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Abstract
Poor healing of cutaneous wounds is a common medical problem in the field of 
traumatology. Due to the intricate pathophysiological processes of wound 
healing, the use of conventional treatment methods, such as chemical molecule 
drugs and traditional dressings, have been unable to achieve satisfactory 
outcomes. Within recent years, explicit evidence suggests that mesenchymal stem 
cells (MSCs) have great therapeutic potentials on skin wound healing and 
regeneration. However, the direct application of MSCs still faces many challenges 
and difficulties. Intriguingly, exosomes as cell-secreted granular vesicles with a 
lipid bilayer membrane structure and containing specific components from the 
source cells may emerge to be excellent substitutes for MSCs. Exosomes derived 
from MSCs (MSC-exosomes) have been demonstrated to be beneficial for 
cutaneous wound healing and accelerate the process through a variety of 
mechanisms. These mechanisms include alleviating inflammation, promoting 
vascularization, and promoting proliferation and migration of epithelial cells and 
fibroblasts. Therefore, the application of MSC-exosomes may be a promising 
alternative to cell therapy in the treatment of cutaneous wounds and could 
promote wound healing through multiple mechanisms simultaneously. This 
review will provide an overview of the role and the mechanisms of MSC-derived 
exosomes in cutaneous wound healing, and elaborate the potentials and future 
perspectives of MSC-exosomes application in clinical practice.
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Core Tip: The promotion of wound healing is an important obstacle in the treatment of trauma in clinic. 
Exosomes derived from mesenchymal stem cells (MSCs) may provide a novel remedy with advantages 
and prospects. Herein, we discuss the role and the underlying mechanisms via which MSC-derived 
exosomes improve cutaneous wound healing, and elaborate the potentials and future perspectives of MSC-
exosome application in clinical practice.
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INTRODUCTION
The skin, as our body’s barrier to the external environment, plays a crucial role in defense against 
surrounding challenges, such as ultraviolet rays in sunlight and pathogens. Additionally, the skin is 
crucial to our mental health due to its sensory perception and aesthetic maintenance functions. 
However, our skin is very vulnerable to trauma or burns and is prone to develop chronic wounds or 
ulcers under certain pathological conditions, such as diabetes mellitus[1]. Currently, the standard 
therapeutic strategy to promote wound healing is application of biologics, including growth factors and 
cytokines[2]. Nonetheless, since wound healing is a dynamic and complex process involving various cell 
types and crosstalk between cells and the extracellular matrix (ECM), the therapeutic effects of biologics 
are limited and unsatisfactory[2,3]. Therefore, novel curative paradigms for acute and chronic cutaneous 
wounds need to be explored.

Intriguingly, stem cell-based therapies emerge to show great potential for regeneration of damaged 
tissues in both preclinical and clinical trials[4-8]. Remedies based on stem cells have many advantages 
over conventional therapies based on growth factors or cytokine biologicals, as stem cells possess a 
higher ability of regeneration, and promote the healing process and regeneration in multifactorial ways. 
Particularly, mesenchymal stem cells (MSCs) are the major stem cell types that have shown definite 
therapeutic effects on a variety of tissue injuries[9]. MSCs are multipotent mesenchymal stromal cells 
with the capabilities of self-renewal and multi-lineage differentiation. They exist extensively in the body 
and can be obtained from many tissues such as bone marrow, adipose tissue, dental tissue, umbilical 
cord, etc. A large body of evidence has shown that MSCs derived from several tissues exhibit great 
therapeutic potentials for enhancing cutaneous wound healing and regeneration via the regulation of 
multiple processes, including cell migration and proliferation, angiogenesis, inflammation resolution, 
and ECM remodeling[10]. Nevertheless, the direct application of MSCs as a cellular therapy for tissue 
injuries still involves many limitations and obstacles. A non-negligible limitation is the risk of teratoma 
occurrence and immunogenicity, of which the incidence increases with the culture expansion or 
cryopreservation of cells[1,11]. Moreover, the extraction, transportation, and expansion of MSCs are 
invasive or time-consuming procedures that are also difficult to perform in clinic. From the cell delivery 
point of view, the majority of MSCs via systemic delivery (intravenous infusion) are entrapped in the 
lungs, resulting in few cells migrating through the pulmonary capillaries and reaching the target sites[9,
11]. Also, the survival, retention, and engraftment of MSCs in local application are limited. Notably, 
recent studies of the MSC therapeutic mechanism have revealed that the positive effects of MSCs on 
cutaneous wounds are predominantly mediated via paracrine actions rather than differentiation[12-14]. 
Thus, the application of MSC extracts may be a more feasible and practical paradigm than direct cellular 
delivery treatment. Recently, with advances in research on MSC-based therapy, MSC-derived 
extracellular vesicles (EVs), especially exosomes, have demonstrated promising results in cutaneous 
wound healing and skin regeneration. The application of exosomes has become a novel and cell-free 
therapeutic paradigm and been given high expectations due to their convenience in clinical practice.

