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Abstract
In recent years, advanced magnetic resonance imaging 
(MRI) techniques, such as magnetic resonance spec-
troscopy, diffusion weighted imaging, diffusion tensor 
imaging and perfusion weighted imaging have been 
used in order to resolve demanding diagnostic prob-
lems such as brain tumor characterization and grading, 
as these techniques offer a more detailed and non-
invasive evaluation of the area under study. In the last 
decade a great effort has been made to import and 
utilize intelligent systems in the so-called clinical deci-
sion support systems (CDSS) for automatic processing, 
classification, evaluation and representation of MRI 
data in order for advanced MRI techniques to become 
a part of the clinical routine, since the amount of data 
from the aforementioned techniques has gradually in-

creased. Hence, the purpose of the current review ar-
ticle is two-fold. The first is to review and evaluate the 
progress that has been made towards the utilization of 
CDSS based on data from advanced MRI techniques. 
The second is to analyze and propose the future work 
that has to be done, based on the existing problems 
and challenges, especially taking into account the new 
imaging techniques and parameters that can be intro-
duced into intelligent systems to significantly improve 
their diagnostic specificity and clinical application.
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Core tip: The quantification of the imaging profile of 
brain neoplasms by combining conventional magnetic 
resonance imaging and advanced imaging techniques 
introduces critical underlying pathophysiological infor-
mation which seems to be the key to success. Thus, 
it is evident that the pursuit of this goal should be 
oriented towards the development of decision support 
software that will utilize large amounts of clinical data 
with extremely significant diagnostic value which often 
remain unexploited, hence resulting in a more valid and 
precise method of differential diagnosis and the selec-
tion of the most successful treatment scheme.
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INTRODUCTION
The introduction of  magnetic resonance imaging (MRI) 
systems has induced revolutionary changes in the medical 
imaging field and has contributed much on a diagnostic 
and therapeutic level. In recent years, there has been a 
shift towards advanced MRI techniques, such as magnetic 
resonance spectroscopy (1H-MRS), diffusion weighted 
imaging (DWI), diffusion tensor imaging (DTI) and 
perfusion weighted imaging (PWI), in order to resolve 
demanding diagnostic problems. These techniques offer 
a more detailed and non-invasive evaluation of  brain tu-
mors[1-3] and have added incremental diagnostic informa-
tion regarding brain tumor characterization over conven-
tional MRI alone[4,5].

1H-MRS has been studied for more than a decade as 
a promising diagnostic tool for a variety of  pathologies. 
If  coupled with the morphological features provided by 
MRI techniques, it can provide accurate identification and 
quantification of  biologically important chemical com-
pounds in soft tissue, thus increasing the understanding 
of  the underlying pathologies. There have been numer-
ous studies that indicate the significant contribution of  
1H-MRS for the characterization of  brain tumors[6-8], and 
fewer studies have concentrated on pediatric tumors[9,10]. 
Even if  1H-MRS does not change the final diagnosis, 
it may significantly rule out a differential diagnosis and 
thereby reduce the need for biopsy. However, challenges 
still remain in brain lesion classification regarding the use 
of  1H-MRS. The most important one is the limited num-
ber of  available spectra per lesion type which may induce 
difficulties in reaching specific conclusions. Moreover, the 
simultaneous analysis and evaluation of  multiple spectro-
scopic parameters is a time-consuming process, required 
specific expertise and may not be practical in a clinical 
environment.

In addition to 1H-MRS, the other advanced MRI 
techniques, DWI[11], DTI[12] and PWI have already found 
increasing use in the evaluation of  cerebral tumors and 
still remain a subject of  intense research[1,13,14]. DWI 
probes local tissue microstructure reflected by the free-
dom of  microscopic motion of  water molecules and 
provides a sensitive means to detect alterations in the in-
tegrity of  white matter structures, while PWI facilitates 
the prediction of  brain lesion progression in conjunction 
with histopathology[15].

