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Abstract
Multipotent mesenchymal stromal cells (MSC), have the 
potential to differentiate into cells of the mesenchymal 
lineage and have non-progenitor functions including 
immunomodulation. The demonstration that MSCs are 
perivascular cells found in almost all adult tissues raises 
fascinating perspectives on their role in tissue mainte-
nance and repair. However, some controversies about 
the physiological role of the perivascular MSCs resid-
ing outside the bone marrow and on their therapeutic 
potential in regenerative medicine exist. In brain, peri-
vascular MSCs like pericytes and adventitial cells, could 
constitute another stem cell population distinct to the 
neural stem cell pool. The demonstration of the neuro-
nal potential of MSCs requires stringent criteria includ-
ing morphological changes, the demonstration of neural 
biomarkers expression, electrophysiological recordings, 

and the absence of cell fusion. The recent finding that 
brain cancer stem cells can transdifferentiate into peri-
cytes is another facet of the plasticity of these cells. It 
suggests that the perversion of the stem cell potential 
of pericytes might play an even unsuspected role in 
cancer formation and tumor progression.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Mesenchymal stem cells (MSCs), in addition 
to their potential to differentiate into cells of the mes-
enchymal lineage, have immunomodulatory properties 
and can transdifferentiate to generate neural cells at 
least in vitro . These stem cells are found in almost any 
adult tissue, including brain. The existence of similari-
ties between MSC and pericytes points to brain peri-
cytes as the other stem cell population of the adult 
brain in addition to neural stem cells. This raises fasci-
nating perspectives on the potential of brain pericytes 
in nervous system maintenance and repair. The recent 
finding that brain cancer stem cells transdifferentiate 
into pericytes is another facet of the plasticity of these 
cells. It suggests that the perversion of the stem cell 
potential of pericyte might play an even unsuspected 
role in cancer formation and tumor progression.
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INTRODUCTION
The history of  multipotent mesenchymal stromal cells 
started when colony-forming unit fibroblastic cells 
(CFU-F) with osteogenic potential were obtained from 
bone marrow cultured cells[1-3]. Accordingly, CFU-F cells 
were defined as self-renewing non-hematopoietic bone 
marrow stromal stem cells (BMSCs). They were isolated 
on the basis of  their plastic adherence, and characterized 
both by their ability to form colony when plated at low-
density and to differentiate into osteoblasts[3]. Thereafter, 
BMSCs were shown to differentiate in vitro and in vivo into 
other cells of  mesenchymal lineage including chondro-
cytes and adipocytes[4]. Cells similar to BMSCs are also 
isolated from non-marrow fetal tissue such as placenta, 
cord blood, fetal liver and lung, as well as from adult tis-
sues including muscle, adipose tissue, dental pulp, lung 
and brain[5-8]. These fetal and adult stem cells have the 
same ability as BMSCs for self-renewal and for differen-
tiation into osteoblasts, chondrocytes and adipocytes in 
vitro. They also exhibit, at least in vitro, transdifferentiation 
capacity (see below). These cells are referred as mesen-
chymal stem cells or as multipotent mesenchymal stromal 
cells (MSCs). However, the question remains if  these 
ubiquitous cells behave in vivo as genuine stem cells or 
if  their stem cell potential is a cell culture artifact[9]. The 
existence of  these MSCs in virtually all postnatal organs 
does not necessarily mean that these cells behave as stem 
cells during development. For example, their physiologi-
cal function could be limited to postnatal regenerative 
processes. Hence, the concept of  mesenchymal stem 
cell, initially well-defined and restricted to a multipotent 
progenitor for skeletal tissues and residing within the 
bone marrow has progressively evolved towards an all-
encompassing concept including multipotent perivascular 
cells of  almost any tissue[9]. Importantly, there is not an 
exclusive and universal marker for immunophenotyping 
MSCs. Therefore, their immuno-characterization relies 
on a combination of  both positive and negative mark-
ers. Positive markers can include CD11b, CD13, CD19A, 
CD73, CD105, CD146, CD271, nestin, nerve/glial anti-
gen 2 (NG2), platelet-derived growth factor receptor β 
(PDGFR-β), while negative markers usually are endothe-
lial, and hematopoietic stem cell proteins (Table 1)[10-12]. 
An additional remarkable feature is that MSCs lack or 
have a low expression of  MHC class II and of  the co-
stimulatory molecules CD40, CD80, CD86, CD134 and 
CD142[13]. In relation to this, MSCs have strong anti-
inflammatory and immunomodulating potentials[14]. MSCs 
exert their inhibitory effects on T-cell proliferation by 
mechanisms involving both cell to cell contact between 
MSC and T lymphocytes, and secreted factors such as 
prostaglandin E2 (PGE2), inoleamine 2,3-dioxygenase 
and nitric oxide[14]. As in many biological processes, this 
immunosuppressive effect is dose dependent and depends 
on the ratio between MSCs and T cells. Indeed low ratios 
of  MSCs can even enhance T cell proliferation[14]. In ad-
dition, MSCs prevent the differentiation of  monocyte 
into dendritic cells, and modulate natural killer cell activ-

