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Abstract
AIM: To investigate the role and mechanism of insulin-
like growth factor binding protein-related protein 1 
(IGFBPrP1) in the development of liver fibrosis.

METHODS: An in vitro  model using hepatic stellate cell 
(HSC)-T6 cells and an in vivo  model of rat liver overex-
pressing IGFBPrP1 were established using an IGFBPrP1-
expressing recombinant adenovirus. The expression of 
IGFBPrP1 was examined by immunofluorescence, and 
the expression of collagen Ⅰ and fibronectin was mea-

sured by real-time reverse transcription-polymerase 
chain reaction and Western blot analysis. The expres-
sion of Smad2/3 and p-Smad2/3 was examined by 
Western blot and immunohistochemistry. A shSmad3-
expressing recombinant adenovirus (AdshSmad3) was 
designed and used to knockdown the Smad3  gene 
in HSC-T6 cells and rat liver fibrosis transfected with 
IGFBPrP1. The expression of collagen Ⅰ, fibronectin, 
and α-smooth muscle actin (α-SMA) was determined 
by Western blot analysis and immunohistochemistry. 
Hepatocyte apoptosis was assessed using TUNEL assay. 

RESULTS: IGFBPrP1 overexpression induced collagen 
deposition and up-regulated the expression of α-SMA 
and p-Smad2/3, and AdshSmad3 inhibited IGFBPrP1-
stimulated p-Smad2/3 activation and the expression of 
α-SMA, collagen Ⅰ and fibronectin in HSC-T6 cells. Simi-
larly, increased hepatocyte apoptosis (38.56% ± 3.42% 
vs  0.24% ± 0.03%, P  < 0.05), α-SMA positive stained 
cells (29.84% ± 1.36% vs  5.83% ± 1.47%, P  < 0.05), 
and increased numbers of Smad3 (35.88% ± 2.15% vs  
10.24% ± 1.31%, P  < 0.05) and p-Smad2/3 positive 
cells (28.87% ± 2.73% vs  8.23% ± 0.98%, P  < 0.05) 
were detected in the livers of IGFBPrP1-overexpressing 
rats compared with the control group. Moreover, AdshS-
mad3 reduced IGFBPrP1-stimulated Smad3 expression 
and attenuated α-SMA expression (29.84% ± 1.36% 
vs  8.23% ± 1.28%, P  < 0.05), hepatocyte apoptosis 
(38.56% ± 3.42% vs  6.75% ± 0.52%, P  < 0.05), and 
both collagen Ⅰ and fibronectin deposition in the livers 
of AdIGFBPrP1-treated rats.

CONCLUSION: IGFBPrP1 induces liver fibrosis by me-
diating the activation of hepatic stellate cells and hepa-
tocyte apoptosis in a Smad3-dependent mechanism.
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Core tip: This study investigated the role and mecha-
nism of insulin-like growth factor binding protein-relat-
ed protein 1 (IGFBPrP1) in liver fibrosis using an ad-
enovirus vector carrying IGFBPrP1 or a small interfering 
RNA targeting Smad3. We found that overexpression 
of IGFBPrP1 induced liver fibrosis by mediating hepa-
tocyte apoptosis and hepatic stellate cells activation. 
We also identified the important role of the IGFBPrP1-
Smad pathway in the regulation of IGFBPrP1 action in 
the development of liver fibrosis, and this pathway is a 
potential therapeutic target for liver fibrosis.

Zhang Y, Zhang QQ, Guo XH, Zhang HY, Liu LX. IGFBPrP1 
induces liver fibrosis by inducing hepatic stellate cell activa-
tion and hepatocyte apoptosis via Smad2/3 signaling. World J 
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INTRODUCTION
Hepatic fibrosis is characterized by excessive produc-
tion and deposition of  extracellular matrix (ECM) com-
ponents including collagen and fibronectin, and often 
results in hepatic cirrhosis and carcinoma[1]. During the 
process of  liver fibrosis, hepatic stellate cells (HSCs) 
transform into myofibroblasts and are responsible for 
progressive ECM accumulation[2-4]. Several cytokines and 
growth factors have been shown to regulate HSC activa-
tion, proliferation and ECM production[5]. In addition, 
hepatocyte apoptosis may also contribute to HSC activa-
tion and the development of  liver fibrosis. To date, there 
are no reports that a single molecule leads to hepatocyte 
apoptosis and HSC activation.