It is evident that the continuously developing mag-
netic resonance systems have transformed from pure 
imaging systems to extremely precise metric systems that 
produce a considerable amount of  numerical data that 
originate from the application of  the aforementioned 
advanced MRI techniques. Taking into account the com-
plex structure of  the clinical data and the difficulty of  

brain tumor discrimination due to their intrinsic hetero-
geneity, the research community has shifted towards the 
application of  machine learning algorithms, in order to 
assign different tissue types to specific patterns. Several 
studies have previously investigated the differentiation 
of  brain tumors in adults based on machine learning 
techniques[16-20], as well as the discrimination of  pediatric 
brain tumors[21,22].

By importing and utilizing these intelligent techniques 
in a clinical decision support system (CDSS), several 
advanced MRI techniques may become a part of  the 
clinical routine in order to resolve demanding diagnos-
tic problems. CDSSs based on pattern recognition have 
been widely accepted in medical applications, due to their 
capability for optimization, flexibility, accuracy for predic-
tive inference and interpretability[23].

A CDSS according to van Bemmel et al[24] is defined as 
any piece of  software that takes, as input data, the infor-
mation about a clinical situation and produces, as output, 
the inferences regarding the clinical situation that can 
assist practitioners with their decision-making, and that 
would be judged as “intelligent” by the program’s users.

Regarding brain tumor diagnosis, great efforts have 
been made in the implementation of  intelligent systems 
for brain tumor differentiation, automatic processing, 
classification, evaluation and representation of  clinical 
data. This effort is facilitated further by the evolvement 
of  computer power that is available for the processing 
needs of  these systems.

The purpose of  the present study is to provide a 
literature review that focuses in the development of  the 
CDSS, based on advanced MRI techniques for brain 
tumor characterization: (1) the first part provides an 
overview and an extensive description of  the already 
developed CDSSs; and (2) in the second part, the study 
concludes to future objectives concerning the develop-
ment of  CDSSs for brain lesion characterization.

LITERATURE REVIEW
A thorough literature review was executed during the 
period 2000-2013. Initially, the research was limited to 
CDSS for brain tumor discrimination and the inclu-
sion criterion was the kind of  biomedical data that was 
utilized for their development. Specifically, the literature 
review was focused on the use of  1H-MRS, DWI, DTI 
and PWI data in CDSS development. To the best of  our 
knowledge, up to this point none of  the CDSS was de-
veloped using features extracted from DWI, DTI or PWI 
techniques. However, the interest of  the scientific com-
munity focused on the use of  spectroscopic data in order 
to develop these systems. Thus, the research identified 
articles that corresponded to clinical systems that were 
implemented using chemical shift imaging (CSI) or single 
voxel MRS[25,26]. Furthermore, a number of  articles and 
congress proceedings regarding the usability and effec-
tiveness of  these CDSS were collected.
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BRAIN TUMOR CDSS
CSI MRS data
The research revealed eight studies focused on the devel-
opment of  DSS based on proton MRSI, in order to gain 
information about the size, shape and the heterogeneity 
of  the tumor. All of  these studies used statistical or clas-
sification techniques in order to assign each voxel of  the 
spectra to a specific tumor type and grade.

De Edelenyi et al[27] presented the first CDSS for brain 
tumor diagnosis focusing on CSI data. The authors pro-
posed a method to create a “nosologic image” in order 
to extract information about the brain tumor type and 
the grade based on long TE 1H-MRSI data, since biopsy 
does not always reveal the real grade of  the tumor, due 
to tumor heterogeneity. Regarding this heterogeneity, 
each voxel of  the spectroscopic image was colored ac-
cording to the assigned histopathologic class (low or high 
grade glioma, metastasis and meningioma). However, 
McKnight et al[28] followed a different approach to extract 
image maps of  long TE MV spectral data. Regarding the 
N-acetylaspartate and Cho levels of  the spectrum, they 
investigated a score that was used to differentiate areas 
that present normal metabolite levels from regions that 
correspond to gliomas. Then, they utilized this score as a 
degree of  abnormality throughout the lesion area. After-
wards, Simonetti et al[29] extracted nosologic images based 
not only to metabolic information but also exploiting 
the image variables of  each voxel. They investigated the 
overlap between different classes (healthy, cerebrospinal 
fluid, grade Ⅱ, grade Ⅲ, grade Ⅳ) in the featured space, 
and constructed a probability map that corresponded to 
the probabilities of  classification based on MRI and MRS 
data. Similarly to De Edelenyi et al[27], Simonetti et al[29] fo-
cused only on the metabolite and image characteristics of  
each voxel, ignoring the spatial information of  the area 
under study. De Vos et al[30] used Short TE spectra to cre-