ity by the release of  inhibitory factors such as PGE2 and 
transforming growth factor-β[14]. MSCs also have anti-
inflammatory action by reducing the production of  tumor 
necrosis factor (TNF)-α and interleukin (IL)-12 and by in-
creasing the synthesis of  IL-10 by macrophages[14]. These 
anti-inflammatory and immuno-modulatory capacities of  
MSCs are already exploited in vivo. MSC-based treatment 
is beneficial in several models of  graft-vs-host disease 
and in auto-immune diseases such as collagen-induced 
arthritis, experimental autoimmune encephalomyelitis, 
type 1 diabetes mellitus disease and inflammatory bowel 
disease models[14-17]. Clinical trials are currently underway 
for these different pathologies[15,18]. The ability of  MSCs 
to home in damaged tissues, associated with their capacity 
to secrete bioactive molecules such as growth factors, and 
their immunosuppressive and anti-inflammatory proper-
ties, suggest that these cells protect tissues from damage 
and facilitate tissue repair independently of  their capacity 
to generate differentiated cells[18]. 

For all these reasons, MSCs became the focus of  in-
tense researches in tissue engineering and regenerative 
medicine. These cells could provide an answer both to 
the ethical concerns raised by the therapeutic use of  hu-
man embryonic stem cells and to their scarce availability. 
Furthermore, as MSCs are easily isolated from adult tis-
sues, they offer the advantage to allow autologous trans-
plantation. Importantly, experimental studies performed 
with MSCs revealed an additional property: MSCs have a 
greater differentiation plasticity potential than previously 
envisioned. For example, they can transdifferentiate into 
urothelial, myocardial, and epithelial cells[19-21]. Numer-
ous studies also report the in vitro transdifferentiation of  
MSCs into neural and glial cells[22-30]. At the moment, the 
potential of  MSCs to regenerate human tissues in vivo is 
not clearly defined. Current research is ongoing to resolve 
this critical issue by improving MSC culture engineering 
and cell transplantation technology. A better characteriza-
tion of  the therapeutic potential of  MSCs according to 
their tissue of  origin is also a critical issue.

