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Abstract
BACKGROUND 
Inflammatory bowel disease (IBD) is caused by an abnormal immune response. 
Programmed cell death 1 (PD-1) is an immunostimulatory molecule, which 
interacts with PD ligand (PD-L1) playing a prime important role among 
autoimmune diseases. Bifidobacterium infantis (B. infantis) can promote the differ-
entiation of CD (cluster of differentiation) 4+ T cells into regulatory T cells (Tregs). 
Tregs participate in the development of IBD and may be related to disease 
activity. B. infantis amplify the expression level of PD-1, PD-L1 and Tregs’ nuclear 
transcription factor forkhead box protein 3 (Foxp3). But the mechanism of B. 
infantis on PD-1/PD-L1 signaling remains unclear.

AIM 
To explore the mechanism of B. infantis regulating the immune response in IBD.

METHODS 
Forty-eight-week-old BALB/c mice were randomly divided into five groups: The 
control group, dextran sulphate sodium (DSS) model group, DSS + B. infantis 
group, DSS + B. infantis + anti-PD-L1 group, and DSS + anti-PD-L1 group. The 
control group mice were given drinking water freely, the other four groups were 
given drinking water containing 5% DSS freely. The control group, DSS model 
group, and DSS + anti-PD-L1 group were given normal saline (NS) 400 μL daily 
by gastric lavage, and the DSS + B. infantis group and DSS + B. infantis + anti-PD-
L1 group were given NS and 1 × 109 colony-forming unit of B. infantis daily by 
gastric lavage. The DSS + B. infantis + anti-PD-L1 group and DSS + anti-PD-L1 
group were given 200 μg of PD-L1 blocker intraperitoneally at days 0, 3, 5, and 7; 
the control group, DSS + anti-PD-L1 group, and DSS + B. infantis group were 
given an intraperitoneal injection of an equal volume of phosphate buffered saline 

https://www.f6publishing.com
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(PBS). Changes in PD-L1, PD-1, Foxp3, interleukin (IL)-10, and transforming growth factor β (TGF-
β) 1 protein and gene expression were observed. Flow cytometry was used to observe changes in 
CD4+, CD25+, Foxp3+ cell numbers in the blood and spleen.

RESULTS 
Compared to the control group, the expression of PD-1, Foxp3, IL-10, and TGF-β1 was significantly 
decreased in the intestinal tract of the DSS mice (P < 0.05). Compared to the control group, the 
proportion of CD4+, CD25+, Foxp3+ cells in spleen and blood of DSS group was visibly katabatic (P 
< 0.05). B. infantis upgraded the express of PD-L1, PD-1, Foxp3, IL-10, and TGF-β1 (P < 0.05) and 
increased the proportion of CD4+, CD25+, Foxp3+ cells both in spleen and blood (P < 0.05). After 
blocking PD-L1, the increase in Foxp3, IL-10, and TGF-β1 protein and gene by B. infantis was 
inhibited (P < 0.05), and the proliferation of CD4+, CD25+, Foxp3+ cells in the spleen and blood was 
also inhibited (P < 0.05). After blocking PD-L1, the messenger ribonucleic acid and protein 
expression of PD-1 were invariant.

CONCLUSION 
It is potential that B. infantis boost the proliferation of CD4+, CD25+, Foxp3+ T cells in both spleen 
and blood, as well as the expression of Foxp3 in the intestinal tract by activating the PD-1/PD-L1 
pathway.

Key Words: Bifidobacterium infantis; Enteritis; Programmed cell death ligand; T-Lymphocytes

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Bifidobacterium infantis (B. infantis) can be used as a therapeutic agent to treat inflammatory 
bowel disease. It regulates the intestinal microbiota, alleviates inflammation, and regulates the immune 
response. We found that B. infantis increases the expression of forkhead box protein 3 (Foxp3) and the 
proliferation of Foxp3+ T cells, and activates the programmed cell death 1 (PD-1)/ PD ligand 1 pathway.

