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Abstract
Liver cancer is the third leading cause of cancer-related death worldwide with 
primary type hepatocellular carcinoma (HCC). Factors, including carcinogens, 
infection of hepatitis viruses, alcohol abuse, and non-alcoholic fatty liver disease 
(NAFLD), can induce HCC initiation and promote HCC progression. The 
prevalence of NAFLD accompanying the increased incidence of obesity and type 
2 diabetes becomes the most increasing factor causing HCC worldwide. However, 
the benefit of current therapeutic options is still limited. Intrahepatic immunity 
plays critically important roles in HCC initiation, development, and progression. 
Regulatory T cells (Tregs) and their associated factors such as metabolites and 
secreting cytokines mediate the immune tolerance of the tumor microenvironment 
in HCC. Therefore, targeting Tregs and blocking their mediated factors may 
prevent HCC progression. This review summarizes the functions of Tregs in 
HCC-inducing factors including alcoholic and NAFLD, liver fibrosis, cirrhosis, 
and viral infections. Overall, a better understanding of the role of Tregs in the 
development and progression of HCC provides treatment strategies for liver 
cancer treatment.

Key Words: Hepatocellular carcinoma; Regulatory T cells; Alcoholic fatty liver disease; 
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Core Tip: Liver cancer is the third leading cause of cancer-related death worldwide. Hepatocellular 
carcinoma (HCC) is the primary type of liver cancer. Factors, including carcinogenic infection of hepatitis 
viruses, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD), can induce HCC initiation and 
promote HCC progression. The prevalence of NAFLD accompanying the increased incidence of obesity 
and type 2 diabetes becomes the most increasing factor causing HCC worldwide. However, the benefit of 
current therapeutic options is still limited. Intrahepatic immunity plays critically important roles in HCC 
initiation, development, and progression. Regulatory T cells (Tregs) and their associated factors such as 
metabolites and secreting cytokines mediate the immune tolerance of the tumor microenvironment in 
HCC. Therefore, targeting Tregs and blocking their mediated factors may prevent HCC progression. A 
better understanding of the role of Tregs in intrahepatic immunity is helpful to develop novel HCC 
treatment options.

Citation: Zhang CY, Liu S, Yang M. Regulatory T cells and their associated factors in hepatocellular carcinoma 
development and therapy. World J Gastroenterol 2022; 28(27): 3346-3358
URL: https://www.wjgnet.com/1007-9327/full/v28/i27/3346.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i27.3346

INTRODUCTION
Liver cancer is the third leading cause of cancer-related death worldwide with 8.3% of death ratio, 
following lung and colorectal cancers[1]. The most common type of primary liver cancer is hepato-
cellular carcinoma (HCC) and the second type is cholangiocarcinoma[2]. Factors, including carcinogens 
(e.g., aflatoxin B1), infection of hepatitis viruses, alcohol abuse, and non-alcoholic fatty liver disease 
(NAFLD), can induce HCC and promote HCC progression[3-5]. In addition, accompanying the 
increasing incidence of obesity and type 2 diabetes (T2D), NAFLD becomes an increasing factor that 
causes HCC worldwide[6,7].

Surgical resection is a curative treatment option for the early stage of HCC. However, most cases in 
HCC were found in the late stage. In addition, other minimally invasive local therapies, such as 
radiofrequency ablation and microwave ablation, and systemic therapy, such as tyrosine kinase 
inhibitors, are treatment options for patients who are not suitable for surgery[8]. Furthermore, immuno-
therapy by targeting checkpoint inhibitors [e.g., anti-programmed cell death protein 1 (PD-
1)/programmed death-ligand 1 (PD-L1) antibodies] shows benefits against advanced HCC in the clinic. 
A combination treatment by blocking both PD-L1 (e.g., atezolizumab) and vascular endothelial growth 
factor (VEGF) (e.g., bevacizumab) is one of the best first-line treatments for advanced HCC[9]. Other 
potential immunotherapy options including T cell-mediated therapy such as chimeric antigen receptor-
engineered T cells[10-12], peptide-based vaccines[13-15], and micro ribonucleic acids (miRNAs)-
mediated therapies[16], are undergoing investigations for HCC treatment.

