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Supplementary material 

(1) Copyright permission for Figure 2  

Please refer to the Creative Commons Attribution 4.0 International license, which the 

authors release their figure under. This expressly allows reproductions and modifications 

without permissions. For further questions, you may consult the CC documentation 

and/or click the link:  https://commons.wikimedia.org/wiki/File:201405_liver.png 

 

Attribution 4.0 International (Attribution 4.0 International (CC BY 4.0) 

This is a human-readable summary of (and not a substitute for) the license. Disclaimer. 

You are free to: 

•    Share — copy and redistribute the material in any medium or format 

•    Adapt — remix, transform, and build upon the material 

•    for any purpose, even commercially. 

•    The licensor cannot revoke these freedoms as long as you follow the license terms. 

  

(2) Supplementary contents 

Image preprocessing 
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As shown in Supplementary Figure 4, all US images were preprocessed to 

remove any image regions outside of the actual scan area and to also detect 

and split images depicting dual US beams. The liver ultrasound image 

preprocessing pipeline includes 3 steps: image deidentification, background 

removal, and dual image detection. In the first step, ultrasound images were 

converted from the DICOM files to PNG files and cropped slightly, to remove 

protected health information in the DICOM headers and on the boundary of 

the images. Then in the second step, the most frequent pixel intensity value 

less than 50 was calculated to identify the background for each ultrasound 

image, which was then removed. To further crop out the background, for each 

image after filtering, the largest connected component (LCC) was calculated, 

and the image was cropped by the smallest square which can hold the LCC. 

By the end of this step, only the area within the ultrasound region was kept 

for each image. It is common to see that two ultrasound beams are combined 

in one saved image, so in the third step, we detect whether dual beams exist 

in one file. The image was first filtered by the Canny edge filter[1], so only 

edges were kept, and then a Hough filter[2] was applied to detect the top 8 line 

segments in the edge map in order to find the borders of the US beams. The 

intersections between the lines were then calculated, and if an intersection 

was found that lied near the horizontal center of the image, the image was 

considered a dual-beam image. This process can be somewhat noisy. 

However, in a US study there are typically many images of the same type. 

Therefore, we perform dual-beam detection for each image individually, then 

we aggregate the results across all images in a study using majority voting. If 

the majority of images were found to have a dual beam, we split all images in 

the study using the average intersection location. In Figure 5, an example of a 

dual-image file is presented, and the intersection point (yellow point in Step 

3.b) was used to split the image. For all evaluation datasets, i.e., HP-U, TM, 

and HP-T datasets, all images were manually verified as being preprocessed 

correctly. 

 
Image selection 
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We are interested in investigating performance and reliability across 

viewpoints. Thus, for all our datasets, we only included US images from the 

viewpoints shown in Figure 1, which can be labelled as a. left lobe 

longitudinal, b. left lobe transverse, c. right lobe intercostal, d. lower right lobe 

intercostal (depicting liver/kidney contrast), e. subcostal depicting 

liver/kidney contrast, and f. subcostal with hepatic veins views. For the 

prospective TM dataset, we aimed to acquire two US images for each of the 

six viewpoints of Figure 1, except for the right lobe intercostal viewpoint, 

where we aimed to acquire four. Occasionally conditions did not allow us to 

collect certain viewpoints. For HP-U, and HP-T, we only included studies 

that had >=10 images of any of the studied viewpoints. As shown in Figure 1, 

we categorized these six viewpoints into four view groups: left liver lobe (LLL), 

right liver lobe (RLL), liver/kidney contrast (LKC), and subcostal (SC). 