Insulin-like growth factor binding protein-related pro-
tein 1 (IGFBPrP1) has been shown to be a tumor sup-
pressor by regulating cell proliferation, senescence and 
apoptosis. We previously reported that IGFBPrP1 was 
up-regulated in the liver of  patients with hepatic cirrhosis 
and in mice with thioacetamide (TAA)-induced hepatic 
cirrhosis[6]. Most importantly, we demonstrated that re-
combinant IGFBPrP1 was capable of  triggering HSC ac-
tivation[7,8]. These findings suggest that IGFBPrP1 plays 
an important role in liver fibrosis. However, the mecha-
nism has not been described. 

Recent studies found that IGFBPrP1 stimulated 
glioma growth or fibroblast activation by binding activin 
A, a transforming growth factor (TGF)-β superfamily 
member, to regulate TGF-β signaling. TGF-β combines 
with transmembrane type Ⅰ and type Ⅱ serine/threonine 
kinase receptors (TβRI and TβRⅡ) to form a complex, 
which will activate the downstream Smad pathway[9,10] or 
non-Smad pathway[11-14], such as the p44/p42 mitogen-ac-
tivated protein kinase pathway and phosphoinositide 3-ki-
nase-Akt-mTOR regulating ECM production. The TGF-
β-Smad signaling pathway is one of  the most important 

pathways responsible for regulating ECM production and 
liver fibrosis[15]. Since IGFBPrP1 can regulate the TGF-β 
pathway, it is not surprising that IGFBPrP1 may contrib-
ute to liver fibrosis via the Smad signaling pathway.

The aim of  this study was to identify the role and 
mechanism of  IGFBPrP1 in liver fibrosis using an ad-
enovirus vector carrying IGFBPrP1 (AdIGFBPrP1) or 
a small interfering RNA targeting Smad3 (AdshSmad3). 
We found that overexpression of  IGFBPrP1 induced 
liver fibrosis by mediating hepatocyte apoptosis and HSC 
activation. We also identified the important role of  the 
IGFBPrP1-Smad pathway in the regulation of  IGFB-
PrP1 action in the development of  liver fibrosis, and this 
pathway is a potential therapeutic target for liver fibrosis.

MATERIALS AND METHODS
Preparation of IGFBPrP1 adenoviral constructs 
The recombinant replication deficient adenovirus 5 ex-
pressing EGFP was constructed as previously described. 
The full-length cDNA of  rat IGFBPrP1 was obtained 
from the cDNA library using the PCR method, then sub-
cloned into the shuttle vector AdMax for preparation of  
replication-deficient adenovirus type 5 expressing IGFB-
PrP1 (AdIGFBPrP1) or no cDNA (cAd) at the GenePh-
arma Company (Shanghai, China). Both AdIGFBPrP1 
and cAd contained an EGFP marker, which was used to 
determine the transduction efficiency and to optimize 
viral infection in HSCs. 

Preparation of ShSmad3-expressing adenoviral 
constructs 
Four shRNAs targeting rat Smad3 mRNA (nt553-572, 
906-925, 958-977, and 1054-1073) and a scrambled 
shRNA used as a negative control (shNC) were designed 
using software found on the Ambio website and synthe-
sized by the GenePharma Company (Shanghai, China). 
The most effective shSmad3 (1054-1073) or shNC was 
then used to construct the adenoviral vectors containing 
shSmad3 (AdshSmad3) or shNC (AdshNC). Both Ad-
shSmad3 and AdshNC contained an RFP marker, which 
was used to determine the transduction efficiency. 