Intrahepatic immunity including both innate and adaptive immune responses plays pivotal roles in 
the development and progression of HCC, especially for T cells[17]. Among them, the imbalance 
between effector CD4 and/or CD8 T cells and regulatory T cells (Tregs) induces immunotolerance and 
promotes HCC progression[18,19]. Factors impacting the balance of effector T cells and Tregs include 
gut microbiota, transforming growth factor-beta (TGF-β), and treatments such as trans-arterial 
chemoembolization[18-20], etc. The expression of cytokines such as interleukin (IL)-2, IL-5, interferon 
(IFN)-γ was increased with an increased ratio of cytotoxic T lymphocytes (CTLs)/Tregs with the 
treatment of Lenvatinib, a multiple kinase inhibitor, while the expression of T-cell immunoglobulin 
mucin-3 (Tim-3) and CTL-associated antigen-4 (CTLA-4) was decreased on Treg cells[21]. Therefore, 
modulating the Treg frequency and the expression of related cytokines are critically important for anti-
tumor immunotherapy.

In this review, functions of Tregs on HCC causing factors such as alcoholic liver disease (ALD), 
NAFLD, liver fibrosis, and cirrhosis are discussed. In addition, molecules mediated Treg functions and 
therapeutic options by targeting Tregs are summarized. Moreover, clinical trials by targeting Tregs to 
modulate immune response were analyzed.

TREGS IN CHRONIC LIVER DISEASE
Tregs in ALD
As immunosuppressive cells, Tregs play a pivotal role in chronic liver diseases, including ALD. For 
example, chronic-binge alcohol exposure in C57BL/6 mice induced the reduction of Treg cells, but 
increased T helper 17 cells (Th17) cells and the production of IL-17[22]. Treatment with ginsenoside F2 

https://www.wjgnet.com/1007-9327/full/v28/i27/3346.htm
https://dx.doi.org/10.3748/wjg.v28.i27.3346
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can ameliorate ALD by increasing the frequency of Foxp3+ Tregs and decreasing IL-17-producing Th17 
cells compared to control groups[23]. However, the molecular mechanism of how Tregs impact the 
progression of ALD except for modulation of liver inflammation remains unclear.

Tregs in NAFLD and nonalcoholic steatohepatitis
The balance Th17 cells/Tregs plays an essential role in metabolic diseases by regulating immune 
response and glucose and lipid metabolism[8]. The lower Treg (forkhead box P3+/FOXP3+) and higher 
Th17 cell (IL-17-producing cells) numbers were found in portal or periportal tract in livers of adult 
NAFLD patients, whereas more Tregs were shown in pediatric NAFLD patients[24]. In addition, severe 
liver inflammation was positively associated with intralobular expression of FOXP3 in pediatric patients 
but was positively associated with higher expression of IL-17 and lower expression of FOXP3 in adult 
patients, indicating the role of Tregs in NAFLD is age-dependent. Intrahepatic imbalance of Th17/Treg 
cells promotes the progression of NAFLD, accompanying higher expression of inflammatory cytokines 
such as IL-6, IL-17, and IL-23 in both serum and liver[25]. Feeding a high-fat diet (HFD) can impact the 
balance of Th17/Treg cells and Th1/Th2 cells of CD4 T cells in mesenteric lymph nodes (MLN). In 
addition, those CD4 T cells can potentially migrate into the liver to promote liver inflammation to result 
in NAFLD progression[26]. The effects of CD4 T cells in MLN on liver inflammation and fat accumu-
lation can be ameliorated by administration of antibiotics and probiotics, indicating an important role of 
gut microbiota in NAFLD pathogenesis[26].

Dywicki et al[27] showed intrahepatic Tregs were increased in high-fat high-carbohydrate (HF-HC) 
diet-induced nonalcoholic steatohepatitis (NASH) in BALB/c mice. In addition, depletion of adaptive 
immunity aggregated HF-HC diet-induced NASH in recombination activating 1-knockout BALB/c 
mice. Although Tregs showed an anti-inflammation effect in ALD[23], adoptive transfer of Tregs 
increased steatosis and serum level of alanine aminotransferase (ALT), indicating that Tregs enhance the 
progression of NAFLD[27]. Another study also showed that increasing Tregs in subcutaneous adipose 
tissue induced by adoptive transfer of Tregs from healthy C57BL/6J mice to high-fat HFD (HFHFD)-fed 
mice increased hepatic steatosis during NAFLD development[28].

Mechanistically, the formation of neutrophil extracellular traps during NASH progression can induce 
Treg differentiation from naïve CD4 T cells, which is dependent on Toll-like receptor 4 (TLR-4) and 
involved in NASH-HCC progression[29].