ate nosologic images. They applied canonical correlation 
analysis in order to investigate the tumor type and the 
heterogeneity of  the region of  interest. Similarly, Lauda-
dio et al[31] applied canonical correlation analysis to 2-di-
mensional turbo MRSI data in order to combine spectra 
and spatial MRS information. The resulting correlation 
maps were used to construct nosologic images where all 
the detected tissue types were visualized. From the same 
research group, Luts et al[32] proposed a new method 
to generate nosologic images of  the brain comparing 
to previous approaches. They used digital brain atlases 
presented by Prastawa et al[33] in order to investigate the 
incremental value of  MRI over MRSI data. They added 
subject-specific abnormal tissue for image segmentation 
purposes, and the resulting framework was more flexible 
and able to exploit spatial information more efficiently, 
leading to improved nosologic images. Contrary to 
previous studies, Li et al[34] used unsupervised classifica-
tion methods to construct nosologic images, in order to 
overcome the need of  large datasets to train classifiers. 
Another difference was that they provided an error map 
along with the nosologic image in order to underline 
spectra variations due to tumor inhomogeneity.

The validation results of  the majority of  the clinical 
systems described previously are presented in Table 1.

Single voxel MRS data
Regarding the use of  single voxel MRS data for CDSS de-
velopment, during the last 10 years, four projects, the In-
ternational Network for Pattern Recognition of  Tumors 
Using Magnetic Resonance (INTERPRET) (2000-2002), 
eTUMOUR (2004-2009), HealthAgents (2005-2008) and 
CURIAM BT (2004-2010), were developed.

INTERPRET
INTERPRET was the outcome of  a multicenter Euro-
pean collaboration[35,36] that was funded under the 5th EU 
Framework Programme IST-1999-10310. Α computer-
based CDSS was developed in order to enable clinicians 
who have minimum knowledge of  the MR spectrum to 
evaluate MR spectra and to discriminate between dif-
ferent brain tumors. During the INTERPRET develop-
ment, one significant achievement was the creation of  
an important repository of  brain tumors that contained 
304 histopathological validated Short TE cases low grade 
gliomas [astrocytomas, oligodendrogliomas, oligoastro-
cytomas World Health Organization (WHO) grade Ⅱ], 
meningiomas (WHO grade Ⅰ and Ⅱ) and high grade 
malignant tumors (glioblastomas, metastases). Another 
important achievement was the definition of  a data ac-
quisition protocol to ensure the compatibility between 
the MRS data coming from different clinical collaborative 
centers as well as the quality control protocol develop-
ment, in order to define the quality requirements that MR 
spectra should fulfill.

Furthermore, a single voxel INTERPRET graphical 
user interface (GUI) was developed, providing easy access 
to the spectra database, to images and clinical informa-
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Table 1  Validation results of the clinical decision support 
systems based on chemical shift imaging data

Ref. Voxel assignment Accuracy

De Edelenyi et al[27]

  

Low-grade gliomas      92.9%
High-grade gliomas    79.16%
Metastasis   60%
Meningiomas 100%
Necrosis 100%
Healthy tissue 100%
Cerebrospinal fluid 100%

Simonetti et al[29] Healthy tissue 100%
Cerospinal fluid   97%
Glioma grade Ⅱ   83%
Glioma grade Ⅲ   88%
Glioma grade Ⅳ 100%

Luts et al[32] Glioma Ⅱ      66.6%
Glioma Ⅱ/Ⅲ 100%
Glioma Ⅳ 100%
Meningioma 100%

McKnight et al[28] Low grade gliomas vs grade Ⅲ   89%
Li et al[34] Glioblastoma multiforme 100%

Glioma Ⅱ 100%
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versions of  INTERPRET CDSS are shown to Table 2.

eTUMOUR
Another European project eTUMOUR took up the re-
search on the development of  CDSS[39]. A more complex 
CDSS was developed that combined single voxel and 
CSI MRS data. The eTUMOUR CDSS upgraded and 
facilitated the clinical application of  MRS in adult and 
pediatric brain tumor diagnosis, prognosis and treatment 
selection by using a combination of  histology results, 
high resolution metabolic profiles (HR-MAS) and tran-
scriptomic (DNA micro-arrays) ex vivo data to define the 
classification outcome[40]. Regarding the acquisition and 
quality control procedure, the experience obtained from 
the INTERPRET project was used, whereas suitable 
protocols for the techniques of  tissue analysis (HR-MAS, 
DNA microarrays and micro-RNA) were defined.

