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Abstract
BACKGROUND 
The occurrence and development of acute liver failure (ALF) is closely related to a 
series of inflammatory reactions, such as the production of reactive oxygen 
species (ROS). Hypoxia inducible factor 1α (HIF-1α) is a key factor that regulates 
oxygen homeostasis and redox, and the stability of HIF-1α is related to the ROS 
level regulated by Sirtuin (Sirt) family. The activation of Sirt1 will lead to a 
powerful antioxidant defense system and therapeutic effects in liver disease. 
However, little is known about the relationship between HIF-1α and Sirt1 in the 
process of ALF and the molecular mechanism.

AIM 
To investigate whether HIF-1α may be a target of Sirt1 deacetylation and what the 
effects on ALF are.

METHODS 
Mice were administrated lipopolysaccharide (LPS)/D-gal and exposed to hypoxic 
conditions as animal model, and resveratrol was used as an activator of Sirt1. The 
cellular model was established with L02 cells stimulated by LPS. N-acetyl-L-
cysteine was used to remove ROS, and the expression of Sirt1 was inhibited by 
nicotinamide. Western blotting was used to detect Sirt1 and HIF-1α activity and 
related protein expression. The possible signaling pathways involved were 
analyzed by immunofluorescent staining, co-immunoprecipitation, dihydro-
ethidium staining, and Western blotting.

RESULTS 
Compared with mice stimulated with LPS alone, the expression of Sirt1 
decreased, the level of HIF-1α acetylation increased in hypoxic mice, and the 
levels of carbonic anhydrase 9 and Bcl-2-adenovirus E1B interacting protein 3 
increased significantly, which was regulated by HIF-1α, indicating an increase of 
HIF-1α activity. Under hypoxia, the down-regulation of Sirt1 activated and 

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v28.i17.1798
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acetylated HIF-1α in L02 cells. The inhibition of Sirt1 significantly aggravated this effect and the 
massive production of ROS. The regulation of ROS was partly through peroxisome proliferator-
activated receptor alpha or AMP-activated protein kinase. Resveratrol, a Sirt1 activator, effectively 
relieved ALF aggravated by hypoxia, the production of ROS, and cell apoptosis. It also induced 
the deacetylation of HIF-1α and inhibited the activity of HIF-1α.

CONCLUSION 
Sirt1 may have a protective effect on ALF by inducing HIF-1α deacetylation to reduce ROS.

Key Words: Acute liver failure; Deacetylation; Hypoxia inducible factor 1α; Reactive oxygen species; 
Sirtuin1

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Hypoxia inducible factor 1α (HIF-1α) is a transcription factor that regulates oxygen homeostasis. 
Under hypoxic conditions, HIF-1α translocates to the nucleus and binds to β-subunits, resulting in 
transcription of target genes. In acute liver failure, HIF-1α contributes to early liver cell necrosis. The 
activation of Sirtuin1 (Sirt1) will result in a powerful antioxidant defense system. This study examined the 
influence of Sirt1-mediated pathways on HIF-1α expression in vivo and in vitro, explored the relationship 
between Sirt1 and HIF-1α, and further explored its potential mechanism.

Citation: Cao P, Chen Q, Shi CX, Wang LW, Gong ZJ. Sirtuin1 attenuates acute liver failure by reducing reactive 
oxygen species via hypoxia inducible factor 1α. World J Gastroenterol 2022; 28(17): 1798-1813
URL: https://www.wjgnet.com/1007-9327/full/v28/i17/1798.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i17.1798

INTRODUCTION
Acute liver failure (ALF) refers to a large number of necrosis of liver cells or severe liver damage caused 
by various reasons[1]. ALF is often accompanied by coagulation dysfunction and progressive multiple 
organ failure due to liver metabolism disorders and decreased immune function[2]. The occurrence and 
development of ALF is closely related to a series of inflammatory reactions, such as the release of 
inflammatory cytokines and the production of reactive oxygen species (ROS)[3].

Hypoxia-inducible factor (HIF)-1 consists of an oxygen-regulated subunit HIF-1α and a constitutive 
expression subunit HIF-1β. The activity and stability of the alpha subunit of HIF are regulated by its 
post-translational modifications such as acetylation[4]. Under hypoxic conditions, HIF-1α acts as a 
primary transcription factor to regulate hypoxia-related anti-inflammatory responses[5]. HIF-1α is a key 
factor that regulates oxygen homeostasis and redox and promotes effective adaptation to hypoxia[6]. 
During the development of liver diseases such as liver cancer, hypoxia is a common finding. Hypoxia 
promotes the stabilization of HIF-1α. HIF signal in innate immune cells and liver cancer cells is 
beneficial to the recruitment and maintenance of primordial tumorigenic immune cells and promotes 
immune evasion[7].