Cell culture and transfection
The HSC-T6 cell line was a gift from Scott L. Friedman 
of  the Mount Sinai School of  Medicine (NY, United 
States) and was cultured in RPMI 1640 medium (Gibco, 
United States) supplemented with 10% fetal calf  serum, 
100 U/mL penicillin and 100 g/mL streptomycin. After 
24 h, HSC-T6 cells were transiently infected with AdshS-
mad3 or AdshNC in the presence of  cAd or AdIGFB-
PrP1 at a multiplicity of  infection (MOI) of  25, 50 and 
100. The transfection efficiency was expressed as a per-
centage of  the number of  EGFP or RFP positive cells to 
the total cells.

Rats and adenovirus administration
Male wild-type Sprague-Dawley rats weighing 125-150 g 
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were obtained from Shanxi Medical University Labora-
tory Animal Center (Shanxi, China). All procedures were 
approved by the Shanxi Medical University Animal Care 
and Use Committee. All rats were injected with 2 × 109 

PFU of  AdshNC or AdshSmad3 in the presence of  PBS 
or 2 × 109 PFU of  cAd or AdIGFBPrP1 administered via 
the tail vein. Ten rats were included in each experimental 
group. Rats were sacrificed 14 and 28 d after adenovirus 
administration. Blood and liver tissues were harvested.

Real-time RT-PCR analysis
Total RNA was extracted from the cells or tissues with 
Trizol reagent (Invitrogen Life Technology, CA, United 
States). cDNA was obtained using the Reverse Transcrip-
tion reagent kit (Fermentas Life Sciences, CA, United 
States). Quantitative real-time PCR was performed 
using the SYBR Green PCR kit (Fermentas Life Sci-
ences, CA, United States). The primer sequences were 
as follows: (1) IGFBPrP1 forward primer (5’-GCGAG-
CAAGGTCCTTCC AT-3’) and reverse primer (5’-CG-
GTCACCAGGCAGGAGTT-3’); (2) Collagen Ⅰ forward 
primer (5’-AGCCAGCAGATCGAGAACAT-3’) and 
reverse primer (5’-TCT TGTCCTTGGGGTTCTTG-3’); 
(3) Smad3 forward primer (5’-GGGAGACATTCCAC-
GCTTCA-3’) and reverse primer (5’-TAAGCTCCACG-
GCTGCATT-3’); (4) α-smooth muscle actin (α-SMA) 
forward primer (5’-TTCGTTACTACTGCTGAGCGT-
GAGA-3’) and reverse primer (5’ -AAAGATGGCTG-
GAAGAGGGTC-3’); (5) fibronectin forward primer 
(5’-CCAGGCACTGACTACAAGAT-3’) and reverse 
primer (5’-CATGATACCAGCAAGGACTT -3’); and (6) 
β-actin forward primer (5’-CTGGCACCACACCTTC-
TACA-3’) and reverse primer (5’-AGCACA GCCTG-
GATAGCAAC-3’). β-actin was used as an internal 
control. Experiments were performed at least 3 times 
with similar results. The mRNA results were expressed as 
number of  folds relative to the control group.

Western blot analysis
Western blot was performed as previously described 
with antibodies to (1) IGFBPrP1 (1:300, Santa Cruz Bio-
technology, United States); (2) α-SMA (1:500, Abcam, 
United Kingdom); (3) collagen Ⅰ (1:300, Santa Cruz Bio-
technology, United States); (4) fibronectin (1:300, Santa 
Cruz Biotechnology, United States); (5) TGF-β1 (1:200, 
Santa Cruz Biotechnology, United States); (6) Smad2/3 
(1:300, Santa Cruz Biotechnology, United States); and 
(7) p-Smad2/3 (1:500, Abcam, United Kingdom). Im-
munoreactive blots were visualized using the Super ECL 
detection kit (Amersham Pharmacia Biotech, NJ, United 
States) according to the manufacturer’s instructions. Spe-
cific signals were scanned using scanning densitometry 
and quantified with Quantity One Image software. 

Histological examination and immunohistological 
staining
All paraffin-embedded liver tissues were cut into 4 μm 
thick sections, and stained with hematoxylin and eosin 

or Sirius Red stain. Immunohistochemical staining was 
performed to examine the expression of  α-SMA, Smad3 
and p-Smad3. The results were analyzed with Image-Pro 
Plus 7.0 software and expressed as a percentage of  the 
area occupied by the signal.