A web-based database (eTDB) was created, which was 
able to manage a wide range of  data types such as clini-
cal information, histological images, MRI, single voxel, 
MRSI, HR-MAS and DNA microarray data. This data-
base comprised a complete and detailed GUI and also a 
structure for online uploading and downloading data via 
the web.

A user friendly computer aided decision system (CADS) 
DSS was developed and tested in eTUMOUR project. 

tion from all the validated cases of  human brain tumors. 
It was designed to provide the display of  classification 
plots, which is useful for the automatic classification of  
tumor spectra[37]. The differentiation between different 
tumor groups was achieved by plotting the boundaries 
that were defined by the bisectors between the centroids 
of  each class[38]. The users could enter their own spec-
trum, position it automatically among the tumor groups 
of  the system and compare it with other spectra.

Until 2010 many improvements have been gradually 
released in successive versions and can be categorized 
in three different aspects: GUI enhancements, increased 
analysis capabilities, and data quality and assessment 
checks[38]. Specifically in the last version, an embedded 
database was developed for the permanent storage of  
the data into the system, more MRS data were supported 
compared to the previous versions (Short TE, Long TE 
and concatenated Short TE and Long TE Spectra) and 
six more classifiers were embedded to the system. Hence, 
the final version of  INTERPRET not only offers the 
ability to differentiate common tumor types as in its first 
release, but also to differentiate among tumoral and pseu-
dotumoral diseases (acute infarct, multiple sclerosis, acute 
disseminated encephalomyelitis). To address the latter 
classification problem, the metabolite ratios of  the spec-
tra were also used. The evaluation results of  the different 
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Table 2  Validation results of the clinical decision support systems based on single voxel data

Ref. CDSS Differentiation problem Accuracy Supportive raw files

Short TE Long TE Short + Long TE
Pérez-Ruiz et al[38] INTERRET Low grade meningiomas vs low grade glial 

tumors
94a  89b 89c  83b 84c 89c

Pseudotumoural diseased vs tumorse vs 
normal brain

 86c  81c  92c

García-Gómez et al[41] eTUMOUR Low grade glioma vs high grade tumor 92  84 92 1.5 Tesla MRS data of Philips 
(sdat/spar) GE up to 9X 
(SAGE Pxxxx with an shf or 
sdf/shf) siemens scanners 
(numaris 4) jMRUI[58] text file

Meningioma vs glioma/Met 92  78 94
Low men vs glioma/Met vs low grade 
glioma

87  75 90

Sáez et al[44] HealthAgents Aggressive tumor vs meningioma vs low 
grade glial

94 -

Meningioma vs metastasis 91 -
High grade tumor vs low grade tumor 87 68 (ch)
Affected tissue vs non affected tissue 99 -
Tumor vs non tumor 97 -
Aggressive tumor vs non aggressive tumor 81 72 (ch)
Glioma vs embryonal tumor - 72 (ch)
Glioblastoma vs low grade glioma 84 -
Glioblastoma vs meningioma 91 -
Meningioma vs low grade glioma 92 -
Metastasis vs low grade glioma 85 -

Vicente et al[46] CURIAM BT Aggressive tumor vs non aggressive tumor 85 87 (ch) 1.5 or 3 Tesla MRS data 
of different manufactures 
(Siemens, GE, Philips) by 
means of jMRUI[58] and 
jDMS[36]

Pilocytic astrocytoma/ependymoma grade 
Ⅱ vs medulloblastoma

        88 (ch) 85 (ch)         89 (ch)

Pilocytic astrocytoma vs medulloblastoma         92 (ch) 94 (ch)         95 (ch)
Pilocytic astrocytoma vs ependymoma 
grade Ⅱ vs medulloblastoma

        76 (ch) 69 (ch)         92 (ch)