In this review, we summarize the applications of MSC-derived exosomes in cutaneous regeneration 
and expound the underlying cellular and molecular mechanisms. We also explicate the future 
perspectives for their application in clinic, as well as latent problems to be solved.

https://www.wjgnet.com/1948-0210/full/v14/i5/318.htm
https://dx.doi.org/10.4252/wjsc.v14.i5.318
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EVs AND EXOSOMES
EVs are a heterogeneous population of lipid bilayer particles with different sizes, biogenesis, 
composition, and functions. They are secreted from most types of cells in the body and contain the 
components of the donor cells, including a variety of specific proteins, lipids, and nucleic acid molecules
[15]. Thus, to a certain extent, they inherit the functional properties of the parental cells and are 
considered important constituents in intercellular communication, as they are loaded with signal 
biomolecules and shuttle from donor cells to recipient cells[16-18]. According to their diameters or 
biogenesis, EVs are usually divided into three main subtypes, i.e. exosomes, microvesicles, and 
apoptotic bodies. Microvesicles and apoptotic bodies are vesicles derived from budding and pinching 
out of the surface of plasma membrane, while exosomes are vesicles derived from intracellular 
endosomes. Within recent years, exosomes as a special category of EVs, are more widely and deeply 
studied.

Exosomes are spherical lipid bilayer vesicles with distributed diameters ranging from 30-150 nm. The 
biogenesis of exosomes is through a series of membrane-trafficking processes[19]. Firstly, invagination 
of the plasma membrane or budding of intracellular organelle membranes gives rise to early 
endosomes. Secondly, intraluminal vesicles (ILVs) are generated as early endosomes invaginate inward, 
generating the so-called multivesicular bodies (MVBs). ILVs within MVBs can either degrade in the 
lysosome or undergo exocytosis when transporting with MVBs to fuse with the plasma membrane. 
Exosomes are generated when ILVs are secreted to the extracellular space[20]. The released exosomes 
can arrive at their target cells in a paracrine way or through the circulation and then be internalized by 
the recipient cells in the following ways: Ligand-receptor interaction; surface molecule-mediated 
endocytosis, micropinocytosis, or phagocytosis; or plasmatic membrane fusion with the recipient cells
[21]. Following the release of exosome enclosed contents in the recipient cytoplasm, alterations of 
intracellular signaling pathways occur in recipient cells to modulate cellular processes and functions. 
Thus, the basic biology of exosomes indicates that MSC-exosomes may contain MSC-specific 
components to exert specific effects on recipient cells, which are somewhat equivalent to the therapeutic 
effects of MSCs.

TRANSLATIONAL POTENTIALS AND REGULATORY ASPECTS OF MSC-EXOSOMES
Cell therapy has made great progress in clinical practice and a growing number clinical trials involving 
MSC-based therapy have reported therapeutic efficacy[22]. However, the application of exosomes as 
therapeutic biologics takes on many advantages over the whole MSCs[19,23]. Firstly, exosomes can be 
stored and transported at low temperatures for a longer duration without signicant loss in bioactivity 
than whole cells. Secondly, exosomes have better penetrating abilities to cross biological barriers, such 
as the blood brain barrier, and avoid entrapment in lter organs or tissues. Also, their lipid bilayer 
membranes can protect the bioactivity of content molecules in a sophisticated physiological 
environment. Thirdly, exosomes can be engineered to obtain specific properties and can be quantit-
atively administered to patients in clinic to obtain better clinical effects. Lastly, they are safer than cell 
transplantation therapy, with less risk of neoplastic transformation[24] and immune response activation
[25].