TUNEL assay
Hepatocyte apoptosis in liver sections was measured by 
TUNEL assay, which was performed according to the 
manufacturer’s instructions (In Situ Cell Death Detec-
tion Kit; Boehringer Mannheim, Indianapolis, IN, United 
States). The data were expressed as a percentage of  the 
area of  TUNEL-positive cells in 10 random fields.

Hydroxyproline assay
Hydroxyproline content in whole liver specimens was 
quantified colorimetrically, which evaluated the total 
amount of  collagen in the liver. The Hydroxyproline 
Assay Kit was purchased from Nanjing Jiancheng Bio-
engineering (Nanjing, China). In brief, liver specimens 
were hydrolyzed, lyophilized and the absorbance of  each 
sample at 550 nm was assayed for hydroxyproline content 
using a spectrophotometer. 

Statistical analysis
All data are expressed as mean ± SD. Statistical significance 
was determined using the Student’s t test as appropriate.

RESULTS
IGFBPrP1 overexpression induces ECM production in 
HSC-T6 cells 
Having shown that rIGFBPrP1 induces HSC activa-
tion, we sought to determine whether endogenously 
expressed IGFBPrP1 exerts similar effects. We first 
established IGFBPrP1 overexpression using the adeno-
virus in HSC-T6 cells, a rat HSC cell line. As shown in 
Figure 1A and B, adenoviral gene transfer of  IGFBPrP1 
(AdIGFBPrP1) increased IGFBPrP1 mRNA and protein 
expression in HSC-T6 cells in a time-dependent manner 
compared to cAd (0.254 ± 0.072, 0.689 ± 0.023, 0.856 ± 
0.034 vs 0.038 ± 0.062, P < 0.05). IGFBPrP1 overexpres-
sion similarly increased collagen Ⅰ expression after trans-
fection (Figure 1A, 0.614 ± 0.021, 0.986 ± 0.027, 1.294 ± 
0.062 vs 0.596 ± 0.014, P < 0.05). 

IGFBPrP1-induced expression of α -SMA and type Ⅰ
collagen is regulated via Smad2/3 pathway 
IGFBPrP1 has been shown to activate the TGF-β 
pathway in osteosarcoma cells. The TGF-β-Smad sig-
naling pathway plays an important role in liver fibrosis. 
Smad2 and Smad3 are the main downstream mediators 
of  TGF-β signaling in regulating ECM production. To 
determine the role of  the Smad signaling pathway in 
mediating ECM up-regulation in response to elevated 
IGFBPrP1 levels, we measured Smad2/3 activation in 
HSC-T6 cells treated with AdIGFBPrP1. As shown in 
Figure 2A and B, Western blot analysis revealed that 

6525 June 7, 2014|Volume 20|Issue 21|WJG|www.wjgnet.com

Zhang Y et al . IGFBPrP1 and liver fibrosis



6526 June 7, 2014|Volume 20|Issue 21|WJG|www.wjgnet.com

(P < 0.05) and mRNA by 76.45% ± 14.3% (P < 0.05) at 
72 h at an MOI of  100 (Figure 3B and C). Our results 
also showed that AdshSmad3 inhibited Smad3 protein 
by 68.6% ± 12.6% and 58.6% ± 9.8% at 72 and 96 h, 
respectively, in HSC-T6 cells compared with AdshNC 
at an MOI of  100 (P < 0.05, Figure 3D). In addition, 
AdshSmad3 inhibited Smad3 mRNA by 74.3% ± 11.2% 
and 63.2% ± 10.4% (P < 0.05, Figure 3E). Importantly, 
knockdown of  Smad3 significantly abrogated IGFB-
PrP1-stimulated induction of  α-SMA (0.196 ± 0.012 
vs 0.723 ± 0.015, P < 0.05), collagen Ⅰ (0.482 ± 0.019 
vs 1.268 ± 0.027, P < 0.05) and fibronectin expression 
(0.334 ± 0.024 vs 1.146 ± 0.015, P < 0.05) (Figure 3F). 
Similarly, up-regulation of  α-SMA, collagen Ⅰ and fibro-
nectin mRNA in response to IGFBPrP1 overexpression 
was suppressed by AdshSmad3 (P < 0.05, Figure 3G). 
Taken together, these data indicated that IGFBPrP1-