It is indicated where the classification accuracy corresponds to classifier trained on pediatric tumor data (ch). aInternational Network for Pattern Recogni-
tion of Tumors Using Magnetic Resonance (INTERPRET) version 1.1; bINTERPRET version 2.0; cINTERPRET version 3.0; dPseudotumoural disease: Acute 
infarct, multiple sclerosis, acute disseminated encephalomyelitis, and no specific pseudotumoral disease; eTumors: Astrocytoma World Health Organiza-
tion (WHO) grade Ⅱ, oligodendroglioma WHO grade Ⅱ, oligoastrocytoma WHO grade Ⅱ, astrocytoma WHO grade Ⅲ, oligoastrocytoma WHO grade Ⅲ. 
CDSS: Clinical decision support systems; MRS: Magnetic resonance spectroscopy; MRUI: Magnetic Resonance User Interface.
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The embedded classifiers were trained to solve three 
different discrimination problems (meningioma vs non-
meningioma, aggressive tumor vs low grade glial and 
meningioma vs aggressive tumor vs low grade glial) using 
short time echo spectrum, long time echo spectrum and 
combination of  both spectra (Table 2). Furthermore, the 
design of  the DSS provided a comparative analysis with 
the average spectra of  12 standard brain tumor types of  
an unknown brain tumor. During the classification proce-
dure the assigned class as well as the posterior probabili-
ties of  each class were displayed to the system[39,41].

HealthAgents
HealthAgents[42] was a distributed DSS (d-DSS) built 
upon INTERPRET and eTUMOUR projects. The great 
difference of  this project was its architectural structure 
since it was based on agent-based architecture in order to 
decentralize the process of  brain tumor differentiation in 
a distributed decision support framework that supports 
data partitioning and sharing[43]. Since the accumulation 
of  a sufficient number of  cases for each tumor type or 
less common adult or childhood tumors was a very dif-
ficult and time consuming procedure, a collaborative net-
work of  different medical centers was constructed that 
contributed to the development of  a repository of  brain 
tumors, used for the training of  robust classifiers for 
brain tumor differentiation.

The user, utilizes a local web-based GUI to enter the 
clinical data of  a patient into the system and to request 
the appropriate classifiers from the network. These clas-
sifiers could be located anywhere on the collaborative 
HealthAgents network that consisted of  different medi-
cal centers with their local existing databases of  cases 
and their classifiers. Finally, the system would suggest the 
appropriate classifiers and indicate their specific location. 
Furthermore, a ranking tool was provided to the user, 
since many different classifiers coexisted in the system, 
in order to identify the classifiers that are more suitable 
for the diagnosis of  particular case, to rank the obtained 
results from a set of  classifiers and to solve possible con-
flicts between classifiers, by giving contradictory answers, 
which could occur when a test case was close to a deci-
sion boundary in one or more classifiers[44].

Regarding the classification framework of  the 
HealthAgents DSS its primary functionality was based on 
the INTERPRET DSS system. Until 2011, 25 classifiers 
were embedded and shared the system for the differentia-
tion of  aggressive tumors, like glioblastomas and metas-
tases, benign meningiomas and low-glial mixture, such as 
astrocytomas grade Ⅱ, oligodendrogliomas and oligoas-
trocytomas. The classification procedure was based on 
short time echo MRS data, long time echo MRS data and 
on the combination of  them. The optimum classification 
results are presented to Table 2.

Curiam BT
Curiam BT[45,46] was developed in parallel to eTUMOUR 
and HealthAgents projects. CURIAM BT supported 

any kind of  metabolic data either on short or long TE 
or both of  different manufactures. Regarding the clas-
sification framework of  this clinical system, it was able to 
determine the aggressiveness of  a brain tumor in adults 
(non aggressive: grades Ⅰ and Ⅱ vs aggressive: grade Ⅲ 
and Ⅳ) and to discriminate among the three most com-
mon pediatric brain tumors such as ependymoma grade 
Ⅱ, pilocytic astrocytoma and medulloblastoma. Further-
more, compared with previous systems an additional 
opportunity was included, according to which the user 
could embed new classifiers to the system. Similar to the 
ranking tool in HealthAgents DSS, the audit and similar-
ity methods were incorporated to the system to address 
the generalization ability of  the coexisting classifiers. 
These methods proved to be significant as they provided 
the clinicians with the appropriate classifiers set regarding 
each differentiation problem and a specificity score of  
each classifier that determines its discrimination accuracy 
over time.