WHEN MSCs TRANSDIFFERENTIATE 
INTO NEURAL CELLS: FACTS AND 
ARTIFACTS
The observation that MSCs transdifferentiate into neu-
rons was first obtained with bone MSCs, and then ex-
tended to MSCs isolated from different adult tissues 
including adipose tissue, bone marrow, and brain[5,31-34]. 
Brain implanted marrow stromal cells also differentiate 
into glial cells[25]. Importantly, grafting MSCs in several 
brain lesion models reduces neuronal deficits[35-42]. How-
ever, current evidence suggests that in the experimental 
models used, the repair and functional improvements 
reported are primarily mediated by paracrine or cell-cell 
interactions rather than by the successful engraftment 
and the in situ transdifferentiation of  implanted MSCs 
into neural cells[43-47]. Regarding MSC transdifferentia-
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tion into neural cells, a notable controversy arose when 
it was reported that, (1) the rapid in vitro morphological 
differentiation of  MSC into neuron-like cells follow-
ing administration of  DMSO or cAMP elevating agents 
such as forskolin or IBMX can be linked to actin depo-
lymerization resulting in cytoplasm retractation and not 
through neurite extension[48-50]; and (2) the transformation 
of  MSCs into neurons in vivo can result from the fusion 
of  MSCs with brain cells rather than to MSC transdiffer-
entiation[51]. Therefore, additional criteria are now applied 
when studying MSC transdifferentiation. For example, 
reporting neuronal differentiation of  MSCs now requires 
observation of  morphological changes, the demonstra-
tion of  neural biomarkers expression, neurotransmitter 
responsiveness or electrophysiological recording, and 
absence of  cell fusion[28,33,49,52,53]. Note however, that all 
MSCs are not equal and that their differentiation poten-
tial can be related to their tissue of  origin[6]. This suggests 
that brain-derived MSCs could have a greater potential 
for neural differentiation than bone MSCs. Hence, the 
difficulty to obtain functional mature neurons by differ-
entiating bone MSC can be explained both by their origin 
and by cell culture conditions which are far to provide the 
cues found in the brain microenvironment. Accordingly, 
recent experiments using brain derived MSCs instead of  
bone marrow MSCs, provide additional evidence on the 
potential of  brain MSCs to transdifferentiate into neuro-

nal cells at the clonal level and on the basis of  stringent 
criteria[54]. A notable point is that these observations are 
made in vitro. Therefore, it remains to establish whether 
the transdifferentiation of  MSCs is a cell culture artifact 
with potential applications in cell replacement therapies 
for implanting pre-differentiated neurons, or is it also a 
physiological process contributing to brain development 
or repair. Part of  the answer might be given by determin-
ing where MSCs reside in the organism and which cell 
behaves as MSC in vivo. Recent findings show that MSCs 
are perivascular cells such as pericytes[11,55,56].

MSCS ARE PERIVASCULAR CELLS
Pericytes are perivascular cells, or more strictly speaking 
peri-endothelial vascular mural cells (Figure 1). Pericytes 
form an incomplete layer on the abluminal surface of  
capillary endothelial cells. They wrap capillary endothe-
lial cells and both cell types are surrounded by the basal 
lamina[57] (Figure 2). For many years, pericytes have been 
viewed as supportive vasculature cells involved in the 
regulation of  capillaries blood flow and contributing to 
the blood-brain barrier[58]. Nowadays, known functions 
of  pericytes also include a role in angiogenesis, in matrix 
proteins and bioactive molecules synthesis (vascular en-
dothelial growth factor, placental growth factor, leukemia 
inhibitor factor, CXCL12, basic fibroblast growth factor, 
nerve growth factor, platelet-derived growth factor B…), 
in vessel stabilization and in the regulation of  vascular 
tone[59]. Importantly, these cells are now considered as a 
potential reservoir of  stem or progenitor cells for adult 
tissue repair. Regarding this stem cell potential, it has 
been known as early as 1995 that pericytes can differ-
entiate into an osteogenic phenotype[60]. Ten years after, 
perivascular cells were also demonstrated to differentiate 
into adipocytes[61]. The definitive proof  that MSCs are 
perivascular cells such as pericytes was done in 2008 in 
two landmark studies showing that a subset of  perivas-
cular cells from adult tissues, identified on CD146, NG2 
and PDGF-Rβ expression, exhibit in culture the same os-
teogenic, chondrogenic, adipogenic and myogenic poten-
tials than MSCs[11,55]. In addition, these perivascular cells 
express MSC markers including CD10, CD13, CD44, 
CD73, CD90 and CD105[11,12]. A consequence of  the 
demonstration of  a perivascular origin for MSCs was a 
burst of  interest in pericyte research with the number of  
annual entries in PubMed for the keyword “pericyte” in-
creasing from 83 in 1993 to 445 in 2013. With hindsight, 
the finding that some MSCs are pericytes is not incongru-
ous[11,56]. Stem cells must reside in a specialized environ-
ment (the stem cell niche), and the presence of  MSCs in 
almost all adult tissues suggests a ubiquitous distribution 
for MSC niches. This is consistent with the omnipres-
ence of  capillary blood vessel mural cells. In addition, 
this perivascular location allows the rapid recruitment of  
MSCs to the site of  focal lesions where they could act as 
microenvironmental regulators for tissue regeneration[62]. 
Since tissue regeneration requires functional blood ves-
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Table 1  Major positive and negative markers used for 
identifying bone marrow mesenchymal stem cells and 
pericytes