Tregs in liver fibrosis and cirrhosis
Progression of chronic liver disease, including ALD and NAFLD, can promote the development of liver 
fibrosis and its advanced stage liver cirrhosis. However, there are no currently available therapies that 
can treat or reverse liver cirrhosis. Deng et al[30] reported that co-infusion with human amniotic 
mesenchymal stromal cells (hAMSCs) and Tregs can prevent mild liver fibrosis. Tregs play a critical role 
in the secretion of hepatocyte growth factor (HGF) and cell differentiation of hAMSCs.

Furthermore, an imbalance of Th17 cells/Tregs was also shown in cirrhotic patients with hepatitis B 
virus (HBV) infection. The frequency of Tregs was reduced in peripheral blood, while the frequency of 
Th17 cells was increased, resulting in a decreased Treg/Th17 ratio as a potential diagnostic marker for 
decompensated liver cirrhosis[31]. Another study also showed that the frequencies of both Tregs and 
Th17 cells were increased in the blood of patients with HBV infection and cirrhotic livers but with a 
higher extent in Th17 cells, resulting in an increased ratio of Th17/Treg, compared to the control group
[32]. In addition, the mRNA levels of proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor 
(TNF)-α, as well as the protein expression of nuclear factor κB in the liver were significantly increased in 
HBV-infected liver and cirrhotic liver compared to healthy controls. Another study also showed that 
HBV infection can induce IL-8/C-X-C motif chemokine receptor 1/TGF-β signaling to provoke Treg 
polarization, resulting in suppression of anti-tumor immunity and enhance of HCC metastasis[33]. 
Moreover, the frequency of Tregs in blood and plasma levels of IL-35 were increased and positively 
related to viral load in HCV infected patients with cirrhosis and HCC[34].

Tregs in HCC
A meta-analysis showed that a higher infiltration of CD3 T cells, CD8 T cells, and natural killer cells was 
associated with better overall survival (OS), disease-free survival (DFS), and recurrence-free survival 
(RFS). In contrast, a higher infiltration of Tregs and neutrophils indicated lower OS and DFS[35]. 
Another report also showed that an increase of Tregs or a decrease of M1 macrophages (proinflam-
matory phenotype) were associated with a poor prognosis of HCC patients[36]. C-C chemokine receptor 
type 4 (CCR4)+Tregs are predominant Tregs that are recruited in tumor tissue of HCC associated 
infection of hepatitis viruses, which is associated with HCC resistance to sorafenib treatment[37]. The 
frequency of CD127low, CD25+, CD4+, Tregs was increased significantly in the peripheral venous blood of 
HCC patients compared to healthy controls[38]. In addition, the serum levels of TGF-β1 and IL-10 in 
HCC patients were positively associated with the Treg population in the blood, which were decreased 
post-operation and chemotherapy treatments. C-C motif chemokine ligand (CCL) 5 expression on 
circulating tumor cells in HCC patients can attract Tregs to induce an immunosuppressive environment, 
one of the mechanisms for CTC escaping immune surveillance[39].
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The expression of immune checkpoint proteins in the HCC microenvironment impacts Tregs and 
antitumor immunity. PD-L1+neutrophils, Tregs, and neutrophil to lymphocyte ratio were significantly 
increased in peripheral blood of patients with poorly differentiated HCC with a worse prognosis 
compared to that in patients with highly-moderately differentiated HCC[40]. Zhou et al[41] reported 
that tumor-associated neutrophils can induce the infiltration of the macrophages and Tregs from HCC 
mice or patients via producing CCL2 and CCL17, resulting in HCC progression and resistance to 
sorafenib. CTLA-4 on Tregs in HCC impacts dendritic cell function by downregulating CD80/CD86 on 
dendritic cells (DCs)[42]. Therefore, blockade of CTLA-4 in HCC can improve DC-mediated anti-tumor 
immunity.

Treatment with tivozanib, a tyrosine kinase inhibitor, can suppress Tregs by inhibiting receptor 
tyrosine kinase c-Kit (CD117)/stem cell factor (SCF) axis and increased CD4+PD-1+T cells, resulting in a 
significant improvement in OS of HCC patients[43]. Treatment with Lenvatinib also can inhibit IL-2 
mediated Treg differentiation except for decreasing PD-L1 expression in HCC cells[44]. Overall, the 
balance between Tregs with other T cells plays a vital in liver diseases, including the initiation and 
progression of HCC (Figure 1).