phosphorylation of  Smad2/3 was 0.6-fold higher at 48 
h and 1.5-fold higher at 72 h in HSC-T6 cells transduced 
with AdIGFBPrP1 than in the cAd group, suggesting 
that IGFBPrP1 overexpression activated the Smad2/3 
pathway (P < 0.05). 

To further investigate whether activation of  the 
Smad2/3 pathway contributes to IGFBPrP1-stimulated 
ECM production, we designed an adenovirus harbor-
ing an shRNA targeting Smad3 (AdshSmad3) to knock 
down the expression of  Smad3 gene. HSC-T6 cells were 
co-transfected with AdshSmad3 or negative control (Ad-
shNC) and AdIGFBPrP1 at three different MOI (25, 50 
and 100). As shown in Figure 3A, transfection efficiency 
in HSC-T6 cells was approximately 85.23% ± 10.2% at 
an MOI of  100 (P < 0.05). As expected, real-time RT-
PCR and Western blot results revealed that AdshSmad3 
significantly reduced Smad3 protein by 68.45% ± 12.6% 
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Figure 3  Insulin-like growth factor binding protein-related protein 1-induced extracellular matrix expression is mediated through the Smad pathway in 
hepatic stellate cell-T6 cells. Hepatic stellate cell-T6 (HSC-T6) cells were co-infected with adenovirus vectors containing shSmad3 (AdshSmad3) or shNC (AdshNC) 
and adenovirus vector carrying insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) (AdIGFBPrP1). A: Expression of enhanced green fluorescent 
protein (EGFP) and red fluorescent protein (RFP) in HSC-T6 cells was visualized by confocal microscopy after treatment with AdshSmad3 (magnification ×200); B, C: 
Smad3 protein (B) and mRNA (C) expression in HSC-T6 cells was detected by Western blot and real-time polymerase chain reaction (RT-PCR) after treatment with 
different multiplicity of infection (MOI) of AdshSmad3, respectively; D, E: Smad3 protein (D) and mRNA (E) expression was detected by Western blot and real-time RT-
PCR 72 h or 96 h after AdshSmad3 treatment (MOI = 100), respectively; F, G: Protein (F) and mRNA (G) expression of α-smooth muscle actin (α-SMA) and extracel-
lular matrix in HSC-T6 cells was analyzed by Western blot and real-time RT-PCR 72 h after AdshSmad3 treatment (MOI = 100), respectively. Data are expressed as 
mean ± SD (n = 4 per group). aP < 0.05 vs the levels in the control group; cP < 0.05 vs the levels in cAd + AdshNC; eP < 0.05 vs the levels in AdIGFBPrP1 + AdshNC.
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induced ECM expression in HSC-T6 cells was Smad 
dependent. 

Smad2/3 expression in IGFBPrP1-induced rat liver 
fibrosis
Based on these in vitro data, we hypothesized that IGFB-
PrP1 leads to the development of  liver fibrosis via the 
Smad pathway. Rats were injected with 2 × 109 PFU of  
cAd or AdIGFBPrP1 via the tail vein. Expression of  
IGFBPrP1 in AdIGFBPrP1 or cAd-treated rat livers was 
examined by immunohistochemistry. As shown in Figure 
4A and B, IGFBPrP1 was expressed mainly in hepato-
cytes and sinusoidal cells 2 d after adenovirus injection. 
Hepatocyte steatosis, cellular infiltration and excessive 
collagen deposition were observed at 28 d in IGFBPrP1-
treated rats compared with cAd-treated rats (Figure 
4C and D). Collagen content, quantified by Sirius Red 
staining, was markedly increased at 28 d in the liver of  
AdIGFBPrP1-injected rats compared with cAd-injected 
rats (Figure 4E and F). 