Categorizing the view for each image is not necessary for the 

developmental datasets (BD-L and BD-V), as the DL algorithm just trains on 

each image independently without considering the view. However, even 

though the specific view for each image need not be categorized, ideally the 

training set only includes images from the four view groups. Because the BD-L 

and BD-V big-data datasets were extracted directly from the CGMH PACS, 

their US studies may contain images unsuited for liver steatosis analysis, e.g., 

images of organs other than the liver, liver viewpoints other than those of 

Figure 1, poor quality images, and even non-US images. So that these non-

qualifying images did not impact the training of our DL model, we applied an 

additional filtering step to remove as many of these images as possible. Given 

the scale of data, it was not feasible to perform this filtering manually. Instead, 

we performed this semi-automatically by training a binary DL classifier, using 

the PyTorch library with hyper-parameters listed in Supplementary Table 4. 

We first randomly selected 44 US studies (696 images) from BD-L, and 

manually identified the corresponding US images as “qualifying”, i.e., 

belonging to one of the liver viewpoints of Figure 1, or “non-qualifying”. We 

also supplemented the positive training examples using the images within the 

HP-U and TM datasets. We then measured the sensitivity and specificity of the 
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trained binary classifier using a mini-validation dataset of 175 images from 

BD-L and chose the operating point corresponding to 95% specificity. Note, 

this filtering process was only used to clean the big-data cohorts and was not 

used for any of the evaluation datasets. 

 

Training Steatosis Assessment DL Algorithm 

Using the images from BD-L, we trained a DL classifier using the 2D US 

diagnoses extracted from the CGMH records. We opted for the ResNet family 

of DL classifiers[3] given their ubiquity and performance in both natural 

imaging and medical imaging tasks. The ResNet family of DL classifiers are 

2D convolutional neural networks[4] that use the concept of residual 

connections to reduce the problem of vanishing gradients and improves 

learning speed. Based on performance on the BD-V validation dataset, we 

determined that the ResNet-18 variant performed best. The ResNet-18 has the 

added virtue of being lightweight, reducing overfitting tendencies compared 

to alternative variants. The US diagnoses are ordinal labels ranging from 0 to 

3 corresponding to None; Mild; Moderate; and Seve[r5]e. steatosis 

Consequently, the learning task is an ordinal regression problem. We treat 

each image independently in training and follow the well-known binary 

decomposition approach to ordinal classification of Frank and Hall[6]. As 

shown in Figure 2, instead of directly regressing the images to a numeric scale 

or training a four-class classifier, we decompose the problem into three binary 

classification tasks: estimating the probability the image represents >= mild, 

>= moderate, or = severe steatosis. Practically, this means that a three-output 

classification head is used on top of the ResNet-18 backbone. Under this 

scheme, the scalar labels for None, Mild, Moderate and Severe would be, 

respectively, converted to (0,0,0), (1,0,0), (1,1,0), and(1,1,1) multi-label 

vectors. Training is then conducted using standard cross-entropy loss. After 

training, a simple transformation produces a continuous score[7] for each image 

that ranges from 0 to 1, with higher scores corresponding to more severe 

steatosis. For a single image, if the model confidences in the Frank and Hall 

labels are denoted 𝑦̂ 𝑖 , where𝑖 indexes whether the label is for >=mild, 
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>=moderate, or =severe, then the following formulation produces a severity 

assessment ∈ [0,1]: 
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𝑝  = ∑ 𝑦̂ 𝑖 /3.0, 

𝑖 
 

where 𝑝  represents the image-wise confidence. As Figure 2 indicates, during 

inference, after feeding the model individual images to obtain image-wise 

scores, we then take the mean of image-wise scores across each view group to 

produce a single score for each view group. Additionally, we can also 

produce an “All View Groups” score, which is the mean score across all view 

groups in the study. 