Citation: Zhou LY, Xie Y, Li Y. Bifidobacterium infantis regulates the programmed cell death 1 pathway and 
immune response in mice with inflammatory bowel disease. World J Gastroenterol 2022; 28(26): 3164-3176
URL: https://www.wjgnet.com/1007-9327/full/v28/i26/3164.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i26.3164

INTRODUCTION
Inflammatory bowel disease (IBD) results from the aberrant immune responses or the disruption of 
immune tolerance to intestinal antigens. Several factors, including the immune system, infections, and 
genetic and environmental factors, may remarkably contribute to the development of IBD[1-4]. To 
maintain immune tolerance to the intestinal environment, the intestinal immune system monitors 
changes in the bacterial microbiota and the expression of antigens on the surface of the intestinal 
mucosa[5,6]. Antigen-presenting cells, including dendritic cells and intestinal epithelial cells, present 
intestinal antigens to CD4+ T cells and induce their differentiation into regulatory T cells (Tregs), which 
maintain tolerance to the intestinal microbiota. Hyperactive T cell responses to the intestinal microbiota 
contribute to the inflammatory response observed in IBD[7].

Programmed cell death protein 1 (PD-1) and PD-ligand 1 (PD-L1), belong to the CD28/B7 super-
family, which primarily functions in T cell-mediated immune responses and is closely related to several 
diseases and disease states, including autoimmune diseases, tumors, chronic viral infections, and 
chronic inflammation[8-10]. The role of the PD-1/PD-L1 signaling pathway in glomerulonephritis, 
systemic lupus erythematosus, rheumatoid arthritis, dilated cardiomyopathy, autoimmune diabetes, 
and other autoimmune diseases has been widely studied[11,12]; however, few studies have examined 
the role of the PD-1/PD-L1 signaling pathway in IBD[13].

Tregs are a subpopulation of T lymphocytes with immunoregulatory functions[14]. They can inhibit 
the activation and proliferation of autoreactive T cells by secreting cytokines such as interleukin (IL)-10 
and transforming growth factor β (TGF-β), downregulating the function of auxiliary T cells, and 
maintaining intestinal homeostasis and immune tolerance[15,16]. Tregs are divided into two categories: 
Natural Tregs (nTregs) and induced Tregs (iTregs). The nTregs mature in the thymus and are positive 
for CD4, CD25, and Foxp3. The iTregs are induced by specific antigen stimulation of CD4+ T cells in the 
presence of IL-2 and TGF-β1, in the intestine, spleen, and other peripheral sites[17]. Animal studies have 
shown that injecting T cells with no CD4 and Tregs expressing CD25 into T cell-deficient mice can 
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induce the development of autoimmune colitis, whereas the injection of T cells expressing CD4 with 
that of CD25+ Tregs can inhibit colitis development. These results suggest that CD4+ and CD25+ Tregs 
are vital for the inhibition of the intestinal immune response[18]. Maul et al[19] found that the 
percentage of Tregs in the peripheral blood of patients with IBD decreased in the active phase and 
increased in the remission phase of the disease; however, the number of Tregs in the intestinal 
epithelium increased in the active phase of the disease but was still significantly lower than that 
observed in patients with diverticulitis. This suggests a role of Tregs in IBD development.

The adoptive transfer of immature CD4+ T cells into wild-type rag-/- mice and PD-L1-/-rag-/- mice 
significantly decreases the number of Tregs in PD-L1-/-rag-/- mice, suggesting a dominant role of PD-L1 
in Treg differentiation[20]. PD-L1 can enhance Treg function and promote the production of IL-10 by 
Tregs[21]. Treg differentiation depends on the PD-L1 signaling pathway. Higher levels of PD-L1 
expression in hepatodendritic cells result in greater induction of Tregs which maintain the tolerance 
toward transplanted organs.

We have previously found that Bifidobacterium infantis (B. infantis) can alleviate intestinal epithelial 
injury and maintain intestinal immune tolerance in a mouse model of IBD and may have therapeutic 
implications for the immunological injuries observed in IBD. Bifidobacterium infantis notably increased 
the expression levels of PD-L1 and PD-1 in the intestine and promoted the expression of nuclear 
transcription factors and of anti-inflammatory factors (IL-10 and TGF-β1) in Tregs[22,23]. Therefore, this 
study aimed to explore the mechanism of action of B. infantis in the PD-1/PD-L1 signaling pathway and 
the differentiation and function of Tregs.