Exosomes are natural bi-layered lipid spheres possessing high skin penetration efficiency, similar to 
liposomal nanoparticles[26,27]. This enables topical administration of exosomes, rendering wound areas 
more receptive to the therapeutic exosomes[28]. Furthermore, delivered exosomes can also be 
chemotactic to the inflammatory or injured site when a distance exists between the administered area 
and the lesion center[29]. Additionally, with a variety of bioactive molecules inside, exosomes can exert 
their curative benefits through many different therapeutic mechanisms simultaneously, which leads to 
better biological effects than small molecular compounds.

Nevertheless, when we consider exosomes as biological agents in clinical application, there are a 
series of nonnegligible challenges in the regulatory and quality control aspects of exosome manufac-
turing. Due to the lack of standardizations in the methodology or procedures for the collection and 
isolation of exosomes, exosome products often differ in safety and quality aspects. Regarding the 
challenge of safety considerations, exosome manufacturing should follow clinical good manufacturing 
practice protocols like other pharmaceutical preparations to obtain clinical-grade exosome preparations. 
Besides, with the successful development and use of various serum-free media, the medium that do not 
contain animal serum is recommended for MSC culturing to avoid mixing of exogenous exosomes 
derived from animal serum. Also, bioengineering technology may be applied to modify exosome 
phenotypes or contents, which can add or subtract specific biological molecules possessed by exosomes 
to increase efficacy or reduce undesirable effects during the therapeutic course[30,31].

Homogeneity and quality control are also important considerations or challenges in the regulatory 
aspect. Exosome homogeneity cannot be attained with certainty as with chemically defined drugs, even 
exosomes from the same cell are heterogeneous. However, exosome heterogeneity does not preclude 
adoption of exosome products in clinical practice. A variety of experimental techniques can be used to 
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determine the mechanism of action of exosomes in therapy. We can subsequently regulate the major 
active ingredients within exosomes related to the mechanism of action to assure quality and potency
[32]. With a better understanding of the mechanism of action, we can identify the exact active 
ingredients and overexpress them to improve homogeneity and determine the quality control strategy 
of manufacturing. Moreover, screening exosomes with biomarkers, such as surface receptors, is also a 
method to obtain more homogenous exosomes and to enrich exosomes with higher efficacy[33]. 
Although the lack of standardizations in the methodology for the collection, isolation, and analysis of 
exosomes can affect the exosome contents and potency, we can still determine the mainly active 
contents responsible for therapeutic efficacy by inactivation assay. Additionally, once active contents are 
identified, we can use them to establish quality control as described above and determine the best 
methodology for the collection, isolation, and purification of exosomes[34].

The regulation and quality control of exosome products need further development, so there is still a 
long way to go before they can be authentically used in clinical practice. Yet this course needs to be 
based on in-depth exploration of the underlying mechanisms of action. Thus, in the following part of 
this review, we elaborate on the underlying mechanisms of MSC-derived exosomes in cutaneous wound 
healing and regeneration.

MECHANISMS OF MSC-EXOSOMES IN CUTANEOUS WOUND HEALING AND REGE-
NERATION
Cutaneous wound healing is a dynamic physiological process which is initiated when the normal 
anatomical structure or integrity of the skin are destructed. It is an intrinsic protective mechanism of the 
skin itself to ameliorate damage, restrain infection, and restore the anatomical structure and function. 
The typical cutaneous wound healing process can be summarized as a series of overlapping phases: 
Hemostatic phase, inflammation phase, proliferation phase, and remodeling phase[35]. During these 
phases, a series of orchestrated biological events sequentially occur: The damaged cutaneous tissue is 
activated to recruit various cell types involved in the following events; immune cells are chemoattracted 
to clear pathogens and damaged tissues; broblasts proliferate and produce ECM to support re-epithel-
ization; the newly produced ECM is remodeled to stabilize the wound sites[36]. It has been 
demonstrated in multiple wound healing models that exosomes obtained from various cell types exert 
beneficial effects on the whole process of wound healing, particularly in the inflammation, proliferation, 
and remodeling phases (Figure 1).