The hyper-parameters were selected to optimize our algorithm’s 

performance on BD-V. We use an ImageNet pretrained network[8], as that 

performed better than random initialization. The stopping criterion was the 

model checkpoint that performed best on BD-V, based on a rolling average of 

five epochs. Including the convolutional neural network architecture and 

model optimizer, other hyper- parameters that we tuned include initial 

learning rate, L2 regularization weight, image size and batch size. The details 

of these hyper-parameters are specified in Supplementary Table 5. We also 

applied an aggressive augmentation scheme to increase the variability in the 

image distribution presented to the network. These include additive Gaussian 

noise, brightness and contrast jittering, and random rotations. Each 

augmentation was applied on-the-fly to an image with a 50% probability. We 

also executed an aggressive cropping augmentation. Finally, all images were 

resampled to 256x256 pixels before being inputted into the deep neural 

network. 

 
More Details on the Reliability Study 

 
 

Repeatability Study (Experiment 1) 

 
 

We used TM and HP-U to assess how many images are needed per view 

group to achieve repeatability. Note, for the TM dataset we randomly selected 
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only one US study for each patient to avoid sampling the same patient more 

than once. Typically, to calculate repeatability one simply acquires repeated 

measurements and performs an accepted repeatability metric. However, in 

our case each measurement can itself consist of the mean measurement across 

several image-wise scores. For example, if we are interested in the 

repeatability when averaging the score across three images to calculate a view 

group score, then two view-group measurements would require acquiring six 

images. This is an onerous data collection requirement. Instead of doing this, 

we simply first calculate the within-subject standard deviation, 𝑠, of the 

image-wise scores. We do this for each US study, which gives us a set of 𝑠 

values across different mean severity measurements. If we are then taking the 

mean across 𝑘 images to obtain a view-group score, the resulting 

within-subject standard deviation is simply √1/𝑘 × 𝑠 . Finally, the within-

subject standard deviation of differences between repeated measurements can 

be estimated as 𝑠𝑘 = √2/𝑘 × 𝑠. The advantage of such an 

approach is that the within-subject standard deviation can be calculated for 

any 𝑘 without requiring the collection of more images. 

 
As advocated by Bland and Altman[9,10], these within subject standard 

deviations were then graphed across different view-group steatosis scores. 

Typically the repeatability coefficient (RC) could then be calculated using a 

mean 𝑠𝑘 value across all US studies[10]: the difference between two repeated 

measurements should be within the RC value for 95% of the US studies. 

However, because 𝑠𝑘 is not uniform (typically greater variability at moderate 

steatosis levels), a uniform RC is not appropriate[10]. Instead, we modelled the 

heteroskedasticity by regressing the within-subject standard deviation on 

mean severity scores[10,11] using a cubic regression. We chose a cubic 

regression because there is a skew in the distribution of 𝑠𝑘 values (see 

Supplementary Figure 1). We then used the worst-case RC value (max RC) as 
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a summary statistic, with 95% confidence intervals computed using percentile 

bootstrap (1000 bootstrap samples)[12]. We conducted this for k = {1,2,3,4} and 

for every view group. 

 
Cross-Scanner Agreement (Experiment 2) 

 
 

We evaluated agreement across scanners using the TM dataset, which consists 

of multiple studies taken on the same day of the same patient. A Bland-

Altman analysis[9,10] was performed for assessing cross-scanner agreement. 

This was simpler than what was done for repeatability, since for a chosen 

view group we just computed the mean score across all available images in a 

study. However, based on the repeatability measurements of Experiment 1, 

we only included view group scores with >=3 images. Thus, for two studies of 

the same patient across two different scanners, there are only two 

observations to compare. We calculated the bias and LOAs, where the latter 

are the limits by which 95% of the disagreements fall under[10]. To deal with 

the same heteroskedasticity faced by the repeatability experiment, we 

regressed non-uniform limits of agreement (LOAs)[10] and used the maximum 

upper LOAs and minimum lower LOAs as summary statistics. 95% 

confidence intervals were computed using the same bootstrap approach as in 

Experiment 1. 
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(3) Supplementary Tables 