Markers MSCs Pericytes EC HSPCs NSPCs

CD10 +[12] +[12]
CD13 +[12] +[12]
CD29 +[12] +[12] +[91] +[92]
CD44 +[12] +[12] +[93] +[92]
CD73 +[12] +[12] +[94]
CD90 +[12] +[12] +[95] +[92,96]
CD105 +[12] +[12] +[97]
CD140B +[12] +[12]
CD146 +/low[12,90] +[12] +[98]
CD166 +[12] +[12] +[99]
NG2 +[12] +[12] -[11] -[100]
Nestin +[101,102] +[72] +[103]
CD14 -[12] -[12]
CD31 -[12] -[12] +[104]
CD34 -[12] -[12] +[105] +[105]
CD45 -[12] -[12]
CD133 -[12] -[12] -[106] +[107] +[108]
CD117 -[12] -[12] +[109] +[110]
CD144 -[12] -[12] +[111]
vWF -[112] -[113] +[114]

In the absence of any universal and specific marker to define mesenchymal 
stem cells, their immunophenotyping relies on the use of combinations 
of both positive and negative markers. Note that MSCs profile may 
vary depending on the cell culture conditions[88], or with their in situ 
localization[89]. Expression of the cell surface antigens CD73, CD90, CD105 
and non-expression of CD14, CD34, CD45 are useful criteria to define bone 
MSCs and pericytes. MSCs: Mesenchymal stem cells; EC: Endothelial cells; 
HSPCs: Hematopoietic stem and progenitor cells; NSPCs: Neural stem and 
progenitor cells. 
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critical brain structure named neurovascular unit (NVU). 
The NVU, in addition to selectively supplying nutrients 
and oxygen through the blood brain barrier structure, 
provides a permissive environment for neural stem cell 
homing and for their proliferation[68-70]. Note that if  most 
pericytes are of  mesoderm origin, forebrain pericytes 
originate from the neural crest[71]. The demonstration that 
MSCs originate at least in part from pericytes raises the 
question of  the stem cell potential of  brain pericytes. At 
a clonal level these cells have the potential to differentiate 
in vitro into adipocytes, chondroblasts and osteoblasts[54]. 
Moreover these cells are also able to differentiate in vitro 
toward a neuronal phenotype depending on cell culture 
conditions[33,54,72,73]. These observations revive the idea 
that CNS perivascular cells such as pericytes might con-
tribute to brain repair either directly by generating new 

sels, associating MSCs with endothelial cells in a same 
“regenerative/healing unit” makes sense. Note that in 
addition to capillaries, MSCs are also detected in the ad-
ventitia of  large vessels[63-65].