MATERIALS AND METHODS
Reagents and antibodies
Dextran sulfate sodium (DSS; molecular weight 36000-50000) was purchased from MP Biomedicals 
(Irvine, CA, United States). B. infantis freeze-dried powder, containing 1.6 × 1011 colony-forming units 
(CFU)/g, was provided by Shandong Kexing Biological Products Co., Ltd. (Batch No. 2017012, 
Shandong Province, China). Invivomab anti-mouse PD-L1 was purchased from BIOX Cell (Lebanon, 
NH, United States). BALB/c mice were purchased from Huafukang Biotechnology (Beijing, China). 
Allophycocyanin (APC) rat anti-mouse Cd4, Bb515 rat anti-mouse, P-phycoerythrin (PE) rat anti-mouse 
Foxp3, and a transcription factor buffer set were purchased from BD Biosciences (Franklin Lakes, NJ, 
United States). Antibodies against PD-L1, PD-1, and Foxp3 were purchased from Proteintech Group 
(Rosemont, IL, United States). Antibodies against IL-10 and TGF-β1 were purchased from Abcam 
(Cambridge, United Kingdom). Real-time quantitative PCR was performed using the following 
reagents: TRIzol (Invitrogen, Thermo Fisher, Waltham, MA, United States), PrimescriptTM RT Regent kit 
with gDNA eraser, quick response training (qRT) PCR kit SYBR® premier ex taqTM II (Tli RNaseH Plus, 
Takara, Japan), and the specific primers (Biotechnology Co., Ltd., China).

Animals
Forty-eight-week-old BALB/c mice, male and female, weighing 20 g ± 2 g, were raised under pathogen-
free conditions in the standalone animal experimental center affiliated with the Shengjing Hospital of 
China Medical University. The mice were kept at 20 °C-26 °C and in an atmosphere with a relative 
humidity of 40%-70%, with a 12 h light/dark cycle. Sterilized water and standard feed were provided 
for free consumption by the animals. The experimental protocol was approved by the ethics committee 
of the hospital (No. 2017PS353K). The operators ensured that suitable measures were taken to reduce 
malaise and injury to the animals during experiments.

Experimental grouping and modeling
Forty mice were randomly divided into five groups: Control, DSS, DSS + B. infantis, DSS + B. infantis + 
anti-PD-L1, and DSS + anti-PD-L1. Mice in the control group were given free access drinking water for 7 
d. The other four groups were administered sterilized water containing 5% DSS for 7 d. The drinking. 
Drinking water was changed daily. The control, DSS, and DSS + anti-PD-L1 groups were administered 
400 μL normal saline (NS) via gavage daily, and the DSS + B. infantis and DSS + B. infantis + anti-PD-L1 
groups were administered 400 μL NS via gavage and B. infantis (1 × 109 CFU) daily. The DSS + B. infantis 
+ anti-PD-L1 and DSS + anti-PD-L1 groups were administered an intraperitoneal injection of PD-L1 
blocker (200 μg), and the control, DSS model, and DSS + B. infantis groups were intraperitoneally 
injected with phosphate-buffered phosphate buffered saline (PBS) on days 0, 3, 5, and 7.

Specimen collection
General characteristics of the mice: During the experimental period, temperament, reactivity, activity, 
hair color, weight, eating, and defecation of each mouse were observed seriatim and recorded in detail 
daily.
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Peripheral blood collection: On day 8, all animals were anesthetized via isoflurane inhalation, and the 
beards were removed. Blood was collected through retro-orbital bleeding and placed in blood collection 
vessels containing EDTA. The blood and EDTA were mixed and stored on ice.

Extraction of single cells from mouse spleen: After blood collection, the sacrificed mice were dissected 
along the midline, and the spleen was fully exposed. After blunt dissection, the spleen was removed, 
placed in PBS, and transported on ice. The spleen was then transferred to a glass dish containing RPMI 
1640 medium and mashed with ground glass. The cells were then transferred to a centrifuge tube and 
centrifuged at 1200 rpm for 5 min, and the supernatant was discarded. Next, 2 mL of RBC lysate was 
added to each sample. PBS (3 mL) was added to dilute and stop the lysis, and the samples were 
centrifuged again at 400 × g for 5 min at 4 °C. The supernatant was discarded and 3 mL of PBS was 
added. The cells were filtered and centrifuged for 10 min. The supernatant was discarded, and PBS was 
added to obtain a single-cell suspension. All the procedures were performed at 4 °C to ensure cell 
viability.

Acquisition of mouse colon: After splenectomy, the colon was exposed and the colon from the blind 
part to the anus was removed, washed with pre-cooled NS, and divided into four parts. The samples 
were then transferred to a -80 °C ultra-low-temperature refrigerator in liquid nitrogen for long-term 
preservation.

