nuclear FAK may promote cell 
survival functioning as a scaffold to stabilize p53-Mdm2 complexes, promoting p53 ubiquitination and 
proteasomal degradation[317]. On the other hand, in its kinase signaling capacity, FAK triggers many 
downstream signals including the Ras/Raf/MAPK[97,296,318-320], p130Cas-Crk[321-324], and 
phosphatidylinositol 3-kinase (PI3K)-Akt pathways[317], which in turn coordinate to regulate cell 
proliferation, migration, and survival (Figure 4)[313,325].

Recent evidence suggests that direct modulation of FAK activity is possible, practical, and effective 
via small molecule FAK activators[326]. A novel small molecule with drug-like properties, 
ZINC40099027 (ZN27), that mimics the FERM domain of FAK has been identified from the ZINC 
database and activates FAK in human intestinal epithelial cells without activating Pyk2, the closest 
paralogue of FAK, or Src, another canonical nonreceptor tyrosine kinase within focal adhesions[327]. 
Indeed, ZN27 directly activates both full-length 125 kDa and its 35 kDa kinase domain, increasing the 
maximal activity (Vmax) of FAK, suggesting that ZN27 is a highly potent and selective activator acting 
allosterically on the 35 kDa FAK kinase domain[328]. ZN27 not only activates FAK but also stimulates 
intestinal epithelial migration in vitro and mucosal healing in mice after ischemic injury or injury by 
indomethacin[327]. ZN27 also activates FAK in gastric epithelial cells and promotes gastric mucosal 
healing in mice subjected to chronic ongoing injury by aspirin[58]. Structure-activity-relationship 
studies have developed a library of novel FAK activators based on ZN27, that have drug-like properties, 
activate FAK, and stimulate epithelial sheet migration in vitro[329]. At least one such molecule (dubbed 
compound 3) demonstrates reasonable drug-like properties based on in vitro, in vivo, and in silico results 
with no obvious toxicity[329]. Further development of this lead molecule may offer the potential for a 
new therapeutic approach to actually stimulate mucosal healing by activating FAK.
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CONCLUSION
Given the enormous impact of GI mucosal healing on human health, there is certainly a need to expand 
therapeutic options in this regard.  A new understanding of the biology of mucosal healing suggests 
several different possibilities (Figure 5). These include FAK activators, UTTR1147A, endoscopic gene 
therapy for angiogenic growth factors, mucus barrier enhancement via the thyrotropin-releasing 
hormone analog RX77368 or trefoil peptides, enhanced energy for the mucosa with butyrate, and 
attempts to increase the regenerative ability of the epithelium with growth factors, cytokines, or trefoil 
peptides. Future work will determine which of these potentially promising avenues will prove 
successful and will need to balance their effects against potential risks and issues, including bioavail-
ability, mitogenicity, and tumorigenesis.
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