CNS PERICYTE AND THE 
NEUROVASCULAR UNIT
With a human brain capillary network estimated to 400 
miles length[66], and a ratio of  about one pericyte for three 
brain endothelial cells, the human brain pericyte popula-
tion is far from negligible. Pericytes cover more than 30% 
of  the cerebral capillary surface[67]. These cells are well-
known to be involved in the regulation of  angiogenesis, 
vascular tone and blood brain barrier function. They 
constitute with endothelial cells, astrocytes and neurons a 
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Figure 1  Pericyte immunophenotyping. Pericytes express antigens allowing their identification. However, there is currently no specific marker to identify them. 
Therefore, to distinguish pericytes from other cell types, both positive and negative markers are used. For example, pericytes are known to be positive for platelet-
derived growth factor receptor β (PDGFR-β)/CD140b (A), Alanine aminopeptidase N/CD13 (B), and for the stem cell protein nestin (C). Pericytes are also negative 
for VE-Cad/CD144 (D) that is detected in human brain endothelial cells (E). Specific antigenic labeling is in green or red and nuclei are 4’,6-diamidino-2-phenylindole 
stained (blue). 

DCBA E

A B

Figure 2  The neurovascular unit. A: The neurovascular unit. In the neurovascular unit, pericytes are located on the abluminal side of endothelial cells (EC). Both 
cells are ensheathed by the basement membrane (BM). The covering of EC by pericytes is incomplete, and interruptions in BM can allow direct contacts between 
pericyte and EC. These contacts occur through peg and socket structures, and adherent and gap junctions (not shown)[59]. The abluminal side of the basement 
membrane is also contacted by astrocytes endfeet. In addition to these cells, the neurovascular unit also includes neurons, and microglial cells (not shown); B: Two-
photon microscopy of a neurovascular unit. Following injection in the rat tail vein, the sulforhodamine-B dye crosses the blood brain barrier and stains astrocytes and 
pericytes in orange (reproduced from[115]). The blood plasma is shown in green after iv injection of FITC-dextran (Mw 70 kDa). Neurons, endothelial and microglial cells 
are not shown here. 
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neurons or indirectly via their immunomodulatory prop-
erties or the secretion of  neurotrophins[74]. Consistent 
with this idea is the observation that pericytes migrate 
away from the vascular wall and could generate neurons 
in response to injury[75,76]. 

THE CANCER PERICYTE MODEL: A 
PERPETUUM MOBILE
The NVU also plays a critical role in brain cancer since 
a contingent of  brain cancer stem cells is found near the 
capillaries[77-79]. Importantly, glioblastoma stem cells are 
able to transdifferentiate into pericytes[80]. According to 
the function of  pericytes in vessel formation, these can-
cer pericytes contribute to the glioblastoma microvas-
culature[80,81]. The recent finding that MSCs are pericytes, 
and that glioblastoma cells generate cancer pericytes, sug-
gests that the stemness potential of  pericytes could play 
a yet unsuspected role in cancer formation and progres-
sion. In the synthetic hypothetical model depicted in Fig-
ure 3, a transformed dormant pericyte harboring onco-
genic mutations and lying in its vascular niche is activated 
and released from its vascular location as a consequence 
of  the up-regulation of  matrix proteases (Figure 3, step 1). 