Supplementary Table 1a  Demographic Features of Each Cohort 
 

 BD-L BD-V TM HP-U HP-T 

Number of 

Patients 

2899 411 246 147 112 

Number of 

Studies 

17149 2364 733 147 112 

Number of Images 200654 27421 9215 1647 1996 

 
Mean Age at Scan 

 
56.5 

 
56.9 

 
56.6 

 
49.1 

 
50.0 

Male, n (%) 1752 

(60.4) 

248 

(60.3) 

157 

(63.8) 

93 

(63.3) 

66 

(58.9) 

Female, n (%) 1147 

(39.6) 

163 

(39.7) 

89 

(36.2) 

54 

(36.7) 

46 

(41.1) 

 
NBNC, n (%) 

 
353 

(12.2) 

 
51 

(12.4) 

 
56 

(22.8) 

 
103 

(70.1) 

 
63 

(56.2) 

HBV, n (%) 1050 

(36.2) 

145 

(35.3) 

125 

(50.8) 

35 

(23.8) 

46 

(41.1) 

HCV, n (%) 1322 

(45.6) 

190 

(46.2) 

65 

(26.4) 

9 (6.1) 3 (2.7) 

Others/Unknown, 

n (%) 

174 (6.0) 25 (6.1) 0 (0.0) 0 (0.0) 0 (0.0) 

 
Steatosis Grade 

     

US grade 0, n (%) 2529 

(87.2) 

352 

(85.6) 

N/A N/A N/A 

US grade 1, n (%) 314 

(10.8) 

50 

(12.2) 

N/A N/A N/A 

US grade 2, n (%) 50 (1.7) 8 (1.9) N/A N/A N/A 
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US grade 3, n (%) 6 (0.3) 1 (0.3) N/A N/A N/A 

 

Supplementary Table 1b. Additional Clinicopathologic Features of HP-U 

and HP-T 
 

  HP-U   HP-T  

 NBNC HBV HCV NBNC HBV HCV 

Number of 

Patients 

103 35 9 63 46 3 

Mean Age at 

Scan 

 
47.5 

 
51.8 

 
56.6 

 
48.8 

 
52.2 

 
43.2 

Male, n (%) 71 

(68.9) 

18 

(51.4) 

4 

(44.4) 

28 

(44.4) 

36 

(78.3) 

2 

(66.7) 

Female, n (%) 32 

(31.1) 

17 

(48.6) 

5 

(55.6) 

35 

(55.6) 

10 

(21.7) 

1 

(33.3) 

Mean BMI 27.5 25.4 27.1 25.7 25.8 27.5 

Mean AST 

U/L 

 
64.9 

 
64.1 

 
58.0 

 
115.4 

 
87.0 

 
71.7 

Mean ALT 

U/L 

110.2 92.7 76.4 213.4 151.8 128.0 

Mean PLT 

103/mm3 

246.9 201.4 207.3 248.8 186.2 179.7 

Steatosis 

Grade 

      

grade 0, n (%) 10 (9.7) 11 

(31.4) 

3 

(33.3) 

22 

(34.9) 

21 

(45.7) 

1 

(33.3) 

grade 1, n (%) 18 

(17.5) 

14 

(40.0) 

4 

(44.4) 

13 

(20.6) 

15 

(32.6) 

1 

(33.3) 



Bowen Li et al page 12 
 

 

grade 2, n (%) 31 

(30.1) 

4 

(11.4) 

0 (0.0) 6 (9.6) 8 

(17.4) 

0 

(0.0) 

grade 3, n (%) 44 

(42.7) 

6 

(17.1) 

2 

(22.2) 

22 

(34.9) 

2 (4.3) 1 

(33.3) 

Abbreviation: BD-L (big data learning group); BD-V (Big data validation 

group); HP-U (Histopathology Unblinded Test Group); TM (trimachine 

group); HP-T (Histopathology blinded Test Group); AST (aspartate 

aminotransferase); ALT (alanine aminotransferase); HBV (hepatitis B); HCV 

(hepatitis C); NBNB (non-HBV, non-HCV and excluded other liver diseases, 

E.g. alcoholic, autoimmune, etc); PLT (platelet) 