During the inflammation phase, neutrophils first infiltrate into the injury site to remove microbial 
pathogens and then undergo apoptosis, followed by macrophages infiltration, which engulf cellular 
debris, apoptotic neutrophils, and other apoptotic cells. Of note, macrophages play a distinctive and 
important role in the cutaneous regeneration process. Recent evidence has suggested that macrophages 
present two anti-functional phenotypes: Pro-inflammatory M1 phenotype and anti-inflammatory M2 
phenotype. Following injury, M1 macrophages can promote pro-inflammatory activities which are 
necessary for the protective actions of inflammation and eliminating damaged tissue and cells, while M2 
macrophages elicit anti-inflammatory activities, which facilitate tissue repair and regeneration[37]. 
However, excessive pro-inflammation activities, as well as inadequate anti-inflammatory activities, can 
lead to risks of developing chronic wounds or fibrosis. Evidence suggests that exosomes can elicit M2 
polarization through transferring microRNAs (miRNAs). He et al[38] reported that exosomes derived 
from bone marrow MSCs (BMMSCs) induced macrophage polarization toward the M2 phenotype; they 
further reported that the polarization was regulated by miR-223 derived from exosomes of MSCs, which 
targets pknox1. Additionally, human umbilical cord MSCs (hUCMSCs)-derived exosomes can regulate 
the inflammatory reaction of macrophages in burned rats through miR-181c[39]. The study showed that 
miR-181c could effectively suppress the toll-like receptor 4 (TLR4) signaling pathway, preserving the 
increased levels of tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) and the decreased levels of 
IL-10 in macrophages, which indicates M2 polarization. Particularly, the polarization effects of MSC-
exosomes can be enhanced under preconditioning by lipopolysaccharide (LPS). A study exploring the 
curative effects of exosomes derived from LPS pre-treated MSCs (LPS pre-exosomes) on wound healing 
inflammation has confirmed that LPS pre-exosomes have better immunotherapeutic potential and 
ability than untreated MSC-derived exosomes to promote M2 macrophage activation[40]. The enhanced 
effect is associated with the unique expression of let-7b in LPS pre-exosomes and the let-7b/TLR4/NF-
κB/STAT3/AKT regulatory signaling pathway in macrophages. Moreover, exosomes derived from 
adipose-derived MSCs (ADMSCs) have been proven to exert similar effects on macrophage 
polarization. In the study by Zhao et al[41], treatment of obese mice with ADMSC-derived exosomes 
lead to significant attenuation in adipose inflammation and obesity through M2 macrophage 
polarization. ADMSC-derived exosomes can promote M2 polarization through the transactivation of 
arginase-1 by exosome-carried active STAT3. Although this effect of ADMSC-derived exosomes was not 
expressed in the skin wound healing model, the results still indicate the promising role of ADMSC-
derived exosomes in the inflammation process of wound healing. Generally, macrophages are major 
inflammatory mediators in cutaneous repair, whereas some observations show that T-cells also play an 
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Figure 1 Mechanisms underlying the therapeutic effects of mesenchymal stem cell-derived exosomes on cutaneous wound healing. 
Mesenchymal stem cell (MSC)-derived exosomes contain a variety of proteins and nucleic acids and hold great potential for promoting cutaneous wound healing. 
Specifically, MSC-derived exosomes exert therapeutic effects through multiple mechanisms. They can inhibit inflammation via modulating macrophage polarization. 
Besides, during the proliferation phase, MSC-exosomes promote angiogenesis, as well as the proliferation and migration of fibroblasts. Furthermore, MSC-exosomes 
can improve extracellular matrix remodeling. As a result, MSC-derived exosomes have offered a new paradigm in the treatment of cutaneous wounds. ECM: 
Extracellular matrix; MSC: Mesenchymal stem cell.

important role in the inflammation modulating process[42]. Evidence suggested that MSC-exosomes can 
switch activated T-cells into the T-regulatory phenotype to suppress the inflammatory response[43]. 
Recently, studies have revealed that local application of exosomes can regulate the innate and adaptive 
immune networks as a whole, and better promote wound healing[44]. These indicate that MSC-
exosomes can exert multiple effects in the inflammation phase of wound healing. Yet, more detailed 
mechanisms underlying exosome-mediated inflammation modulation need to be clarified by future 
studies.