This activation can be triggered by inflammation or can 
occur following a local injury as observed in vivo with nor-
mal pericytes[76,82]. In the proposed model, and in accor-
dance with the similarities between pericytes and MSCs, 
this cancer pericyte behaves as a cancer mesenchymal stem 
cell. In accordance to the described potential of  MSCs 
to generate neural stem cell-like cells[30,72], cancer pericyte 
cells acquire a neural stem cell-like phenotype during 
their migration in brain parenchyma. This generates the 
cancer stem cell pool found in the tumor mass (Figure 3, 
step 2). Proliferation of  these cancer stem cells generates 
hypoxia and triggers the angiogenic switch. Cancer stem 
cells are then recruited to develop vessels by endothelial 
cell-secreted cytokines such as CXCL12[83-85] (Figure 3, 
step 3). In this novel vascular microenvironment made of  
chaotic vessels, cancer stem cells reacquire a pericyte-like 
phenotype as described[80,81]. These pericyte-like cancer 
cells not only participate to tumor vascularization[80,81], but 
also re-express their mesenchymal potential by undergo-
ing a mesenchymal transition reminiscent to the epithelial 
mesenchymal transition. This generates the perpetuum 
mobile described in Figure 3. Indeed, MSCs have already 
been characterized as cancer initiating cells in gastric can-
cer[86].
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Figure 3  The cancer pericyte model: A perpetuum mobile. The proposed model of brain tumor is based on the mesenchymal stem cell potential of pericytes. In 
this model, the brain cancer initiating cell is a cancer pericyte (cP) harbouring oncogenic alterations and located on a brain capillary. After disruption of the basement 
membrane by proteases, it detaches from the vessel wall and migrates into brain parenchyma as normal pericytes do following injury[76] (step 1). During the passage 
from a vascular to a neural environment the pericyte acquires a CD133+ neural stem cell-like phenotype, as observed in vitro for non-transformed pericytes[72]. Such a 
transition towards a neural stem cell phenotype is already observed for non-transformed pericytes at least in vitro. This generates the CD133+ cancer stem cell pool (step 
2). Amplification of the cancer stem cell pool generates hypoxia that triggers neoangiogenesis and the migration of endothelial cells towards the lesion as well as the 
migration of cancer stem cells towards endothelial capillaries[83] (step 3). Cancer stem cells within this new vascular microenvironment reacquire a CD133- pericyte-like 
phenotype. At this stage, they can either integrate into the tumor neovasculature and reinitiate a new cycle generating a perpetuum mobile, or migrate along capillar-
ies and invade brain as previously described[116,117]. Alternatively, due to the mesenchymal stem cell potential of pericytes, these pericyte-like cancer cells can acquire 
mesenchymal traits and progress towards a more aggressive mesenchymal phenotype. The transdifferentiation potential of pericyte-like cancer cells could in turn 
participate to the cellular heterogeneity found in glioblastoma multiforme. Since CD133 is not detected in pericytes, the existence of CD133- pericyte-like cancer stem 
cells provides an issue to the controversy regarding the existence in glioma tumors of both CD133+ and CD133- cancer stem cells[118,119]. Note that this model is not 
exclusive. The transformation of a glial or neural stem cell might also generate cancer initiating cells. 
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CONCLUSION
Since the first observation of  pericyte cells by Rouget[87], 
it has been a long road and winding road to get here. 
For many years, pericytes have been largely under-
recognized and considered only as supportive cells of  the 
vasculature. Their active role in angiogenesis and in cell-
cell interactions with endothelial cells and astrocytes, as 
well as their in vitro stem cell functions, has only recently 
emerged. However, much remains to be done for a bet-
ter understanding of  the in vivo pericyte potential. For 
example, can pericytes/MSCs be considered as mobile 
“drugstores” migrating and delivering factors at the sites 
of  injury[88]? Is the pericyte/MSC transdifferentiation po-
tential an in vitro artifact or is it physiologically relevant? 
Is it an ancient feature of  more primitive organisms 
which has been lost during the course of  evolution and 
which is now reactivated in vitro? Alternatively, could it be 
an emerging evolutionary trait already engaged in vivo in 
some regenerative processes? Is the neural transdifferen-
tiation potential of  brain pericyte/MSC only efficient for 
repairing micro-lesions, which could explain why our cur-
rent experimental paradigms which generate large infarcts 
might not be adequate to detect this potential? Do brain 
pericytes/MSCs behave like “sleeping beauties” await-
ing the right physiological or pharmaceutical inducers 
for expressing their transdifferentiating and regenerative 
potentials? Conversely is the perversion of  this potential 
involved in some brain tumors? The answers to these 
questions promise to be fascinating.
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