Furthermore, alteration of intrahepatic immunity is associated with HCC prognosis and treatment 
(Figure 2). An increase of Tregs, Th2, and Th17 T cells, as well as M2 macrophages, is usually and 
positively associated with HCC progression in patients, whereas an abundance of CD8 T cells, Th1 T 
cells, and M1 macrophages is associated with HCC therapy and good prognosis for HCC patients[45]. 
Single-cell RNA sequencing technologies have been applied to investigate the immune landscape of 
HCC samples to illustrate the subtypes of immune cells in HCC and their gene expressing profiles, as 
well as immune cell interactions, such as DCs with Tregs or CD8 T cells[46].

IMPORTANT MOLECULES MEDIATED TREG FUNCTION AND METABOLISM
HIF-1α
Hypoxia-inducible transcription factors (HIFs) regulate cell metabolism, proliferation, and migration in 
low oxygen or hypoxic environment, as well as angiogenesis[47]. It has been reported that the 
expression of HIF-1 alpha (HIF-1α) was higher in HCC tissues compared to that in corresponding 
adjacent tissues. In addition, overexpression of HIF-1α was associated with poor outcomes of HCC in 
human patients[48]. Chronic intermittent hypoxia can promote NASH progression via regulating the 
balance of Th17/Treg by inducing the expression of HIF-1α[49].

Gal-9
Tregs can be subclassified into inflamed-tissue related memory Tregs (mTregs) and non-related resting 
Treg (rTregs). During HBV infection, mTregs were increased accompanying liver inflammation and 
liver injury evidenced by an increase of serum ALT level, but not rTregs[50]. The S-type lectin galectin-9 
(Gal-9) was increased in the HBV-infected liver, contributing to T cell depletion and exhaustion by 
binding Tim-3[51]. For example, activation of Gal-9/Tim-3 signaling in concanavalin A-induced mouse 
hepatitis suppressed the induction of effector T (Teff) cells and the production of IFN-γ[52]. In addition, 
the Gal-9/Tim-3 signaling pathway plays an important role in the expansion of mTregs[50].

GDF15
The expression of growth differentiation factor 15 (GDF15) was positively related to the frequency of 
Tregs in HCC. GDF15 can promote the suppressive effect of natural Tregs via binding with its 
unrecognized receptor CD48 on T cells to inhibit the function of homology and U-box containing 
protein 1, which can degrade FOXP3[53]. Thus, neutralizing GDF15 by an antibody can eradicate HCC 
and enhance anti-tumor immunity.

microRNAs
Hepatic expression of microRNA-195 (miR-195) was reduced in NAFLD development, accompanying 
an increased ratio of Th17/Treg ratio in the blood, as well as the expression IL-17, CD40, and TNF-α in 
rat liver[54]. Overexpression of miR-195 can maintain the balance of Th17/Treg to ameliorate NAFLD 
and liver inflammation. Many miRNAs can regulate Th17/Treg cell balance in NAFLD such as miR-29c 
via interacting with insulin-like growth factor binding protein 1/IGFBP1)[55]. In addition, other 
microRNAs such as miR-155[56,57], miR-423-5p[58], and miR-1246[59] play important roles in 
modulating the balance of Tregs with Th17 cells and their functions in liver disease.

TLRs
Activation of TLR signaling pathway can suppress the effect of Tregs on adaptive immune response, 
which is in part dependent on microbial production-induced expression of IL-6[60]. TLR9-deficiency 
increased the frequency of Treg cells in the intestine, resulting in a decrease of IL-17 and IFN-γ 
producing Teff cells[61]. The imbalance of Treg/Teff cells compromised immune response to oral 
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Figure 1 The imbalance of regulatory T cells and effector T cells promotes the progression of chronic liver diseases and hepatocellular 
carcinoma. Chronic liver diseases such as alcoholic liver disease and non-alcoholic fatty liver disease induced by factors such as alcohol abuse and high-fat diet, 
respectively, can induce liver fibrosis, cirrhosis, and even hepatocellular carcinoma. The imbalance of regulatory T cells with T helper 17 cells or CD8 T cells is 
involved in the pathogenesis of liver inflammation, fibrosis, and cancer progression. ALD: Alcoholic liver disease; HCC: Hepatocellular carcinoma; NAFLD: Non-
alcoholic fatty liver disease; Treg: Regulatory T cells; Th: T helper.

infection, which can be reversed by reconstitution of gut flora deoxyribonucleic acid (DNA)[61]. In 
addition, the antibiotic treatment caused gut microbiota dysbiosis and recapitulated TLR9 deficiency-
induced impaired immune response.