During the proliferation phase, mainly four regenerative episodes occur: Fibroblast proliferation, 
production of ECM components, re-epithelization and angiogenesis. Under permitted conditions 
created by the prior inflammation phase, the four episodes are orchestrated to regenerate new tissues 
and restore the morphology and function of the skin. A substantial body of evidence has shown that 
exogenetic exosomes have positive therapeutic effects on these four processes. In the in vitro study by 
Shabbir et al[45], MSC-exosomes could enhance the proliferation and migration of fibroblasts and 
increase tube formation by human umbilical vein endothelial cells, both in a dose-dependent manner. 
The effects were proven to be triggered by activations of intracellular signaling pathways involving 
AKT, ERK, and STAT3, which are known to be important in wound healing. The same results of human 
ADMSC-derived exosomes were verified in experiments by Choi et al[46] and Zhang et al[47]. In the 
study by Zhang et al[47], ADMSC-derived exosomes were shown to have positive actions on fibroblasts, 
which promote collagen deposition and expression of growth factors, such as basic fibroblast growth 
factor (bFGF) and transforming growth factor-β1 (TGF-β1), both in vitro and in vivo via modulating the 
PI3K/AKT signaling pathway. Apart from fibroblasts, BMSC-derived exosomes could also repress 
apoptosis of HaCaT cells (human immortalized epidermal cells) induced by hydrogen peroxide via the 
miR-93-3p/APAF1 axis[48]. Also, research demonstrated that ADMSC-derived exosomes could prompt 
proliferation and migration of HaCaT cells via Wnt/β-catenin signaling[49]. These indicate that MSC-
exosomes can accelerate the process of re-epithelization in the proliferation phase. In a more extensive 
study by Ren et al[50], the effects of ADMSC-derived microvesicles (ADMSC-MVs) were examined on 
fibroblasts, keratinocytes, and endothelial cells both in vitro and in vivo. Their research revealed that 
ADMSC-MVs promoted the proliferation, migration of these cells via AKT and ERK signaling pathways, 
resulting in upregulations of growth factors, such as vascular endothelial growth factor A, platelet 
derived growth factor A, epidermal growth factor, and FGF2, and enhancement of re-epithelialization, 
collagen deposition and neovascularization. Additionally, exosomes derived from other MSCs were also 
verified to be bioactive in the proliferation phase. Zhang et al[51] reported that hUCMSCs-derived 
exosomes could enhance re-epithelialization and cell proliferation in rat skin burn model via the 
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activation of the Wnt/β-catenin pathway. Meanwhile, heat stress-induced apoptosis was reduced by 
hUCMSC-derived exosomes via activation of the AKT pathway. Another study by Zhang et al[52] 
reported that exosomes derived from human induced pluripotent stem cell-derived MSCs (hiPSC-
MSCs) had similar effects with MSC-derived exosomes on the proliferation of fibroblasts and 
angiogenesis of endothelial cells. In a later study by Kim et al[53], hiPSC-MSC-derived exosomes could 
also promote re-epithelization by stimulating the ERK1/2 pathway. Other than exosomes derived from 
MSCs, Zhao et al[54] reported that exosomes derived from human amniotic epithelial cells (hAEC-
exosomes) could promote the proliferation and function of fibroblasts via miRNAs so as to accelerate 
wound healing. Although the results mentioned above highlight the therapeutic roles of exosomes 
derived from MSCs, the exact content of the exosomes that mediate these effects in the proliferation 
phase remains to be further identified.