Detection of CD4+, CD25+, Foxp3+ T cells by flow cytometry
Spleen: Splenic CD4+, CD25+, and Foxp3+ T cells were detected using flow cytometry. The prepared 
single-cell spleen suspension (100 μL) was aliquoted into labeled flow tubes. Anti-CD4+ and anti-CD25+ 
antibodies were then added to the tubes and the tubes were incubated at 4 °C in the dark for 30 min. 
Next, 1 mL of 1X fix/perm working solution was added to each sample and the samples were incubated 
at 4 °C in the dark for 40 min to permeabilize the nucleus. Anti-Foxp3 antibody was then added and the 
resulting solution was incubated at 4 °C in the dark for 40 min. Excess antibodies were removed, and 
the samples were run on a flow cytometer (FACSCalibur, BD Bioscience).

Peripheral blood: After RBC lysis, flow cytometry was performed on the peripheral blood samples 
using the protocol described above.

Western blotting
Total protein was extracted from the colon, and the protein concentration was determined. The samples 
were subjected to electrophoresis at 60 V. After marker separation, the voltage was adjusted to 80 V. 
After 30 min, the voltage was adjusted to 100 V. Electrophoresis was terminated when the target protein 
with the lowest molecular weight reached the end of the gel. A voltage of 100 V was used to transfer 
proteins to the membrane. Proteins with a molecular weight < 25 kDa were transferred for 25 min, and 
proteins weighing 26-70 kDa were transferred for 70 min. The membrane was blocked with 2.5% bovine 
serum albumin (BSA) at room temperature for 1.5 h. Primary antibodies against PD-L1 (1:750), PD-1 
(1:500), Foxp3 (1:1000), IL-10 (1:800), TGF-β1 (1:500), and GAPDH (1:10000) were added and the 
membrane was incubated at 4 °C overnight. Then, goat anti-rabbit IgG secondary antibody labeled with 
horseradish peroxidase was added to the membrane, followed by incubation at room temperature for 
1.5 h. In a dark room, a chemiluminescence imaging analysis system was used to visualize the 
membranes. GelPro software was used to analyze the images and to perform quantitative analysis using 
the following formula: Protein content = grey value of the target protein of the sample/grey value of the 
same sample.

Real time qPCR
The experiment consists of 5 steps:  (1) Ribonucleic acid (RNA) purification: DSS can reduce the purity 
of RNA, so extra purification of the colon RNA was necessary. RNA purification was performed as 
follows: 30 µL lithium chloride (8 mol/L) + 270 µL ddH2O was added to 10 µL RNA and placed on ice 
for 2 h. The samples were then centrifuged at 14000 × g for 30 min. The supernatant was then discarded, 
and the RNA was dissolved in 90 µL ddH2O. Next, 10 µL sodium acetate (3 mol/L) + 200 µL anhydrous 
ethanol was added to the RNA and incubated at -20 °C for 30 min to precipitate the RNA. The samples 
were then centrifuged at 14000 × g for 30 min at 4 °C. The supernatant was then discarded, 500 µL 75% 
ethanol was added, and the samples were gently blown with a pipette to clean the RNA. Next, the 
samples were centrifuged at 800 × g for 10 min at 4 °C. The supernatant was discarded, and the RNA 
was dissolved with 10 µL ddH2O. Finally, the samples were transferred to -80 °C on ice for preservation; 
(2) detection of RNA concentration: The ratio of A260/A280 was eligible for all of the samples, which 
indicates that the purity of the RNA was high and suitable for further experiments; (3) preparation of 
cDNA by RNA reverse transcription: The gDNA was removed, and the specimens were heated to 42 °C 
for 2 min. For reverse transcription, the reaction solution was prepared according to Table 1. The 
samples were heated at 37 °C for 15 min and 85 °C for 5 s. The reaction was then stopped and cooled 
down to 4 °C; (4) concentration and purity of cDNA: After zero adjustment, 1 μL of the cDNA sample to 
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Table 1 Preparation of reverse transcription system

Reagent Dose (µL)

5 × prime script buffer 4

Prime sript RT enzyme mix 1

RT primer xix 1

ddH2O 4

RT: Real time; dd: Double distilled.

be tested was dropped onto the detection probe to determine the concentration and purity. The probe 
was washed with ddH2O between the evaluation of the two samples; and (5) qRT-PCR: qRT-PCR was 
carried out as follows: PCR amplification reaction, denaturation at 95 °C for 5 min, PCR reaction at 95 °C 
for 10 s, and 60 °C for 30 s for 45 cycles.