Yes-associated protein (YAP)
Yes-associated protein (YAP), a coactivator and a corepressor of the Hippo signaling pathway, plays a 
vital role in Tregs in vivo and in vitro[62]. Blocking YAP-mediated activation of activin can improve anti-
tumor immunity via regulating TGF-β/mothers against decapentaplegic homolog (SMAD)[62]. 
Similarly, blockage of TGF-β signaling can compromise Treg function to improve anti-tumor immune 
response[63], which may expand the population of quiescent Tregs, CD4+CD25-Foxp3+.

The above-mentioned molecules can modulate Treg metabolism and function as potential molecular 
targets for HCC treatment. In addition, modulation of these molecules can potentially recover the 
balance of Tregs with other tumor-infiltrating immune cells to activate anti-tumor immunity (Figure 3).

TREATMENT OPTIONS
Modulation of microRNAs
Administration of miR-26a can reduce the frequency of Tregs and the concentrations of alpha-
fetoprotein, des-gamma carboxyprothrombin, and VEGF in Balb/c mice with diethylnitrosamine-
induced HCC[64]. The suppressive effects of miR-26a on HCC growth and angiogenesis are mediated 
by targeting IL-6/signal transducer and activator of transcription 3 (Stat3) signaling[65] and HGF/HGF 
receptor (HGFR/c-Met) signaling[66], respectively. In addition, miR-26a inversely regulated the 
expression of F-box protein 11 (FBXO11), which was upregulated and played an oncogenic role in HCC
[67].

Adoptive transfer of cells
Adoptive transfer of Tregs attenuated triptolide-induced liver injury, while depletion of Tregs showed 
the opposite effect, indicating that Tregs contribute to the progression of liver injury[68]. Another study 
showed that adoptive transfer of hepatic stellate cell (HSC)-stimulated Tregs can significantly decrease 
liver injury in mice with autoimmune hepatitis by inducing the balance of Treg/Th17 ratio[69]. In 
addition, the adoptive transfer of HSCs promoted the differentiation of Tregs and decreased Th17 cells, 
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Figure 2 The alteration of intrahepatic immunity predicts the prognosis of hepatocellular carcinoma patients. Usually, an increase of regulatory 
T cells, T helper (Th) 2 cells, and Th17 cells, as well as M2 macrophages is positively associated with hepatocellular carcinoma (HCC) progression in patients, 
whereas an abundance of CD8 T cells, Th1 T cells, and M1 macrophages is associated with HCC therapy and good prognosis for HCC patients. HCC: Hepatocellular 
carcinoma; Treg: Regulatory T cells; Th: T helper.

Figure 3 Factors mediated the imbalance of regulatory T cells/effector T cells. Factor such as Hepatitis B virus, gut microbiota, and non-alcoholic fatty 
liver disease, as well as hepatocellular carcinoma tumor cells, can modulate several important molecules produced in the liver. Alteration of these molecules has 
been associated with the change of frequency and/or function of regulatory T cells in chronic liver disease, resulting in an imbalance of regulatory T cells/effector T 
cells. HCC: Hepatocellular carcinoma; HBV: Hepatitis B virus; NAFLD: Non-alcoholic fatty liver disease; Teff: Effector T cells; Treg: Regulatory T cells; GDF: Growth 
differentiation factor; HIF: Hypoxia-inducible transcription factors; Gal: Galectin; miR: micro ribonucleic acid; TLR: Toll-like receptor; YAP: Yes-associated protein; 
TGF-β: Transforming growth factor-beta.

resulting in amelioration of liver injury[70]. Deng et al[30] reported that co-infusion with hAMSCs and 
Tregs can prevent mild liver fibrosis. Tregs play a critical role in the secretion of HGF and cell differen-
tiation of hAMSCs.
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Table 1 Treatment options for hepatocellular carcinoma by targeting regulatory T cells and relative signaling pathways

Treatment Targets Functions Ref.