We then examined Smad2/3 expression. Immuno-
histochemistry revealed faint expression of  Smad3 and 
phosphorylated Smad2/3 (p-Smad2/3) in the liver of  
normal rats. Moreover, Smad3 and p-Smad2/3 were 
strongly expressed in the IGFBPrP1-induced fibrotic 
liver (Figure 4G-J). The positive areas in IGFBPrP1-
induced fibrotic liver were larger than those in the cAd 
group (Smad3, 35.88% ± 2.15% vs 10.24% ± 1.31%, P 
< 0.05; p-Smad2/3, 28.87% ± 2.73% vs 8.23% ± 0.98%, 
P < 0.05). Consistent with the immunohistochemistry 
staining results, Western blot results also showed that 
the expression of  Smad2/3 and p-Smad2/3 protein was 
increased 14 and 28 d after IGFBPrP1 administration 
(Smad3, 1.342 ± 0.075, 1.586 ± 0.116 vs 0.657 ± 0.032, 
P < 0.05; p-Smad2/3, 0.682 ± 0.043, 0.856 ± 0.064 vs 
0.189 ± 0.007, P < 0.05) (Figure 4K) and the ratio of  
p-Smad2/3 to total Smad2/3 was significantly up-regulat-
ed in the AdIGFBPrP1 group compared with the normal 
and cAd groups (P < 0.05) (Figure 4L). 

AdshSmad3 attenuates fibrosis in IGFBPrP1-treated rat 
liver
To further elucidate the effect of  the Smad2/3 pathway 
on IGFBPrP1-induced liver fibrosis, we injected SD 
rats with 2 × 109 PFU of  AdshNC or AdshSmad3 in 
the presence of  2 × 109 PFU of  AdIGFBPrP1 into the 
tail vein. The levels of  serum ALT and AST increased 
in AdIGFBPrP1-treated rats compared with the control 
group and decreased in AdshSmad3-treated rats com-
pared with AdIGFBPrP1-treated rats. As shown in Fig-
ure 5A-J, AdshSmad3 ameliorated liver fibrosis induced 
by IGFBPrP1 as demonstrated by both hematoxylin and 
eosin and Sirius red staining. Hydroxyproline content in 
the AdshSmad3 group was down-regulated by 48.5% ± 
12.6% as compared with the AdshNC group and IGFB-
PrP1 group (P < 0.05, Figure 5K). Moreover, the expres-
sion of  Smad3, collagen Ⅰ and fibronectin proteins was 
significantly up-regulated at 14 and 28 d in fibrotic livers 

induced by IGFBPrP1 (Smad3, 1.128 ± 0.164, 1.345 ± 
0.156 vs 0.626 ± 0.021, P < 0.05; collagen Ⅰ, 0.832 ± 
0.031, 1.324 ± 0.076 vs 0.534 ± 0.018, P < 0.05; fibronec-
tin, 0.647 ± 0.037, 1.225 ± 0.039 vs 0.324 ± 0.022, P < 
0.05) and was markedly down-regulated 14 and 28 d after 
AdshSmad3 treatment as demonstrated by Western blot 
analysis (Smad3, 0.594 ± 0.147 vs 1.128 ± 0.164, 0.742 ± 
0.189 vs 1.345 ± 0.156, P < 0.05; collagen Ⅰ, 0.626 ± 0.025 
vs 0.832 ± 0.031, 0.728 ± 0.014 vs 1.324 ± 0.076, P < 0.05; 
fibronectin, 0.428 ± 0.018 vs 0.647 ± 0.037, 0.532 ± 0.024 
vs 1.225 ± 0.039, P < 0.05, Figure 6A). 