The monitoring of HIF-1α activity by members of the Sirtuin (Sirt) family has been a topic of interest 
in recent years[8-10]. According to reports, HIF-1α has been confirmed to be related to Sirt1, Sirt2, and 
Sirt3 in the Sirt family, and the stability of HIF-1α is related to the ROS level regulated by Sirt3 and the 
oxygen level regulated by Sirt6[11-14]. Sirt2 causes protein hydroxylation and ubiquitination by 
increasing the binding of HIF-1α to propylamine hydroxylase[8]. However, the regulation mechanism of 
Sirt1 on HIF-1α activity has always been a controversial topic.

Sirt1 in the sirtuin family is a nicotinamide adenine dinucleotide-dependent protein lysine 
deacetylase with diverse physiological functions such as anti-inflammation, neuronal signaling, DNA 
repair, and stress response. Sirt1 has been shown to be an important target for the treatment of various 
diseases[15,16], and its activation will lead to a powerful antioxidant defense system and therapeutic 
effects in liver ischemia reperfusion[17]. Studies have shown that Sirt1 regulates HIF-1α through the 
formation of physical complexes between proteins, and Sirt1 may have a negative regulatory effect on 
HIF-1α[18]. Sirt1 has also been reported to regulate HIF-1α actively by stabilizing the protein[19]. 
Whether Sirt1 is used as a negative regulator or a positive regulator of HIF-1α or depends on the experi-
mental conditions or experimental models remains to be further studied.

In this study, we examined the regulation of Sirt1 on HIF-1α activity in ALF and explored its possible 
molecular mechanisms.

https://www.wjgnet.com/1007-9327/full/v28/i17/1798.htm
https://dx.doi.org/10.3748/wjg.v28.i17.1798
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MATERIALS AND METHODS
Mice
Male C57BL/6J wild-type mice aged 5-6 wk were purchased from Wuhan Biomedical Research Institute 
of Wuhan University. All mice were raised in the specific pathogen free animal facility of Renmin 
Hospital of Wuhan University with conditions of light-controlled, room temperature 25 °C, and 
humidity 55 ± 5%, and they were free to eat and drink. All animal operations were approved by the 
Animal Care and Use Committee of Renmin Hospital of Wuhan University, China (Approval No. 
WDRY2021-K016).

Animal models
The mice were randomly divided into six groups with 6 mice in each group: Saline control group; 
Hypoxia group; Lipopolysaccharide (LPS) group; Hypoxia + LPS group; Resveratrol group; and LPS + 
Hypoxia + Resveratrol group. Hypoxia group and Hypoxia + LPS group were cultured in COY Vinyl 
Anaerobic Chambers (COY, Grass Lake, MI, United States). To avoid pulmonary and cerebral edema 
caused by a rapid drop in oxygenation, the fraction of inspired oxygen (FiO2) (1%/d) was gradually 
decreased from 21% normoxia (room-air oxygen) to 8% oxygen (severe hypoxia) over the course of 2 
wk, followed by continual exposure to 8% oxygen for an additional 2 wk. On the 14th d after being 
exposed to 8% oxygen, Resveratrol (10 mg/kg; Sigma–Aldrich, St. Louis, MI, United States)[20] was 
given intragastrically in Resveratrol group and LPS + Hypoxia + Resveratrol group while LPS (100 
μg/kg; Sigma–Aldrich) was administrated by intraperitoneal injection combined with D-Gal (400 mg/ 
kg) in LPS group and LPS + Hypoxia + Resveratrol group[21]. Twenty-four hours after LPS adminis-
tration, animals were quickly euthanized with inhaled CO2, followed by the collection of blood samples 
and liver tissues[21].