USABILITY AND EVALUATION OF CDSS
Regarding the evaluation of  the single voxel CDSSs, there 
are several studies that reported their effectiveness and 
usability in the classification of  different brain tumors 
during the clinical routine. These studies demonstrate the 
accuracy values that CDSSs present in various diagnostic 
problems, evaluate their contribution in combination with 
other diagnostic outcomes and survey CDSS usability 
regarding their user friendly module and acceptance by 
the clinical community. Considering the CDSSs that were 
based on CSI data, more research is needed since there 
is not a sufficient number of  articles to demonstrate the 
overall contribution of  these clinical systems to the clini-
cal routine.

Fellows et al[47] investigated the discrimination ability 
of  INTERPRET version 2.0 in order to differentiate high 
and low grade tumors. The classification outcome of  the 
system was compared with the neuroradiological tissue 
diagnosis and the conclusion of  the spectroscopists. The 
results did not reveal significant differentiations between 
the accuracy levels of  each participating modality.

INTERPRET version 3.0 proved to be superior for the 
characterization of  grade Ⅲ astrocytomas when compared 
to the spectroscopic and the radiologists’ evaluation[48].

Regarding the clinical evaluation of  eTUMOUR, an 
agreement of  79.1% was obtained between the DSS out-
come and the radiologic diagnosis. This rate increased up 
to 88.4% when the averaged spectra from DSS were used 
for brain tumor classification. When the CDSS, averaged 
spectra and radiologic findings were compared with the 
histopathological diagnosis, agreement scores of  76.7%, 
79.1% and 81.4% were respectively achieved[49].

When the CDSS results were compared with MRI, 
the overall percentage of  correct predictions were 82.2% 
and 78.48%, respectively. Furthermore, the CDSS clas-
sification outcome was also compared with the cor-
responding outcome of  MRI for the differentiation of  
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low grade gliomas, high grade gliomas and meningiomas. 
Specifically, the sensitivity and specificity values in low vs 
high grade gliomas classification problem, CDSS proved 
superior to the MRI corresponding values. Finally, the 
usefulness and applicability of  the CADS was rated 86% 
and 71%, respectively[50].

Regarding the HealthAgents CDSS, an evaluation 
about its incremental diagnostic value was executed, and 
consequently 26 expert physicians were interviewed. As 
an overall response, they believed that the use of  the 
CDSS would be beneficial for improving the quality of  
their brain tumor diagnoses. In addition, they considered 
the system easy to use, which is an important point in a 
DSS, especially in a clinical environment[44].

When the evaluation of  CURIAM BT was carried out, 
it reached 71% and 85% regarding the user’s perspec-
tive on its usefulness and convenience, respectively[51]. A 
comparing test was also executed in order to evaluate the 
contribution of  CURIAM BT in the clinical routine. In 
that case, no significant differences were observed be-
tween the established diagnosis when conventional MRI, 
DWI and PWI were used, and the diagnosis derived from 
the above techniques combined with CDSS. Only in the 
case of  high grade and low grade gliomas, did the ob-
served differences reach 70%. Hence, a further evaluation 
should be implemented in order to investigate the CU-
RIAM BT contribution in different diagnostic problems.

FUTURE PERSPECTIVES
One should consider CDSS as a supportive tool by pro-
viding additional information about the patient’s state 
of  health from which the clinician may establish a more 
educated and informed decision. As described in the 
“Usability and evaluation of  CDSS” section, most of  the 
studies proved the efficacy of  the additional information 
that CDSS provide regarding improvements in clinical 
outcome. However, it is also evident that further evalu-
ation should be implemented in order to investigate the 
CDSS contribution in different diagnostic problems. In 
addition, CDSS development involves much more than 
just the implementation of  a software application. It re-
quires adaptation by clinicians to use and engage in the 
refinement of  CDSS both as a process and as a tool, as 
we move toward the goal of  healthcare delivery that is 
consistent, effective, and of  high quality[52]. In order to 
accomplish the above objectives and to reinforce the ap-
plication of  CDSS in clinical routine, there are a number 
of  future perspectives that should be implemented.