As for the remodeling phase, the newly produced ECM is restructured and reorganized: The ECM is 
degraded by matrix metalloproteases (MMPs) and replaced by new ECM proteins; collagen Ⅲ is 
converted to collagen I; fibroblasts differentiate into myofibroblasts; and then scar tissue forms. 
Research have demonstrated that exosomes play an intriguing role in optimizing this process. For 
example, ADMSC-derived exosomes increase the expression of MMP-3 and the ratio of collagen III to 
collagen I so as to promote ECM remodeling in murine incisional wounds[55]. Moreover, ADMSC-
derived exosomes can inhibit the differentiation of fibroblasts into myofibroblasts to mitigate scar 
formation. Additionally, hUCMSC-derived exosomes were demonstrated to inhibit the differentiation of 
fibroblasts to myofibroblasts by inhibiting the TGF-β2/SMAD2 pathway through the transfer of 
miRNAs (miR-21, -23a, -125b, and -145), resulting in reduced scar formation in a skin-defect mouse 
model[56,57]. The same effects were observed in the study using exosomes derived from human 
amniotic fluid stem cells (hAFSCs), which showed that hAFSC-derived exosomes suppressed the 
excessive aggregation of myofibroblasts and ECM via inhibiting the TGF-β pathway[58]. Taken together, 
exosomes not only promote ECM synthesis in the proliferation phase, but also improve ECM 
remodeling in the late phase of wound healing to inhibit scar tissue formation.

Collectively, exosomes derived from a variety of MSCs, including BMMSCs, ADMSCs, hUCMSCs, 
hiPSC-MSCs, and hAECs, are demonstrated to have beneficial therapeutic effects on cutaneous wound 
healing through reducing inflammation, promoting re-epithelization and angiogenesis, and promoting 
proliferation and migration of fibroblasts, as well as enhancing ECM formation and remodeling. The 
above preclinical studies of MSC-exosomes in cutaneous wound are listed in Table 1.

EFFECTS OF MSC-EXOSOMES ON CUTANEOUS REGENERATION IN AGING AND 
DISEASE
Skin anti-aging
Another application of MSC-derived exosome in cutaneous regeneration is skin anti-aging. hUCMSC-
derived exosomes were tested on human skin tissues by Kim et al[59]. They discovered that the adminis-
trated exosomes were absorbed by the epidermis after 18 h and lead to increased collagen I and elastin 
expression levels in human skin after 3 days of treatment. In another study, iPSC-derived exosomes 
were used to treat aged human dermal fibroblasts (HDFs) induced by UVB (315 nm) irradiation or over 
passage, which reduced the damages of HDFs with increased expression of collagen I and reduced 
expression of natural senescence marker senescence-associated-β-galactosidase[60]. Moreover, exosomes 
derived from three-dimensional human dermal fibroblast spheroids (3D HDFSs) were compared with 
those derived from the monolayer culture of HDFs (2D HDFs)[61]. Furthermore, 3D HDFS-derived 
exosomes demonstrated better efficacy than 2D HDF-derived exosomes in collagen synthesis induction 
and decreasing MMP-1 expression by up-regulating the TGF-β/TNF-α ratio. Also, 3D HDFS-derived 
exosomes exhibited skin anti-aging properties in the nude mouse photoaging model. Similarly, at the 
molecular level, Bae et al[62] made an array analysis of mouse embryonic stem cell-derived extracellular 
miRNAs that are enclosed in exosomes. They screened out mmu-miR-291a-3p and proved it could 
inhibit cellular senescence via the TGF-β receptor 2 signaling pathway. Taken together, the evidence 
corroborates the positive effects of MSC-derived exosomes on skin rejuvenation and the potential 
application of MSC-derived exosomes in cosmetics.

Diabetic wound healing
Due to the high glucose environment and chronic inflammation conditions, patients with diabetes 
mellitus are often confronted with impaired wound healing, resulting in limb loss and disability. 
Considering their anti-inflammation and pro-proliferation properties, the application of MSC-derived 
exosomes in diabetic wound healing is a promising therapeutic strategy. It has been reported that the 
delayed healing of diabetic foot ulcers (referred to as DFUs) partly results from impaired function of 
endothelial progenitor cells (EPCs) in patients with diabetes mellitus. However, ADMSC-derived 
exosomes could promote the proliferation of EPCs and angiogenesis in a high glucose environment in 
vitro, and reduce the ulcerated area in DFU rats via increasing angiogenesis and growth factor 
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Table 1 Preclinical studies of mesenchymal stem cell-exosomes in cutaneous wound healing phases