Cell culture
Human embryonic liver cell line L02 was purchased from China Center for Type Culture Collection 
(Wuhan, China). N-acetyl-L-cysteine (NAC) (Beyotime, Shanghai, China) (5 mmol/L)[22], nicotinamide 
(NAM) (Beyotime) (5 mmol/L)[23], GW6471 (Sigma-Aldrich) (3 μM)[24] or Compound C (Sigma-
Aldrich) (10 μM)[25], which were dissolved in dimethyl sulfoxide (Sigma-Aldrich), were used to 
pretreat L02 cells for 1 h, followed by LPS (5 μg/mL)[26] treatment. Hypoxic conditions (1% O2) were 
obtained using humidified variable aerobic workstation InVivo2 400 (Ruskinn, Pencoed, United 
Kingdom)[27]. For transient transfection, cells were transfected with 2 μg plasmid of pECE-flag-Sirt1 
(Addgene, Cambridge, MA, United States) and pECE empty vector (Addgene).

Biochemical analyses
Blood samples were collected after mice were anesthetized. The level of malondialdehyde (Cat. No. 
GM1134), superoxide dismutase (Cat. No. GM1133), and glutathione peroxidase (Cat. No. GM1135) 
were determined with commercial kits (Servicebio, Wuhan, China), respectively, according to the 
manufacturer's instructions.

Histopathological examination
The liver tissues were sliced completely and stained with hematoxylin-eosin. The pathological changes 
of liver tissue were observed and evaluated by light microscope (Olympus, Tokyo, Japan). The degree of 
liver damage in the ALF models were assessed by the liver histology score.

Immunofluorescent staining
Liver tissue sections were intact, and L02 cell suspensions were fixed on glass slides. Sections were fixed 
with 4% paraformaldehyde for 30 min, and 50-100 μL membrane rupture working solution and 3 % 
hydrogen peroxide solution were added in sequence according to the manufacturer's instructions. 
Primary antibody against acetyl-lysine or HIF-1α (Santa Cruz Biotechnologies, Dallas, TX, United States) 
diluted 1:100 with 5% bovine serum albumin was added on the slides and tissue sections, and the slides 
were incubated overnight at 4 °C in a wet box. Then, slides were incubated with secondary antibody 
(1:50 dilution, Beyotime), and they were imaged using a fluorescent microscope (Olympus).

Immunoprecipitation
Approximately 1 mg of total protein was incubated with anti-Sirt1 antibody (Servicebio) or anti-HIF-1α 
antibody (Servicebio) overnight at 4 °C followed by precipitation with 20 µl of protein A/G-Plus-
Agarose (Servicebio) for 4 h at 4 °C. The precipitated complex was immunoblotted with anti-Sirt1, anti-
HIF-1α, or anti-acetyl-lysine.

Detection of ROS production
L02 cell suspensions were fixed on glass slides. Cell culture fluid (2 mL) was added and the culture was 
continued for about 6 h. Dihydroethidium (1 mL) (Cat. No. GDP1018), which was dissolved in dimethyl 
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sulfoxide at a ratio of 1:1000, was added to each well, and the samples were incubated in the dark. An 
appropriate amount of DAPI solution was added to the wells and stained. Then, a drop of anti-
fluorescence quenching medium was added into the hole; the slides were imaged under a fluorescent 
microscope.

Western blotting
Proteins were extracted from cells and tissues as directed by the radioimmunoprecipitation assay kit 
(Sigma-Aldrich). An appropriate amount of concentrated sodium dodecyl sulfate polyacrylamide gel 
electrophoresis protein loading buffer was added to the collected protein samples, and then 5-10 μL of 
the sample was loaded in the sodium dodecyl sulfate polyacrylamide gel electrophoresis gel sample 
holes. Low voltage constant pressure electrophoresis for the upper gel and high voltage constant voltage 
electrophoresis were applied, when bromophenol blue entered the lower gel. After electrophoresis, the 
proteins were transferred to polyvinylidene fluoride membranes. The following primary antibodies 
were used: Sirt1 (Cat. No. 9475, Cell Signaling Technology, Danvers, MA, United States), peroxisome 
proliferator-activated receptor alpha (PPARα, Cat. No. 23398R, Bioss, Woburn, MA, United States), HIF-
1α (Cat. No. 20398R, Bioss), AMP-activated protein kinase (AMPK, Cat. No. 32047, Abcam, Cambridge, 
United Kingdom), p-AMPK (Cat. No. 131357, Abcam), Bnip3 (Cat. No. 109414, Abcam), and glyceral-
dehyde-3-phosphate dehydrogenase (Cat. No. 8245, Abcam). Image Lab statistical software (Bio-Rad, 
Hercules, CA, United States) was used to evaluate band intensities on Western blots.