Regarding the classification framework of  the clinical 
systems, there are two significant issues which arise. First, 
the improvement of  the classification performance and 
second, the inclusion of  more difficult differential diag-
nostic problems such as glioblastomas vs solitary metas-
tasis. Hence, the retraining of  the existing classifiers and 
the development of  new ones, are necessary in order to 
optimize the classification performance and to extend the 
discrimination ability of  the CDSS.

Until now all the CDSSs developed for brain tumor 

differentiation are based on static classification methods. 
The use of  static classifiers results in an implicit assump-
tion that the learning procedure stops when the training 
set has been processed. The performance of  a classifier 
strongly depends on the size of  the training set for each 
class. Nevertheless, the accumulation of  biomedical data 
is often a time-consuming and expensive procedure, 
and hence it may be not practical, especially in cases 
of  uncommon cerebral pathologies like abscesses and 
lymphomas or pediatric brain tumors. In such cases, the 
implementation of  incremental learning algorithms is a 
promising solution for clinical environments. Tortajada et 
al[53] evaluated the performance of  an incremental classifi-
er based on single voxel Short TE spectra in comparison 
to static classifiers. The results revealed that the classifica-
tion performance was improved when the incremental 
classifiers were used comparing to performance of  the 
static classifies.

Another future objective is to incorporate metabolic 
data from both 1H-MRS techniques (single voxel-CSI) 
into the classification framework of  a DSS. The two 
techniques can be utilized simultaneously in order to 
investigate tumor heterogeneity whereas; the advantages 
of  each spectroscopic technique can be exploited. There-
fore, the metabolic characteristics of  different tumor 
regions could be summarized into one image and the 
corresponding biochemical compounds can be studied. 
Hence, the spatial and the quantitative data of  the spec-
trum will be used for an overall evaluation of  the tumor. 
The complementary use of  the spectroscopic techniques 
may contribute to the optimization and the accuracy of  
the preoperative diagnosis, and it may increase the under-
standing of  the underlying pathologies.

An important future aspect is to enrich the DSS da-
tasets with metabolic data from the peritumoral and con-
tralateral regions regarding the brain tumor under study. 
With this perspective, the pattern recognition methods 
will be extended towards a more accurate differentiation 
scheme of  brain tumors.

Growing intracranial neoplasms exhibit various ef-
fects in their peritumoral area. According to Chernov 
et al[54] lactate-producing neoplasms are associated with 
more prominent reduction of  the relative NAA content 
in the surrounding cerebral tissue, independently on the 
presence or absence of  any other factor. According to 
Fan et al[55] both a high Cho peak and elevated Cho/Cr 
ratio were found in the peritumoral regions of  high-grade 
gliomas, but not in metastases. This suggests that the 
infiltration of  adjacent brain tissue by tumor is a unique 
feature of  high-grade glioma.

Another plan is to incorporate quantitative data from 
other MR-based methodologies. Di-Costanzo et al[56] 
showed that in the case of  brain tumor classification, 
when 1H-MRS parameters were considered as features, 
83.3% of  brain tumors were correctly classified. Whereas, 
when 1H-MRS variables were combined with relative ce-
rebral blood volume (rCBV) values from perfusion MRI, 
a 100% classification accuracy between high- and low-
grade gliomas was achieved. They also showed that in a 
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peri-enhancing tumor region 73.7% of  the cases were 
correctly classified when considering only 1H-MRSI vari-
ables, 84.2% when considering 1H-MRSI variables and 
apparent diffusion coefficient (ADC), and 89.5% when 
considering 1H-MRSI variables, ADC and rCBV. Zonari 
et al[57] achieved 80% sensitivity and 78.6% specificity 
when using rCBV parameter alone in grading cerebral 
neoplasms, and when combined with 1H-MRS the sen-
sitivity increased to 87.7% and specificity dropped to 
76.2%.

Hence, it is evident that the continuous progress of  
imaging systems has induced revolutionary changes in 
the medical imaging field and has contributed utmost on 
a diagnostic and therapeutic level. The most important 
aspect however is that the continuous development of  
imaging techniques have transformed these modalities 
from conventional imaging to high-level metric systems, 
which may provide a quite large amount of  quantitative 
information.