 
 

Supplementary Table 2 Scanner brands, number of studies, and time 

ranges (if information is available in de-identified DICOM headers) 
 

 

Scanner Brand 

BD-L, BD-V HP-U HP-T 

St 

ud 

ies 

Time 

Range 

St 

ud 

ies 

Time 

Range 

St 

ud 

ies 

Time 

Range 

ATL: HDI 5000  
28 

65 

 
1/3/2011 – 

4/13/2015 

 

-- 

 

-- 

 

16 

3/18/201 

1 – 

9/2/2014 

GE Healthcare:  11/11/201     

LOGIQ E9  
2 

4– 

11/14/201 

 
-- 

 
-- 

 
-- 

 
-- 

  4     

GE Healthcare: 

LOGIQ S8 

 
19 

8/29/2012 

– 9/5/2012 

 
-- 

 
-- 

 
-- 

 
-- 

Aloka Medical,Ltd.: 

SSD 5500 

42 

73 

1/3/2011 – 

10/17/201 

 
-- 

 
-- 

 
2 

5/2/2012 

– 
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4 3/19/201 

3 

Hitachi Medical 

Corporation: HI 16 

VISION Avius 

Hitachi Medical 

Corporation: HI 20 

VISION Preirus 

Philips Medical 

Systems: EPIQ 7G 2 

 

Philips Medical 

Systems: HD15 
4 

Philips Medical 

Systems: iU22 88 

8/27/2012 

– 

8/31/2012 

7/18/2012 

– 

9/25/2018 

11/21/201 

4 – 

7/24/2018 

11/17/201 

4 – 

11/20/201 

4 

 
 

1/3/2011 – 

 
 

-- -- -- -- 

 
 

 
-- -- -- -- 

 
 

 
-- -- -- -- 

 
 
 
 

-- -- -- -- 

 
 

9/9/2011 
11/27/201 

– 

 
 

 
Siemens: S2000 

 
 
 
 

SuperSonic 

7 
27 9/28/2018 

 
 

 
19 1/6/2011 – 11 

3 9/28/2018 7 

 
 

5/14/2012 

4 – 12 

6/19/2019 

 
 

7/12/2012 

– 78 

9/26/2019 

9/4/202 

0 

8/14/201 

2 – 

1/29/202 

1 

Imagine SA: 72 

Aixplorer 

– 

7/24/2012 

-- -- -- -- 

Toshiba MEC US: 
31 

TUS-A300 
45 

11/20/201 

4 – 23 

9/28/2018 

7/14/2015 

– 4 

7/2/2019 

6/9/2020 

– 

12/16/20 
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      20 

Toshiba MEC: 

Xario 

 

26 

8/24/2012 

– 

8/31/2012 

 

-- 

 

-- 

 

-- 

 

-- 

Unknown *  
49 

1/4/2011- 

9/28/2018 

 
-- 

 
-- 

 
-- 

 
-- 

* Unknown: Toshiba SSA-370A or Toshiba SSA-700A, the exact model used 

was not recorded. 

 

Supplementary Table 3 Performance Statistics for All Experiments 

Described in This Article. All experiments evaluated the same model, 

trained on the BD-L dataset. 

ID Experiment description Result statistics 

 

 
1 

Estimate repeatability across view 

groups and different numbers of 

images per view group using two TM 

and HP-U cohorts 

 
Max repeatability 

coefficient (RC), RC 

graphs 

 

 
2 

 

Estimate consistency across scanners 

and view groups using TM cohort 

Bias, upper and lower 

limits of agreement, 

Bland-Altman 

graphs, % Agreement 

 

 
3a 

 
Estimate diagnostic performance 

across views using histology proven 

cohort HP-U 

AUCROC 

(fatty % >=5%; >=33%; 

and >=66%), ROC 

Curves, Accuracy 

 