Statistical analyses
Statistical analysis was performed using GraphPad Prism software version 8.0 (San Diego, CA, United 
States). The Y axis was labeled as fold of control mean. Data were expressed as the means ± standard 
deviations. Differences among multiple groups were evaluated using conventional Student’s t test or 
analysis of variance. Statistical significance was considered at P < 0.05.

RESULTS
Hypoxia aggravated ALF and increased the expression and acetylation of HIF-1α
The liver structure of each group was shown by histopathological examination. Compared with the 
control group, large-scale hepatocyte necrosis in the LPS and Hypoxia groups and the number of infilt-
rating inflammatory cells were significantly increased, while the inflammatory response was 
significantly more severe in the LPS + Hypoxia group (Figure 1A). Next, we tested the expression of 
some key proteins in ALF. As shown in Figure 1B, compared with the control group, the expression of 
Sirt1 in the LPS group was significantly reduced, and hypoxia aggravated this effect. The expression of 
Bcl-2 adenovirus E1B-interacting protein 3 (Bnip3) in the LPS + hypoxia group was significantly 
increased, as was carbonic anhydrase 9 (CA9), both of which are regulated by HIF-1α, suggesting that 
hypoxia significantly increased the activity of HIF-1α in the LPS group. Of note, the expression of HIF-1
α in the LPS + Hypoxia group was significantly increased in the form of acetylation. LPS significantly 
increased HIF-1α acetylation induced by hypoxia (Figure 1C).

Hypoxia reduced the expression of Sirt1, causing the activation and acetylation of HIF-1α
To detect changes in the expression of Sirt1 in L02 cells during hypoxia, we measured the expression 
levels of Sirt1, HIF-1α, and Bnip3 using Western blotting. Compared to the control group, hypoxia 
reduced Sirt1 expression and upregulated HIF-1α and Bnip3 expression in a time-dependent manner 
(Figure 2A-D). Through immunofluorescence experiments, we found that as the duration of hypoxia 
increased, the expression of HIF-1α increased significantly in the form of acetylation (Figure 2E). We 
then analyzed the interaction between Sirt1 and HIF-1α. After hypoxia induced endogenous HIF-1α, 
Sirt1-HIF-1α binding was observed (Figure 2F). We next examined whether Sirt1 deacetylates HIF-1α. 
Immunoblotting with anti-acetyl-lysine in HIF-1α immunoprecipitates was used to detect the lysine 
acetylation level of HIF-1α. As shown in Figure 2G, Sirt1 overexpression significantly decreased HIF-1α 
acetylation, suggesting that Sirt1 regulated lysyl acetylation of HIF-1α. These results suggested that 
hypoxia-induced enhancement of HIF-1α activity and lysine acetylation were related to the down-
regulation of Sirt1.

The inhibition of Sirt1 induced activation of HIF-1α and subsequently increased the production of 
ROS induced by hypoxia
Next, we explored the possible molecular mechanisms of the interaction between Sirt1 and HIF-1α. As 
shown in the Figure 3A, LPS increased the expression of HIF-1α, and the expression of Sirt1 was further 
reduced after HIF-1α was increased by hypoxia in L02 cells. At the same time, the use of a specific Sirt1 
inhibitor NAM to inhibit Sirt1 further aggravated this effect. Sirt1 appear to interact with HIF-1α in L02 
cells. Studies have found that excessive production of ROS is considered harmful and related to hypoxia
[28]. Oxidative stress has been shown to promote inflammation during ALF[29]. How oxidative stress is 
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Figure 1 Hypoxia aggravated acute liver failure and increased the expression of hypoxia inducible factor-1α and its acetylation. A: The 
representative images of hematoxylin and eosin staining of liver in each group; B: Western blotting was performed to measure the levels of Sirtuin1 (Sirt1), Bcl-2 
adenovirus E1B-interacting protein 3 (Bnip3) and carbonic anhydrase 9 (CA9) in liver tissues; C: The representative images of immunofluorescence staining for 
Acetyl-lysine and hypoxia inducible factor (HIF)-1α. Data shown are means ± standard deviation of three separate experiments. aP < 0.05 vs Control group; bP < 0.05 
vs Lipopolysaccharide (LPS)-treated group; one-way analysis of variance combined with Bonferroni's post hoc test; the error bars indicate the standard deviations. 
GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.