Wound healing 
phase

Exosome cellular 
origin Model Functional effects Pathways Ref.

hBMMSCs; 
hJMMSCs

Mice dorsal skin 
defects

Macrophage M2 polarization miR-223 via pknox1 [38]

hUCMSCs Rat severe burn M2 polarization. Inflammation 
alleviation

miR-181c via TLR4 [39]

LPS-pretreated 
hUCMSCs

Rat diabetic 
cutaneous wound

M2 polarization Let-7b via TLR4/NF-
κB/STAT3/AKT

[40]

Inflammation

mBMMSCs Mice skin excision 
wound

Promote beneficial regulatory T cell 
responses and M2 polarization

M2/Th2/Treg responses [44]

hADMSCs Mice full-thickness 
incision wound

Promote fibroblast proliferation and 
migration; optimize collagen 
deposition

PI3K/Akt [47]

hUCMSCs Rat skin burn Enhance re-epithelialization and cell 
proliferation; reduce heat stress-
induced apoptosis

Wnt/β-catenin; AKT [51]

Proliferation

hiPSC-MSCs Rat dorsal skin 
wound

Accelerate skin cell proliferation and 
migration; promote collagen 
synthesis and angiogenesis

ERK1/2 [52,53]

hADMSCs Mice skin incisional 
wound

Mitigating scar formation; promote 
ECM reconstruction

ERK/MAPK [55]

hUCMSCs Mice full-thickness 
skin defects

Suppress myofibroblast differen-
tiation and scar formation

TGF-β/SMAD2 [56,57]

Remodeling

hAFSCs Rat full-thickness 
skin wound

Anti-fibrotic scarring; suppress the 
excessive aggregation of myofibro-
blasts and ECM

TGF-β [58]

BMMSCs: Bone marrow MSCs; ECM: Extracellular matrix; hADMSCs: Human adipose-derived MSCs; hAFSCs: Human amniotic fluid stem cells; 
hBMMSCs: Human BMMSCs; hiPSC-MSCs: Human induced pluripotent stem cell-derived MSCs; hJMMSCs: Human jaw bone marrow MSCs; hUCMSCs: 
Human umbilical cord MSCs; LPS: Lipopolysaccharide; mBMMSCs: Mice BMMSCs; MSCs: Mesenchymal stem cells; TGF-β1: Transforming growth factor-
β1; TLR4: Toll-like receptor 4.

expression, as well as reducing inflammation[63]. Geiger et al[64] reported that exosomes derived from 
human circulating fibrocytes could induce the proliferation and migration of keratinocytes and 
fibroblasts in diabetic mice, and accelerate diabetic wound closure in vivo. In the study performed by 
Dalirfardouei et al[65], exosomes derived from menstrual blood-derived MSCs were applied to full 
thickness excisional wounds in a diabetic mouse model, which reduced inflammation via promoting M2 
macrophage polarization, strengthened angiogenesis through upregulating VEGF-A expression, 
enhanced re-epithelialization via activation of the NF-κB signaling pathway, and reduced scar formation 
via decreasing the collagen I: Collagen Ⅲ ratio. Recently, Han et al[66] reported that BMSC-derived 
exosomes contained lncRNA KLF3-AS1, which could induce angiogenesis to promote wound healing in 
diabetic condition[66]. Above all, based on the beneficial effects of MSC-derived exosomes on wound 
healing, MSC-derived exosomes hold great potentials in diabetic wound therapy.

Ischemic wound healing
Chronic ischemic wounds are another challenging problem in trauma clinic with delayed wound 
healing and therapeutic difficulties. Due to ischemia and hypoxia, the healing process of ischemic 
wounds is inhibited, resulting in the inadequate curative effects of conventional treatments. Thus, 
exosome-based therapies, with multiple therapeutic benefits, have been tentatively applied in this 
disease area. In the study performed by Shi et al[67], exosomes loaded with TGF-β have been proven to 
enhance ischemic wound healing, which suggests a promising regenerative therapy. Another study by 
Cooper et al[68] showed that human ADMSC-derived exosomes could stimulate HDFs migration and 
enhance ischemic cutaneous wound healing. All these results provide prospects and theoretical basis for 
clinical trials of exosomes in ischemic wounds.