 
3b 

Compare diagnostic performance of 

DL model to FibroScan using studies 

with associated FibroScan scores 

from the HP-U cohort 

AUCROC 

(fatty % >=5%; >=33%; 

and >=66%), ROC 

curves, Accuracy 

 

 
4a 

 
Estimate diagnostic performance 

across views using histology proven 

cohort HP-T 

AUCROC 

(fatty % >=5%; >=33%; 

and >=66%), ROC 

curves, Accuracy 
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Abbreviation: BD-L (big data learning group); BD-V (Big data validation 

group); HP-U (Histopathology Unblinded Test Group); TM (trimachine 

group); HP-T (Histopathology blinded Test Group). 

 
 

Supplementary Table 4 Description and values of all hyperparameters and 

properties of the image quality binary classifier. This deep learning (DL) 

model was used to automatically filter out non-qualifying images from the 

BD-L and BD-V dataset. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abbreviation: BD-L (big data learning group); BD-V (Big data validation 

group); 

Hyperparameter Description Value 

Network 

architecture 

Deep neural network layout ResNet-18 

Image size Size of image as the network input (in pixel) 256×256 

Maximum 

Epochs 

Maximum number each image is shown to 

the network during training 

100 

Graphics 

Processing Unit 

 
Graphics processing unit hardware 

 
NVIDIA 

Titan V 

Initial Learning 

Rate 

Network learning rate during training 0.0001 

L2 

Regularization 

Weight decay (L2 penalty) 0.0005 

Batch Size Number of images processed in parallel 16 

Solver Optimizer to update weights and biases SGD 
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Supplementary Table 5 Description and values of all hyperparameters and 

properties of the deep learning workflow for steatosis severity assessment 

Hyperparameter Description Value 

Network 

architecture 

Deep neural network layout ResNet-18 

Image size Size of image as the network input (in pixel) 256×256 

Maximum 

Epochs 

Maximum number each image is shown to 

the network during training 

120 

Optimization 

Algorithm 

Stochastic gradient descent  

Graphics 

Processing Unit 

Graphics processing unit hardware NVIDIA 

Titan V 

Initial Learning 

Rate 

Network learning rate during training 0.0005 

L2 

Regularization 

Weight decay (L2 penalty) 0.0001 

Batch Size Number of images processed in parallel 32 

Solver Optimizer to update weights and biases SGD 

Gaussian Noise Standard deviation upper bound 0.01 

Color Jittering Brightness/Contrast change upper bound 0.2 

Rotation Affine transformation rotation upper bound 10 

Degrees 

Scaling Affine transformation ratio bound [0.9, 1,1] 

Augmentation 

Probability 

The possibility to apply each augmentation 

technique to a single image 

50% 
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Supplementary Table 6 The max repeatability coefficient (RC) is tabulated 

across different view groups for the TM and HP-U datasets. Parentheses 

enclose bootstrapped 95% confidence intervals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abbreviation: LLL (left liver lobe); RLL (right liver lobe); LKC (liver/kidney 

contrast); SC (subcostal); HP-U (Histopathology Unblinded Test Group); TM 

(Trimachine Group) 

View 1 Image 2 Images 3 Images 4 images 

 
 
LLL 

 
0.46 

(0.42, 0.51) 

0.33 

(0.30, 

0.36) 

0.27 

(0.24, 

0.29) 

 
0.23 

(0.21, 0.26) 

 
 
RLL 

 
0.37 

(0.34, 0.40) 

0.26 

(0.24, 

0.28) 

0.21 

(0.20, 

0.23) 

 
0.18 

(0.17, 0.20) 

 
 
LKC 

 
0.53 

(0.47, 0.58) 

0.37 

(0.33, 

0.41) 

0.30 

(0.27, 

0.34) 

 
0.26 

(0.24, 0.29) 

 
 
SC 

 
0.46 

(0.42, 0.50) 

0.32 

(0.30, 

0.36) 

0.27 

(0.24, 

0.29) 

 
0.23 

(0.21, 0.26) 
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Supplementary Table 7 Literature review of works applying deep learning 

techniques for assessing hepatic steatosis using 2D US images. To be 

included, the works must be using deep learning models and only the deep 

learning results are highlighted here. 