involved in inflammation during ALF remains unclear. Therefore, we examined the antioxidant effect of 
Sirt1 during hypoxia. DHE staining showed that the level of ROS stimulated by LPS was significantly 
increased by hypoxia, and this effect was enhanced when NAM was used to inhibit the Sirt1 signaling 
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Figure 2 Hypoxia decreased Sirtuin1 expression leading to the acetylation and activation of hypoxia inducible factor-1α. A-D: Western 
blotting was performed to measure the levels of Sirtuin1 (Sirt1), Bcl-2 adenovirus E1B-interacting protein 3 (Bnip3), and hypoxia inducible factor (HIF)-1α in L02 cells; 
E: The representative images of immunofluorescence staining for Acetyl-lysine and HIF-1α; F and G: Equal amounts of protein were subjected to immunoprecipitation 
with Sirt1 antibody or HIF-1α antibody followed by immunoblotting with antibody against Sirt1, HIF-1α, or acetyl-lysine and effect of Sirt1 overexpression (O/E) was 
shown. Data shown are means ± standard deviations (SDs) of three separate experiments. aP < 0.05 vs Control group; one-way analysis of variance combined with 
Bonferroni's post hoc test; the error bars indicate the SDs.
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Figure 3 The inhibition of Sirtuin1 induced activation of hypoxia inducible factor-1α and subsequently increased hypoxia-induced 



Cao P et al. Sirt1 attenuates ALF via HIF-1α

WJG https://www.wjgnet.com 1805 May 7, 2022 Volume 28 Issue 17

reactive oxygen species production. A: Western blotting was performed to measure the levels of Sirtuin1 (Sirt1) and hypoxia inducible factor (HIF)-1α in L02 
cells; B: Reactive oxygen species (ROS) productions were detected by dihydroethidium (DHE) staining. Representative images of the DHE staining in different 
groups; C: ROS productions were evaluated by quantification of mean fluorescence intensity in DHE staining; D: Western blotting was performed to measure the 
levels of Sirt1 and HIF-1α in L02 cells; E and F: ROS productions were detected by DHE staining. Data shown are means ± standard deviations (SDs) of three 
separate experiments. aP < 0.05 vs Control group; bP < 0.05 vs Lipopolysaccharide (LPS)-treated group; cP < 0.05 vs LPS + Hypoxia-treated group; one-way analysis 
of variance with Bonferroni's post hoc test; the error bars indicate the SDs.

pathway (Figure 3B and C). Next, we found that the expression of Sirt1 was increased and HIF-1α was 
opposite when NAC was used, which is an effective ROS scavenger (Figure 3D). At the same time, LPS-
induced levels of ROS were significantly reversed by NAC (Figure 3E and F).

The inhibition of Sirt1/PPARα signaling pathway increased hypoxia-induced ROS production in vitro
Some studies have shown that liver PPARα expression is lower in patients with hepatitis C and 
advanced nonalcoholic fatty liver disease, perhaps due to the inhibitory effect of multiple cytokines[30]. 
This also shows that increasing PPARα may help reduce liver inflammation. In our study, as shown in 
Figure 4A, in the L02 cells stimulated by LPS, PPARα expression was decreased and aggravated after 
hypoxia intervention, and its effect was further aggravated when NAM was used to inhibit the Sirt1 
signaling pathway, suggesting that hypoxia-induced PPARα inhibition was closely related to Sirt1. In 
addition, Sirt1 expression was further reduced by the PPARα inhibitor GW6471, while HIF-1α was 
opposite (Figure 4B) and the levels of ROS were also improved (Figure 4C), suggesting that the 
inhibition of Sirt1/PPARα signaling pathway might increase hypoxia-induced ROS production in L02 
cells.

The inhibition of Sirt1/AMPK signaling pathway increased hypoxia-induced ROS production in vitro
AMPK acts as a regulator of cellular energy metabolism and redox homeostasis. More and more 
evidence shows that AMPK plays a protective role by regulating the redox system[31]. Next, we further 
studied whether Sirt1 can regulate AMPK and its role in cell hypoxia in L02 cells. As shown in 
Figure 5A, the phosphorylation level of AMPK in L02 cells induced by LPS after hypoxia treatment was 
significantly reduced, while NAM pretreatment aggravated this effect, indicating AMPK could be 
modulated by hypoxia via Sirt1. In addition, AMPK inhibitor Compound C further reduced the 
expression of Sirt1, the expression of HIF-1α was further increased (Figure 5B), and the levels of ROS 
were also improved (Figure 5C). Therefore, these results suggested that Sirt1/AMPK signaling pathway 
might be involved in modulating ROS in LPS-stimulated L02 cells during hypoxia.