AdshSmad3 inhibits hepatocyte apoptosis and HSC 
activation in IGFBPrP1-treated rats
The TGF-β/Smad pathway is not only associated with 
HSC activation, but also participates in hepatocyte apop-
tosis. In light of  the mechanism of  the Smad pathway in 
the development of  liver fibrosis induced by IGFBPrP1, 
hepatocyte apoptosis and HSC activation in rat livers 
were evaluated 28 d after co-infection with AdIGFBPrP1 
and AdShmad3. As shown in Figure 6B-D, no TUNEL-
positive cells were identified in normal liver, whereas scat-
tered TUNEL-positive cells were observed in AdIGFB-
PrP1-treated rat liver (38.56% ± 3.42% vs 0.24% ± 0.03%, 
P < 0.05). Interestingly, AdshSmad3 reduced AdIGFB-
PrP1-induced TUNEL-positive cells (6.75% ± 0.52% vs 
38.56% ± 3.42%, P < 0.05). We then examined α-SMA 
expression, a marker of  HSC activation, by immunohis-
tochemistry. α-SMA-positive cells were more abundant in 
the liver of  IGFBPrP1-treated rats compared with nor-
mal rats (29.84% ± 1.36% vs 5.83% ± 1.47%, P < 0.05). 
More importantly, AdshSmad3 reduced AdIGFBPrP1-
induced α-SMA-positive cells (8.23% ± 1.28% vs 29.84% 
± 1.36%, P < 0.05, Figure 6E-G).

DISCUSSION
Liver fibrosis is thought to be a reversible disease. HSCs 
have been recognized to play an important role in the 
development of  liver fibrosis. Thus, many effective thera-
peutic approaches have intensified interest in regulat-
ing HSC activation and proliferation[16-19]. Recently, the 
IGFBPrP1 gene was found to be significantly increased 
during HSC activation[6]. Therefore, we examined the 
role of  IGFBPrP1 in liver fibrosis. We found that anti-
IGFBPrP1 antibody can attenuate TAA-induced hepatic 
fibrosis[7]. Moreover, siRNA targeting IGFBPrP1 reduced 
HSC activation and ECM production stimulated by 
TGF-β. Most importantly, we previously reported that 
recombinant IGFBPrP1 induces HSC activation in vitro[8]. 
However, the molecular mechanism underlying this pro-
cess and the in vivo effect of  IGFBPrP1 have not been 
elucidated. In this study, we demonstrated that overex-
pression of  IGFBPrP1 induced liver fibrosis by stimulat-
ing hepatocyte apoptosis and HSC activation, and the 
underlying mechanism involved the Smad2/3 pathway.

IGFBPrP1, also known as Mac25 or IGFBP7, is a 
member of  the IGFBP superfamily. It appears to be in-

Zhang Y et al . IGFBPrP1 and liver fibrosis
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volved in diverse biological functions, such as regulation 
of  cell growth, stimulation of  prostacyclin production, 
and binding of  type Ⅳ collagen, IGFs and insulin[20-23]. 
Interestingly, IGFBPrP1 demonstrated positive and nega-
tive roles in tumor progression by mediating fibroblast 
activation or epithelial cell senescence[24,25]. However, the 
relationship between IGFBPrP1 and liver fibrosis has not 
been investigated. We established an in vitro and an in vivo 
model in which we transiently overexpressed IGFBPrP1 
in HSC-T6 cells and in rat liver by adenoviral-mediated 
IGFBPrP1 gene transfer, respectively, as the replication-
deficient recombinant adenovirus has very high efficient 
delivery into target cells and was reported to be suitable 

for liver fibrosis[26,27]. With this approach, we showed that 
overexpression of  IGFBPrP1 caused activation of  HSCs 
and ECM production in HSC-T6 cells, which resulted in 
liver fibrosis, and AdIGFBPrP1-treated rats developed 
liver steatosis and fibrosis.