Statistical analysis
Data are presented as mean ± SD. Differences among the groups were analyzed using the analysis of 
variance. SPSS (version 23.0; IBM, Armonk, NY, United States) and GraphPad 7.0 (Software, CA, United 
States) statistical software were used to perform statistical analyses. Two-tailed P values were 
calculated, and statistical significance was set as P < 0.05.

RESULTS
The effect of B. infantis on the expression of PD-1 after PD-L1 blockade
Western blot results: Compared to the DSS + B. infantis group, PD-1 protein in the DSS + B. infantis + 
anti-PD-L1 group decreased, but the difference was not statistically significant (P = 0.07). Compared to 
DSS model group, the expression of PD-1 was no significant distinction in DSS + anti-PD-L1 group (P = 
0.62) (Figure 1A-C).

qRT-PCR results: In contrast to control group, PD-1 messenger ribonucleic acid (mRNA) in DSS group 
decreased significantly (P < 0.05). In constrast to DSS group, the expression of DSS + B. infantis group 
increased, but the difference was not statistically significant (P = 0.36). Compared to the B. infantis 
group, PD-1 RNA decreased significantly in the DSS + B. infantis + anti-PD-L1 group (P < 0.05) 
(Figure 1A-C).

Effect of B. infantis on Tregs and Foxp3 expression after PD-L1 blockade
Western blot results: Compared to the DSS + B. infantis group, Foxp3 protein decreased in DSS + B. 
infantis + anti-PD-L1 group, and the difference was statistically significant (P < 0.05). There was no 
significant difference in Foxp3 protein expression between the DSS model group and DSS + anti-PD-L1 
group (P = 0.99) (Figure 1D-F).

RT-qPCR results: In contrast to control group, Foxp3 mRNA in DSS model group decreased 
significantly (P < 0.05); Foxp3 mRNA in DSS + B. infantis group was significantly higher than that in 
DSS model group (P < 0.05). Compared to the B. infantis group, the expression of Foxp3 mRNA 
decreased significantly in the DSS + B. infantis + anti-PD-L1 group (P < 0.05). In comparison with DSS 
model group, Foxp3 mRNA in DSS + anti-PD-L1 group was also visible distinction (P < 0.05) (Figure 1D
-F).

Flow cytometry results
Flow cytometry of peripheral blood: Compared to control group, the proportion of peripheral CD4+, 
CD25+, Foxp3+ cells decreased visibly (P < 0.05) of DSS group and increased visibly in the blood of the 
DSS + B. infantis group (P < 0.05). Compared to the DSS + B. infantis group, the proportion of CD4+, 
CD25+, Foxp3+ cells in the peripheral blood of DSS + B. infantis + anti-PD-L1 group was significantly 
lower (P < 0.05). The proportion of CD4+, CD25+, Foxp3+ cells in the blood of the DSS + anti-PD-L1 
group was also distinctly lower compared to the DSS group (P < 0.05) (Figure 2).

Flow cytometry of splenocytes: The ratio of splenic CD4+, CD25+, Foxp3+ cells in DSS model group was 
significantly lower (P < 0.05), comparing to control group. The ratio of CD4+, CD25+, Foxp3+ cells in the 
DSS + B. infantis group was significantly higher than that in the DSS model group (P < 0.05). Compared 
to the DSS + B. infantis group, the proportion of CD4+, CD25+, Foxp3+ cells in the DSS + B. infantis + anti-
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Figure 1 The effects of blocking programmed cell death ligand. A: Expression of programmed cell death 1 (PD-1) protein; B: Statistical chart showing the 
differences in PD-1 protein expression; C: Statistical map showing the differences in PD-1 mRNA expression; D: Western blot showing forkhead box protein 3 protein 
(Foxp3) expression; E: Statistical chart showing the differences in Foxp3 expression; F: Statistical map showing the differences in Foxp3 mRNA levels. Data are 
presented as mean ± SD, and comparisons between groups were analyzed by one-way analysis of variance. Statistical significance was set as P < 0.05. PD-1: 
Programmed cell death 1; PD-L1: Programmed cell death ligand; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; DSS: Dextran sulfate sodium; B. infantis: 
Bifidobacterium infantis; Foxp3: Forkhead box protein 3.

PD-L1 group decreased significantly (P < 0.05). The proportion of CD4+, CD25+, Foxp3+ cells in the DSS 
+ anti-PD-L1 group also decreased significantly compared to the DSS group (P < 0.05) (Figure 3).