The activation of Sirt1 induced the inactivation and deacetylation of HIF-1α and subsequently 
rescued the progressive aggravation of ALF induced by hypoxia in vivo
Finally, to determine further whether Sirt1 attenuated the progressive aggravation of ALF induced by 
hypoxia through the Sirt1/AMPK or the Sirt1/PPARα pathway, LPS-stimulated mice were exposed to 
hypoxia with or without resveratrol treatment, which is a Sirt1 activator. Compared with the LPS group, 
activation of Sirt1 by resveratrol alleviated the more sever liver tissue damage in the LPS + Hypoxia 
group (Figure 6A and B). LPS + Hypoxia group mice showed lower activity of superoxide dismutase 
and glutathione peroxidase, while malondialdehyde levels were increased, indicating that hypoxia led 
to decreased antioxidant activity. However, resveratrol treatment could significantly improve the 
activity (Figure 6C). As shown in Figure 6D, resveratrol dramatically alleviated hypoxia-induced 
reduction levels of PPARα protein and the phosphorylation of AMPK in LPS-stimulated mice, 
suggesting that Sirt1 was a key regulator on the activation of PPARα and the phosphorylation of AMPK 
during hypoxia in ALF. Finally, we demonstrated with animals whether Sirt1 has a regulatory effect on 
hypoxia-induced HIF-1α lysine acetylation and HIF-1α activity. As shown in Figure 6E, with the 
intervention of resveratrol, the expression of HIF-1α and the level of acetylation decreased significantly. 
These findings indicate that the activation of Sirt1 induced HIF-1α inactivation and deacetylation, 
thereby alleviating the progressive aggravation of ALF induced by hypoxia.

DISCUSSION
Recently, more and more studies have confirmed the effect of Sirt1 in liver disease. Sirt1 has been 
confirmed to have a protective effect in a variety of disease models, including liver fibrosis[32], drug-
induced liver injury[33], non-alcoholic fatty liver disease[34], and fatty liver[35]. As well known, HIF-1α 
is a transcription factor that can promote the adaptive response of cells to hypoxia. Some reports have 
mentioned the connection between Sirt1 and HIF protein, but there are still many controversies about 
the results. According to reports, in hypoxic Hep3B or HEK293 cells, Sirt1 targeted HIF-2α and increased 
the transcriptional activity of HIF-2α but not HIF-1α[36]. On the contrary, another group of studies 
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Figure 4 The inhibition of Sirtuin1/peroxisome proliferator-activated receptor alpha signaling pathway increased hypoxia-induced 
reactive oxygen species production. A: Western blotting was performed to measure the levels of peroxisome proliferator-activated receptor alpha (PPARα) in 
L02 cells; B: The levels of Sirtuin1 (Sirt1) and hypoxia inducible factor (HIF)-1α in L02 cells; C: Reactive oxygen species productions were detected by 
dihydroethidium (DHE) staining and evaluated by quantification of mean fluorescence intensity in DHE staining. Data shown are means ± standard deviations (SDs) 
of three separate experiments. aP < 0.05 vs Control group; bP < 0.05 vs Lipopolysaccharide (LPS)-treated group; cP < 0.05 vs LPS + Hypoxia-treated group; one-way 
analysis of variance with Bonferroni's post hoc test; the error bars indicate the SDs.

showed that Sirt1 interacted with HIF-1α, causing HIF-1α deacetylation to promote its activity in Hep3B 
and Huh7 cells[19]. Therefore, the regulation of Sirt1 on the activity of HIF-1α and its expression seems 
to be cell-type-specific, which is currently unclear. It has not been reported that the beneficial effect of 
Sirt1 activation is related to its HIF-1α deacetylation against ALF.

In our research, we found that the activity of HIF-1α increased after acetylation and promoted 
hepatocyte apoptosis in ALF models and hypoxia models in vitro. In addition, we demonstrated that the 
expression of Sirt1 in L02 cells decreased in a time-dependent manner due to hypoxia, which was 
closely related to the activation and acetylation of HIF-1α. During hypoxia, with the decrease of the level 
of nicotinamide adenine dinucleotide, the activity of Sirt1 decreased and HIF-1α transcription activity 
further increased[18,19]. Therefore, the insufficient expression of Sirt1 in the liver or the acetylation of 
HIF-1α might be the key mediators of ALF.