Taken together, these data suggest that MSC-derived exosomes not only promote healing of 
cutaneous wounds in normal condition, but also in diabetic and ischemic conditions, as well as skin 
regeneration in the aging process. To make MSC-derived exosomes more effective in treating cutaneous 
wounds in special conditions, exosomes isolated from pretreated MSCs were studied. For instance, 
exosomes isolated from pioglitazone-pretreated BMMSCs and hypoxia ADMSCs were both confirmed 
to induce high-quality healing of diabetic wounds[69,70]. These experiments expand the available scope 
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of application of exosomes in cutaneous wounds and suggest better sources of MSC-exosomes.

PERSPECTIVES FOR APPLICATION OF EXOSOMES IN CUTANEOUS WOUND HEALING 
AND REGENERATION
Notwithstanding the large body of evidence in the preceding sections that MSC-exosomes have positive 
effects on cutaneous wound healing in animal studies and preclinical trials, the data of exosomes in 
cutaneous wound healing from clinical studies is still inadequate. Exhilaratingly, a lot of meta-analyses 
demonstrate MSC-exosomes to be a potential and promising remedy for many acute and chronic 
diseases, including cutaneous wounds in pre-clinical studies[71-73], revealing the therapeutic effects of 
MSC-exosomes on inflammation and injury. These make successful clinical translation of MSC-
exosomes more hopeful in cutaneous wound healing. Moreover, a randomized double-blind controlled 
clinical trial by Kwon et al[74] demonstrated acne scars treated with human ADMSC-exosomes and 
fractional CO2 laser exhibited better improvement than the control treated group, which gave a broad 
hint that ADMSC-exosomes provide synergistic therapeutic effects on atrophic acne scar clinical 
treatments[74]. Therefore, there are positive prospects of MSC-exosomes for a promising future in 
clinical translation.

Once MSC-exosomes are translated into clinical practice, improving their therapeutic efficacy is an 
issue to be prospected. One of the methods is combining exosomes and biomaterials to exert synergistic 
functions. Recently, Wang and colleagues[75] reported the application of exosome-loaded biocompatible 
natural-based methylcellulose-chitosan hydrogels in severe wound models under diabetic conditions. 
The hydrogels acted as three-dimensional porous scaffolds to provide a favorable environment for cell 
proliferation and ECM remodeling. Specifically, based on the hydrogels, exosomes could be sustainably 
released for a long period of time and exert lasting curative functions for better effects. The 
transformation of biomaterials provides a more flexible form for the application of exosomes. For 
instance, MSC-exosome combined hydrogel[76] and adhesive ultraviolet shielding exosome-releasing 
dressing[77] were applied on diabetic wound models and elicited better therapeutic effects on wound 
healing and skin reconstruction. Another method is bioengineering the properties of exosomes, such as 
their cargos or surface molecular functions. The selected molecules with therapeutic value (such as 
miRNAs or drugs) can be loaded in exosomes to endow exosomes with exogenous efficacy[78]. Also, 
the surface of exosome can be modified with some functional molecules, such as aptamers to enable the 
transfer of engineered exosomes to target sites when administered systematically or locally, which can 
improve therapeutic efficiency. Together, these above strategies will enhance the therapeutic efficacy of 
exosomes in cutaneous wound healing and regeneration.

Despite many exciting prospects, we need to recognize that the clinical use of exosomes is still 
hampered by many safety concerns and consistent regulatory issues. The clinical translation process of 
MSC-exosomes is still in a long way and far from the foreseeable prospect. Thus, the use of exosomes in 
clinic is still far from being applied until these problems are better solved and perfected.

CONCLUSION
Taken together, MSC-derived exosomes, as a cell-free therapeutic paradigm, provide a novel promising 
option for cutaneous regeneration. Yet, more research is needed to further excavate the curative 
potentials of exosomes and make them more available and suitable for clinical application.
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