These large amounts of  numeric data with an ex-
tremely significant diagnostic value may often remain 
unexploited during the clinical routine. The main reason 
for this is that the simultaneous analysis and evaluation 
of  multiple parameters, is a time consuming process, 
requires specific expertise and may not be feasible dur-
ing the clinical routine. It is prudent to mention that 
the available clinical time per patient may be estimated 
at about 30 min, while the process and evaluation of  
data from MRS and DTI usually takes more than 1 h. 
Especially when a specialized medical physicist for data 
manipulation is unavailable, these techniques are often 
handled by radiologists under a qualitative perspective 
rather than quantitative, which may lead to a biased dif-
ferential diagnosis.

Therefore, an automatic evaluation of  these data and 
a rapid display of  the results are the minimum require-
ment during the clinical interpretation of  an examina-
tion that will lead to a better clinical management of  the 
patients, since the evaluation of  the data will be done 
in an easier, and more effective way, which would ulti-
mately lead to cost effectiveness by avoiding misdiagnosed 
cases. Towards this direction, the objective and future 
perspective would be to design and develop a CDSS, us-
ing incremental machine learning methods, based on all 
numeric data from the aforementioned advanced imaging 
techniques. The system should integrate and combine all 
the available metabolic, diffusion and perfusion data. The 
hypothesis is that the combination of  multiple data from 
the aforementioned imaging modalities is expected to 
optimize the differential diagnosis of  brain pathologies, 
which will be eventually beneficiary for tailored patient 
treatment.

Hence, these kind of  systems should be specifically 
designed in such a way that the user (that is: radiologist, 
medical physicist and in general neuroscientists), with 
minimum knowledge of  pattern recognition analysis, will 
be able to: (1) categorize and illustrate the clinical data 
on a single template in order to ensure that the data will 

not be dispersed; (2) perform a fully automated pattern 
recognition analysis towards the optimum differential 
diagnosis; (3) quantify the degree of  uncertainty in the 
prediction of  ambiguous diagnostic problems by offer-
ing a diagnostic orientation; and (4) use the system as a 
supportive tool for the selection of  the most appropri-
ate treatment strategy and the most successful treatment 
scheme.

From our personal experience, it should be stressed 
that a CDSS by no means substitutes for the expert’s 
diagnostic decision, but rather supports the clinician by 
evaluating simultaneously a large amount of  complicated 
MR data. Thorough analysis and evaluation of  these data 
requires additional time, which exceeds by far the avail-
able clinical time per patient, hence this information may 
remain unexploited.

Furthermore, despite the good discrimination abil-
ity of  the embedded classification schemes, it should be 
emphasized that the decision-making process with the 
use of  a clinical decision system should be a procedure 
of  two individual parts. The first part should include the 
classification result or a good orientation towards a clini-
cal outcome, based on the evaluation of  quantitative MRI 
data and the second part should involve the co-evaluation 
of  the aforementioned result with all the available diag-
nostic and imaging information. Under these perspec-
tives, a well designed CDSS may be used as an assistant 
diagnostic tool which can be implemented into the clini-
cal routine and substantially aid the interpretation of  an 
exam and optimize decision making.

CONCLUSION
Diagnosis and consequently treatment of  brain neo-
plasms may greatly benefit from the introduction and 
utilization of  intelligent systems in the form of  CDSS for 
automatic processing, classification, evaluation and repre-
sentation of  the spectroscopic data as part of  the clinical 
routine. Major progress has been made in the last few 
years towards this direction, as several systems exist and 
are continuously developing. Nevertheless, the quantifi-
cation of  the imaging profile of  neoplasms by combin-
ing conventional MRI and advance imaging techniques 
(MRS, DWI, DTI and PWI) introduces critical underlying 
pathophysiological information which seems to be the 
key to success.

Thus, it is evident that the future directions should be 
oriented towards the development of  software that will 
be implemented in the clinical routine, by utilizing large 
amounts of  clinical data with extremely significant diag-
nostic value which often remain unexploited, resulting in 
a more valid and precise method for differential diagnosis 
of  brain pathologies and the selection of  the most suc-
cessful treatment scheme.
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