Next, we carefully evaluated Sirt1's regulatory effect on HIF-1α activity in ALF and explored its 
possible molecular mechanisms. ROS are by-products of normal metabolism in living cells, but 
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Figure 5 The inhibition of Sirtuin1/AMP-activated protein kinase signaling pathway increased hypoxia-induced reactive oxygen species 
production. A: Western blotting was performed to measure the levels of AMP-activated protein kinase (AMPK) and p-AMPK in L02 cells; B: The levels of Sirtuin1 
(Sirt1) and hypoxia inducible factor (HIF)-1α in L02 cells; C: Reactive oxygen species (ROS) productions were detected by dihydroethidium (DHE) staining and 
evaluated by quantification of mean fluorescence intensity in DHE staining. Data shown are means ± standard deviations (SDs) of three separate experiments. aP < 
0.05 vs Control group; bP < 0.05 vs Lipopolysaccharide (LPS)-treated group; cP < 0.05 vs LPS + Hypoxia-treated group; one-way analysis of variance combined with 
Bonferroni's post hoc test; the error bars indicate the SDs.

excessive ROS accumulation can damage organelles, leading to increased oxidative stress[37,38]. ALF 
produces excessive amounts of ROS due to insufficient detoxification of toxic substances in the liver
[39]. Sirt1 has been reported to play an important role in anti-inflammatory and antioxidant processes
[40]. Here, we demonstrated that HIF-1α was over-activated in hypoxia due to increased level of ROS in 
the absence of Sirt1, and the effect was inhibited by the antioxidant NAC, indicating that ROS was 
involved in this activation.

In particular, PPARα is reported to be a potent inhibitor of NF-κB signaling pathway and inflam-
mation[41]. The positive effect of Sirt1 on the inflammatory pathway may be related to PPARα[42], and 
the interference of PPAR transcriptional activity may disturb estrogen/androgen receptor expression 
and impair steroidogenesis and ROS metabolism[43]. In addition, PPARα contributes to the protection 
of redox homeostasis[44]. Previous studies have confirmed that Sirt1 can regulate AMPK, which is an 
important energy sensor[45]. AMPK acts as a regulator of cellular energy metabolism and redox 
homeostasis. More and more evidence shows that AMPK plays a cardiovascular protective role by 
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Figure 6 The activation of Sirtuin1 induced the deacetylation and inactivation of hypoxia inducible factor-1α, and subsequently rescued 
the progressive aggravation of acute liver failure induced by hypoxia. A: Mice were pretreated with resveratrol or exposed to hypoxia and then 
stimulated with lipopolysaccharide (LPS). The representative images of hematoxylin and eosin staining of liver in each group; B: The liver histological score of liver in 
each group; C: The levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) of mice in each group; D: Western blotting 
was performed to measure the levels of Sirtuin1 (Sirt1), hypoxia inducible factor (HIF)-1α, peroxisome proliferator-activated receptor alpha (PPARα) and p-AMP-
activated protein kinase (AMPK) in liver tissues and the protein expression were quantified; E: The representative images of immunofluorescence staining for Acetyl-
lysine and HIF-1α. Data shown are means ± standard deviations (SDs) of three separate experiments. aP < 0.05 vs Control group; bP < 0.05 vs LPS-treated group; cP 
< 0.05 vs LPS + Hypoxia-treated group; one-way analysis of variance combined with Bonferroni's post hoc test; the error bars indicate the SDs.

regulating the redox system[46]. In diabetes, the activation of AMPK increases the expression of 
mitochondrial antioxidant enzymes and leads to a decrease in the production of mitochondrial ROS in 
endothelial cell[47].

Our experiments revealed that the inhibition of PPARα and the phosphorylation of AMPK induced 
by hypoxia were closely related to Sirt1, and the inhibition of Sirt1/PPARα or Sirt1/AMPK signaling 
pathway might increase hypoxia-induced ROS production in L02 cells. In order to determine whether 
the activation of Sirt1 induced inactivation of HIF-1α, the progressive aggravation of ALF induced by 
hypoxia in vivo was rescued in mice treated with resveratrol. As expected, the activation of Sirt1 
significantly alleviated the degree of liver damage in ALF and enhanced antioxidant activity. 
Resveratrol dramatically alleviated the hypoxia-induced reduction level of PPARα protein and the 
phosphorylation of AMPK in LPS-stimulated mice. In addition, the activation of Sirt1 induced the 
deacetylation of HIF-1α compared to LPS-stimulated mice exposed to hypoxia; the expression of HIF-1α 
and the level of acetylation decreased significantly.