 HSCs are known to have an important role in liver 
fibrosis, however, hepatocyte apoptosis is now emerging 
as a critical event in the progression of  liver fibrosis[28,29]. 
Engulfment of  apoptotic bodies by HSCs stimulates the 
activation of  HSCs and ECM production. Hepatocyte 
apoptosis may also be responsible for the generation of  
inflammatory mediators leading to liver inflammation and 
fibrosis. We observed increased hepatocyte apoptosis and 

AdshNC         AdshNC   AdshSmad3    AdshNC    AdshSmad3

AdIGFBPrP1 14 d          AdIGFBPrP1 28 dCAd

Smad3

Collagen Ⅰ

Fibronectin

β-actin

ControlA

B C D

E F G

Figure 6  Adenoviral vector containing shSmad3 inhibits fibrogenic expression in insulin-like growth factor binding protein-related protein 1-treated rats. A: 
Expression of Smad3, collagen Ⅰ and fibronectin in the livers were analyzed 28 d after treatment by Western blot; B-D: Hepatocyte apoptosis was examined 28 d af-
ter treatment by TUNEL assay; B: cDNA (cAd) + adenovirus vector containing shNC (AdshNC); C: Adenovirus vector carrying insulin-like growth factor binding protein-
related protein 1 (IGFBPrP1) (AdIGFBPrP1) + AdshNC; D: AdIGFBPrP1 + adenovirus vector containing shSmad3 (AdshSmad3); E-G: α-smooth muscle actin (α-SMA) 
expression was examined 28 d after treatment by immunohistochemistry; E: cAd + AdshNC; F: AdIGFBPrP1 + AdshNC; G: AdIGFBPrP1 + AdshSmad3. Data are 
expressed as mean ± SD (n = 10 per group).
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HSC activation in IGFBPrP1-treated fibrotic liver. 
The TGFβ-Smad signaling pathway is the main path-

way regulating ECM production and liver fibrosis. Recent 
studies found that IGFBPrP1 stimulated glioma growth 
or fibroblast activation by binding activin A to regulate 
the TGF-β pathway. Activin A belongs to the TGF-β 
superfamily and activates the Smad pathway in systemic 
sclerosis[30,31]. Therefore, it is not surprising that IGFB-
PrP1 may induce liver fibrosis via the activin A-Smads 
pathway. Kitamura et al[15] reported that Smad expression 
increased in the nucleus of  HSCs in liver fibrosis both in 
vivo and in vitro. We found that overexpression of  IGFB-
PrP1 up-regulated p-Smad2/3 expression in cultured 
HSC-T6 cells and IGFBPrP1-induced liver fibrosis. Our 
results were consistent with stimulation by TGF-β1[32], 
suggesting that IGFBPrP1 activated the Smad2/3 path-
way in activated HSCs both in vivo and in vitro. Further-
more, our results also showed that strong p-Smad2/3 
expression was observed in the nucleus of  hepatocytes 
in IGFBPrP1-induced liver fibrosis. Taken together, 
our data suggest that the Smad pathway participated in 
IGFBPrP1-induced liver fibrosis.

Latella et al[33] previously demonstrated that targeted 
disruption of  Smad3 inhibits the development of  TAA-
induced hepatic fibrosis in mice. In order to further 
evaluate the effect of  the Smad pathway on IGFBPrP1-
induced liver fibrosis, we successfully used AdshSmad3 
to knockdown the Smad3 gene in AdIGFBPrP1-treated 
HSC-T6 cells and rat liver as demonstrated by real-time 
RT-PCR and Western blot analysis. Furthermore, Ad-
shSmad3 attenuated AdIGFBPrP1-induced liver fibrosis 
and reduced the expression of  α-SMA, collagen Ⅰ and 
fibronectin both in vivo and in vitro. More importantly, Ad-
shSmad3 attenuated AdIGFBPrP1-induced hepatocyte 
apoptosis. It was reported that the Smad2/3 pathway not 
only stimulated HSC activation, but also induced hepa-
tocyte apoptosis[34,35]. Taken together, these data demon-
strated that IGFBPrP1 may contribute to liver fibrosis by 
inducing HSC activation and hepatocyte apoptosis in a 
Smad-dependent manner. 

In summary, we have shown that adenovirus-medi-
ated IGFBPrP1 overexpression induced HSC activation 
and ECM production in vitro via the Smad pathway. More 
importantly, overexpression of  IGFBPrP1 induced he-
patocyte apoptosis and HSC activation in vivo in a Smad-
dependent manner. These data suggest a novel potential 
therapeutic target for liver fibrosis.
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