The effect of B. infantis on the expression of IL-10 and TGF-β1 after PD-L1 blockade
Western blot results: The expression of IL-10 and TGF-β1 protein in the DSS + B. infantis group was 
lower than that in DSS + B. infantis + anti-PD-L1 group (P < 0.05). Compared to the DSS model group, 
there was no apparent distinction in the express of IL-10 (P = 0.99) or TGF-β1 in the DSS + anti-PD-L1 
group (P < 0.05) (Figure 4).

Real time PCR results: In comparison with control group, mRNA of IL-10 and TGF-β1 in the DSS model 
group decreased (P < 0.05), and mRNA of IL-10 and TGF-β1 in the DSS + B. infantis group increased 
clearly (P < 0.05). IL-10 and TGF-β1 mRNA expression in DSS + B. infantis + anti-PD-L1 group decreased 
clearly (P < 0.05) contrsating to DSS + B. infantis group. Compared to the DSS model group, IL-10 and 
TGF-β1 mRNA in DSS + anti-PD-L1 group were also statistically distinction (P < 0.05) (Figure 4).
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Figure 2 Effects of Bifidobacterium infantis and programmed cell death ligand inhibition on the proportion of CD4+, CD25+, and forkhead 
box protein 3+ cells in the blood. A: The strategy of CD4+, CD25+, and forkhead box protein (Foxp) 3+ cells; B-F: Flow cytometry results for the control group 
(B), the DSS model group (C), the DSS + B. infantis group (D), the DSS + B. infantis + anti-PD-L1 group (E), the DSS + anti-PD-L1 group (F); G: Statistical chart of 
the numbers of CD4+, CD25+, and Foxp3+ cells. Data are presented as mean ± SD, and the comparisons among each group were analyzed by one-way analysis of 
variance. Statistical significance was set as P < 0.05. PD-1: Programmed cell death 1; PD-L1: Programmed cell death ligand; DSS: Dextran sulfate sodium; B. 
infantis: Bifidobacterium infantis; Foxp3+: Forkhead box protein 3+; CD: Cluster of differentiation; SSC: Side scatter; FSC: Forward scatter; FL: Fluorescence; APC: 
Allophycocyanin; FITC: Fluorescein isothiocyanate; H: Height.

DISCUSSION
The specific pathogenesis of IBD remains unclear; however, abnormal inflammatory responses and 
continuous inflammatory damage to the intestine are recognized as the basic mechanisms of IBD 
pathogenesis[24,25]. Intestinal immunity is a complex and interactive process, involving several 
immune factors such as intestinal mucosal immunity, T cells, cytokines, and intestinal microecology
[26]. The intestinal mucosal immune system is responsible for monitoring the intestinal microbiota and 
surface antigens[27], presenting antigens to CD4+ T cells, promoting the interaction between PD-1 and 
PD-L1, establishing immune tolerance, and preventing the occurrence of autoimmunity. Several inflam-
matory mediators including interferon γ, tumor necrosis factor α, IL-10, and other cytokines, are 
involved in the pathogenesis of DSS colitis, suggesting that inflammatory immune responses play a 
critical role in the pathogenesis of IBD[28-30].

A recently discovered immunostimulatory molecule, PD-1 interacts with its ligand PD-L1 to regulate 
T cell-mediated immunity and induce immune tolerance, thereby playing a critical role in autoimmune 
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Figure 3 Effects of Bifidobacterium infantis and programmed cell death ligand inhibition on the proportion of splenic CD4+, CD25+, and 
forkhead box protein 3+ cells. A: The strategy of CD4+, CD25+, and forkhead box protein (Foxp) 3+ cells; B-F: Flow cytometry results for the the control group 
(B), the DSS model group (C), the DSS + B. infantis group (D), the DSS + B. infantis + anti-PD-L1 group (E); and the DSS + anti-PD-L1 group (F); G: Statistical chart 
of the numbers of CD4+, CD25+, and Foxp3+ cells. Data are presented as mean ± SD, and the comparisons among each group were analyzed by one-way analysis of 
variance. Statistical significance was set as P < 0.05. PD-1: Programmed cell death 1; PD-L1: Programmed cell death ligand; DSS: Dextran sulfate sodium; B. infantis
: Bifidobacterium infantis; Foxp3+: Forkhead box protein 3+; CD: Cluster of differentiation; SSC: Side scatter; FSC: Forward scatter; FL: Fluorescence; APC: 
Allophycocyanin; FITC: Fluorescein isothiocyanate; H: Height.