One limitation of our study is that we did not use HIF-1α overexpressing mice in vivo to test whether 
the increase of Sirt1 activity can rescue ALF. We need to conduct further experiments to solve this 
problem.

CONCLUSION
In summary, we have demonstrated that Sirt1 reduced oxidative stress in ALF by regulating the activity 
and acetylation of HIF-1α, achieved by normalizing the Sirt1/PPARα and Sirt1/AMPK pathway. Our 
research showed that the deacetylation and inactivation of HIF-1α induced by the activation of Sirt1 
might have therapeutic benefits in reducing liver damage during ALF.

ARTICLE HIGHLIGHTS
Research background
Acute liver failure (ALF) is a life-threatening disease that can rapidly develop into multiple organ 
failure. The mortality rate is high. If effective treatment measures are not taken, various complications 
will occur, including cerebral edema, sepsis, renal failure, gastrointestinal bleeding, and respiratory 
failure. Hypoxia inducible factor 1α (HIF-1α) is a transcription factor that regulates oxygen homeostasis. 
In ALF, HIF-1α contributes to early liver cell necrosis. Sirtuin1 (Sirt1) plays a key role in health by 
deacetylating target proteins in many tissues, including the liver. The activation of Sirt1 will result in a 
powerful antioxidant defense system. However, the role of Sirt1 in ALF and the relationship between 
Sirt1 and HIF-1α remain unclear and require further investigation.
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Research motivation
The results of this study might provide a basis for the application of Sirt1 in the treatment of ALF and 
further understanding of the mechanism of Sirt1 and HIF-1α in the process of ALF.

Research objectives
This study detected the changes in the expression of Sirt1 and HIF-1α in liver tissues and hepatocytes 
under hypoxia during the ALF process as well as the differences in the expression levels of key 
enzymes. In addition, this study further explored the relationship and mechanism of Sirt1 signaling 
pathway and HIF-1α expression.

Research methods
Western blotting was used to detect the expression levels of Sirt1 and HIF-1α related proteins in mouse 
liver tissues, and immunofluorescence staining was used to observe the acetylation level of HIF-1α. 
Detection of HIF-1α and reactive oxygen species (ROS) levels and the correlation analysis between Sirt1 
and HIF-1α were performed. Finally, Sirt1 was activated to observe the influence of the Sirt1 signaling 
pathway and HIF-1α on ALF, and changes in the expression levels of related markers were detected.

Research results
The expression of Sirt1 decreased and the level of HIF-1α acetylation increased in hypoxic mice, and the 
levels of carbonic anhydrase 9 and Bcl-2-adenovirus E1B interacting protein 3 increased significantly, 
which was regulated by HIF-1α, indicating an increase of HIF-1α activity. Under hypoxia, the down-
regulation of Sirt1 activated and acetylated HIF-1α in L02 cells. The inhibition of Sirt1 significantly 
aggravated this effect and the massive production of ROS. The regulation of ROS was partly through 
peroxisome proliferator-activated receptor alpha or AMP-activated protein kinase (AMPK). The 
activation of Sirt1 effectively relieved ALF aggravated by hypoxia, the production of ROS, and cell 
apoptosis. It also induced the deacetylation of HIF-1α and inhibited the activity of HIF-1α.

Research conclusions
The inhibition of peroxisome proliferator-activated receptor alpha and the phosphorylation of AMPK 
induced by hypoxia were closely related to Sirt1, and the inhibition of Sirt1/PPARα or Sirt1/AMPK 
signaling pathway might increase hypoxia-induced ROS production. The activation of Sirt1 reduced 
oxidative stress in ALF by regulating the activity and acetylation of HIF-1α.

Research perspectives
The results of this study showed that the deacetylation and inactivation of HIF-1α induced by the 
activation of Sirt1 might have therapeutic benefits in reducing liver damage during ALF. This study 
preliminarily clarified the role of Sirt1 and HIF-1α in ALF, so as to deepen the understanding of the 
mechanism of ALF, and provided guidance for the selection of ALF treatment targets. The results of this 
study indicate that Sirt1 activator may have a certain prospective application as a therapeutic drug for 
ALF.
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