 

Referen 

ce 

Referen 

ce in 

 

Byra et 

al.22 

 

Chen 

et al.20 

 

Cao et 

al.21 

 
Han et al.19 

Gumm 

adi et 

al.17 

 

Byra et 

al.14 

 

Biswas et 

al.15 

 
Ours 

Main 

Body 

Publicat 

22 20 21 19 17 14 15 

ion Year 2021 2020 2020 2020 2020 2018 2018 

Unclea 

Evaluati 

on 

Studies 

(case/co 

ntrol) 

 
 
 
 
 

Training 

135‡ 

 
 

41 

 
 
 
 

Leave-o 

ne-out 

cross 

 
 

240 

(138/10 

6) 

 
 

204 

(140/64) 

r 

patient 

or 

study- 

wise 

split 

Unclea 

r 

patient 

 
 

55 

(38/17)‡ 

 
 
 
 
 

Leave-o 

ne-out 

 
 

63 

(36/27) ‡ 

 
 
 

Ten-fold 

cross 

validation, 

 
 

 
147+112 

Studies 
validati 

on 

164 ? or 

study- 

wise 

split 

NAFL 

cross 

validati 

on 

 
Severely 

unclear if 
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* Based on 2D-US diagnosis; † Separate data splits for each cut-off; ‡ 

Cross validated 

Abbreviations: AUCROC: area under the curve of receiver operating 

characteristic; CNN: convolutional neural network; HBV: hepatitis virus B; 

HCV: hepatitis virus C; MRI PDFF magnetic resonance imaging derived 

proton density fat fraction; NBNC: non-hepatitis B/non-hepatitis C; RF: 

Radiofrequency; RLL: right liver lobe; LKC: liver kidney contrast; SVM: 

support vector machine 
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(4) Supplementary Figures 
 

 
 

 

Supplementary Figure 1 Repeatability coefficient (RC) plot across different 

2D US viewpoints. (A) to (E) represents LLL, RLL, LKC, SC, and “All View 

Groups” respectively. Repeatability is measured when taking the mean score 

across three images per view group. “All View Groups” represents the score 

after taking the mean each resulting viewpoint score to create one score for 

each study. 

Abbreviation: LLL (left liver lobe); RLL (right liver lobe); LKC (liver/kidney 

contrast); SC (subcostal); 
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Supplementary Figure 2 ROC analysis of HP-T (Individual view group 

setting). (A) to (E) shows ROC curves of the deep learning (DL) model for 

diagnosing hepatic steatosis grades on HP-T with LLL, RLL, LKC, SC, and 

“All View Groups”, respectively. 

Abbreviation: HP-T (Histopathology blinded Test Group); LLL (left liver lobe); 

RLL (right liver lobe); LKC (liver/kidney contrast); SC (subcostal); 
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Supplementary Figure 3 ROC analysis of HP-T (Complete view group 

setting). (A) to (E) shows ROC curves of the deep learning (DL) model for 

diagnosing hepatic steatosis grades on HP-T with LLL, RLL, LKC, SC, and 

“All View Groups”, respectively. 

Abbreviation: HP-T (Histopathology blinded Test Group); LLL (left liver lobe); 

RLL (right liver lobe); LKC (liver/kidney contrast); SC (subcostal); 
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Supplementary Figure 4 Liver ultrasound image preprocessing pipeline 

includes 3 steps: image deidentification, background removal, and dual image 

detection. In “Step 3.b”, the figure is showing the top 8 lines detected by the 

Hough transform (in blue, two lines are along the boundaries and might not 

be seen), and the detected intersection point (in yellow). 