diseases (such as IBD), tumor immunity, and the acceptance of transplanted organs. Studies have shown 
that PD-1 knockout results in autoimmune diseases in animal models[31-33]. Activation of the PD-
1/PD-L1 signaling pathway can induce the differentiation of Tregs[34] and the release of cytokines, 
such as IL-10 and TGF-β1, to inhibit the activation and proliferation of reactive T cells, thus maintaining 
intestinal immune tolerance. Additionally, the inhibition of the PD-1/PD-L1 pathway may reduce the 
proportion of Tregs[35]. These findings indicate that PD-1/PD-L1 signaling plays a critical role in 
immune tolerance[36]. In this study, we found that PD-L1 inhibition did not alter the PD-1 protein and 
mRNA levels in the intestine of DSS-induced mice, suggesting that PD-L1 did not affect the 
transcription or translation of PD-1 in the intestine of the IBD mouse model. However, although the 
expression of PD-1 mRNA in the intestinal tracts of DSS mice significantly decreased, the expression of 
PD-1 protein did not change after B. infantis administration. We, therefore, speculate that PD-L1 
inhibition may indirectly inhibit the B. infantis-induced PD-1 gene transcription, but not the post-
transcriptional modification and translation of PD-1 protein. This transcriptional inhibition of PD-1 may 
be due to a negative feedback mechanism caused by the high PD-1 protein levels. Further studies are 



Zhou LY et al. Regulation of PD-1/PD-L1 pathway in IBD

WJG https://www.wjgnet.com 3172 July 14, 2022 Volume 28 Issue 26

Figure 4 Effects of programmed cell death ligand inhibition on the expression of interleukin-10 and transforming growth factor β 1. A: 
Western blot showing interleukin (IL)-10 and transforming growth factor β (TGF-β) 1 protein expression; B-E: Statistical maps of the differences in IL-10 protein 
expression (B), TGF-β1 protein expression (C), IL-10 mRNA expression (D), and TGF-β1 expression (E). Data are presented as mean ± SD, and the comparisons 
among each group were analyzed by one-way analysis of variance. Statistical significance was set as P < 0.05. PD-1: Programmed cell death 1; PD-L1: Programmed 
cell death ligand; DSS: Dextran sulfate sodium; B. infantis: Bifidobacterium infantis; IL: Interleukin; TGF-β: Transforming growth factor β; GAPDH: Glyceraldehyde-3-
phosphate dehydrogenase; mRNA: Messenger ribonucleic acid.

needed to determine how PD-L1 inhibition suppresses the transcription and translation of PD-1 and the 
underlying mechanism of action of the effect of B. infantis on PD-1 after PD-L1 inhibition.

B. infantis can be used to treat IBD by regulating the intestinal microbiota, alleviating inflammation, 
and regulating the immune response. B. infantis can reduce the intestinal wall permeability, edema, and 
neutrophil infiltration in IBD mice, and alleviate intestinal inflammatory responses[37]. We have 
previously shown that a combined administration of B. infantis with Clostridium butyricum increases the 
abundance of probiotic bacteria (such as members of the genera Bifidobacterium and Lactobacillus) in the 
intestinal microbiota of patients with IBD, reduces the prevalence of enterococci, improves clinical 
symptoms, and promotes the healing of colonic mucosa[38]. B. infantis also plays an important role in 
immune regulation by promoting the proliferation of Tregs[39] and increasing the expression of IL-10 
and TGF-β1. In vivo and in vitro experiments have revealed that B. infantis can significantly accelerate the 
differentiation of CD4+ T cells into Tregs by inducing the maturation of resistant dendritic cells and 
further inhibiting the inflammatory response induced by reactive T cell activation. Furthermore, we 
have previously revealed that, compared to the observations in normal mice, the number of CD4+, 
CD25+, and Foxp3+ T cells in the blood and spleen of DSS mice and the expression of Foxp3 mRNA in 
their intestines showed a decrease, suggesting that the differentiation and proliferation of Tregs may be 
correlated to the pathogenesis of IBD[40]. The number of Tregs in the colon was reported to be related to 
the intestinal microbiota. Treg populations in the colons of sterile mice are significantly low; however, 
feeding sterile mice with feces collected from specific pathogen-free mice significantly increases the 
number of Tregs in the colon[41], indicating that Treg population is dependent on the intestinal 
microbiota. In patients with IBD, the proportion of normal intestinal bacteria decreases, resulting in 
intestinal microbiota-associated disorders[42]. Therefore, improving the composition of the intestinal 
microbiota can help increase the number of Tregs; however, further studies are needed for the 
elucidation of the underlying mechanism. In the present study, we found that B. infantis promotes the 
proliferation of CD4+, CD25+, and Foxp3+ T cells in the blood and spleen, as well as the expression of 
Foxp3 mRNA in the intestine. PD-L1 inhibition significantly reduced the numbers of CD4+, CD25+, and 
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Foxp3+ T cells in the blood and spleen, and decreased the expression of Foxp3 protein and mRNA in the 
intestine. Therefore, B. infantis promotes Treg proliferation by activating the PD-L1/PD-1 pathway.

In addition, our results indicate that B. infantis promoted the mRNA expression of IL-10 and TGF-β1 
in the mouse intestine. PD-L1 inhibition significantly reduced the protein and mRNA expression levels 
of IL-10 and TGF-β1 in the intestine. These results further indicate that B. infantis affected IL-10 and 
TGF-β1 expression through the PD-1/PD-L1 pathway. Notably, Tregs mainly secrete TGF-β1 and IL-10 
to inhibit inflammatory responses. Further studies are needed to confirm the immunosuppressive 
effects of B. infantis in patients with IBD. Additionally, Francisco et al[20] found that PD-L1 can 
downregulate Protein kinase B (Akt), mammalian target of rapamycin (mTOR), and extracellular 
regulated protein kinases (ERK2), while upregulating phosphatase and tensin homolog deleted on 
chromosome ten (PTEN) expression in Tregs; however, whether B. infantis can accelerate the differen-
tiation and proliferation of Tregs by activating the PD-1/PD-L1 pathway and regulating Akt, mTOR, or 
PTEN expression requires further investigation.

CONCLUSION
In conclusion, B. infantis may accelerate the proliferation of CD4+, CD25+, and Foxp3+ T cells in the 
spleen and peripheral blood, and the expression of Foxp3 in the intestine by activating the PD-1/PD-L1 
signaling pathway. It can also promote the expression of IL-10 and TGF-β1 to reduce the intestinal 
inflammatory response, which has a therapeutic effect on IBD mice. We aim to further investigate the 
role of the PD-1/PD-L1 pathway in IBD and the possible therapeutic effect of B. infantis on patients with 
IBD in future studies.

ARTICLE HIGHLIGHTS
Research background
The immune-inflammatory response plays an important role in the pathogenesis and development of 
inflammatory bowel disease (IBD). Bifidobacterium infantis (B. infantis) can repair the acute intestinal 
mucosal injury and maintain autoimmune tolerance in mice with IBD.

Research motivation
The specific mechanism of action of B. infantis in the treatment of IBD is unclear. Understanding this 
underlying mechanism will help in the treatment of IBD.

Research objectives
To explore if B. infantis can promote regulatory T cell Treg differentiation through the programmed cell 
death 1 (PD-1)/PD ligand (PD-L1) pathway to promote the expression of forkhead box protein 3 
(Foxp3), interleukin (IL)-10 and transforming growth factor β (TGF-β) 1, and reduce the inflammatory 
response.

Research methods
We blocked the expression of PD-L1 in the intestine and performed western blotting and real-time qPCR 
to observe the effects of B. infantis on PD-1, Foxp3, IL-10, and TGF-β1. Flow cytometry was used to 
examine the changes in the differentiation of CD4+, CD25+, and Foxp3+ cells in the blood and spleen after 
blocking PD-L1.

Research results
PD-L1 inhibition reduced the promoting effects of B. infantis on intestinal PD-1, Foxp3, IL-10, and TGF-β
1. The promoting effect of B. infantis on the differentiation of CD4+, CD25+, and Foxp3+ cells was also 
reduced.

Research conclusions
B. infantis mediates Foxp3 expression through the PD-1/PD-L1 pathway, thereby promoting Treg differ-
entiation and improving IL-10 and TGF-β1 expression to reduce the immune and inflammatory 
response in IBD. B. infantis may act as a therapeutic agent for IBD.

Research perspectives
To explore the mechanism of action of B. infantis in the treatment of IBD at the cellular level. Further 
experiments are essential to determine whether B. infantis inhibits the immune response through the 
PD-1/PD-L1 pathway in the patients with IBD.
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