CCR4 antagonist CCR4 Administration of a CCR4 antagonist or N-CCR4-Fc, a neutralizing 
pseudo-receptor that can block Tregs accumulation in HCC, can 
enhance therapeutic efficacy to PD-1 blockade and sorafenib

Gao et al[37], 2022

miR-26a IL6/Stat3 and HGF/c-Met The suppressive effects of miR-26a on HCC growth and angiogenesis 
are mediated by targeting IL-6/signal transducer and activator of 
transcription 3 signaling and HGF/HGFR/c-Met signaling, 
respectively

Yang et al[65], 2013; 
Yang et al[66], 2014

GDF15 neutralizing 
antibody

GDF15/CD48 Inhibiting GDF15 function by a neutralizing antibody can effectively 
eradicate HCC and promote a tumoricidal immune response in mice

Wang et al[53], 
2021

Supplementation of 
Lactobacillus rhamnosus GG 
or its culture supernatant

The ratio of Treg and Th17 
cells

Supplementation of Lactobacillus rhamnosus GG or its culture 
supernatant can ameliorate chronic alcohol-induced liver injury by 
reducing hepatic inflammation, enhancing intestinal barrier integrity, 
and inducing balance in the ratio of Treg and Th17 cells to reduce 
alcoholic-induced liver injury

Chen et al[22], 2016; 
Wang et al[72], 
2013; Wang et al
[73], 2012

Prohep, a novel probiotic 
mixture

Gut microbiota and Treg 
differentiation

Probiotic treatment regulated T-cell differentiation in the gut by 
reducing Th17 polarization and increasing the differentiation of anti-
inflammatory Treg cells, by increasing the abundance of beneficial 
bacteria, such as Prevotella and Oscillibacter

Li et al[74], 2016

Anti-PD-1 and anti-PD-L1 
antibodies

PD-1 and PD-L1 Another study also showed that Treg-mediated inhibition of IFN-γ 
production and cytotoxicity of CD8 T cells can be partially reduced by 
anti-PD-1 and anti-PD-L1 antibodies in HCC

Langhans et al[76], 
2019

Dual anti-PD-1/VEGFR-2 
therapy

VEGFR-2 and PD-1 Dual therapies increased CD8 T cell infiltration and activation, 
reduced Tregs and infiltration of CCR2+monocytes, as well as the 
phenotype of tumor-associated macrophages (the M1/M2 ratio) in 
HCC tissue

Shigeta et al[75], 
2020

Anti-CTLA-4 monoclonal 
antibody

Tregs Treg depletion-mediated by anti-CTLA-4 monoclonal antibody (clone 
9H10) restored the function of tumor antigen-specific CD8 T cells, with 
a synergistic effect with anti-PD-1 treatment

Lee et al[77], 2020

Resveratrol Tregs and immunosup-
pressive cytokines including 
TGF-β1 and IL-10

Treatment with resveratrol, a natural phenol, can inhibit H22 (a mouse 
HCC cell line)-induced orthotopic HCC tumor growth via decreasing 
the frequency of CD8+CD122+Tregs and M2-like macrophages in mice

Zhang et al[79], 
2020

CCR: C-C chemokine receptor; HGF: Hepatocyte growth factor; HGFR: Hepatocyte growth factor receptor; HCC: Hepatocellular carcinoma; PD-1: 
Programmed cell death protein 1; miR: micro ribonucleic acid; IL: Interleukin; GDF: Growth differentiation factor; Treg: Regulatory T cells; Th: T helper; 
IFN: Interferon; VEGFR: Vascular endothelial growth factor receptor; CTLA: Cytotoxic T lymphocyte-associated antigen; TGF-β: Transforming growth 
factor-beta.

Modulation of gut microbiota
Depletion of Tregs in the intestine caused an increase in the abundance of Firmicutes and intestinal 
inflammation[71]. Supplementation of Lactobacillus rhamnosus GG or its culture supernatant can 
ameliorate chronic alcohol-induced liver injury by reducing TNF-α expression via inhibition of TLR4- 
and TLR5-mediated hepatic inflammation[72], as well as amelioration of intestinal barrier integrity and 
suppression of alcohol-induced endotoxemia[73]. In addition, the culture supernatant can balance the 
ratio of Treg and Th17 cells to reduce alcoholic-induced liver injury[22].

Treatment with Prohep, a novel probiotic mixture, significantly inhibited the HCC growth compared 
to the control group, resulting in an abundance of beneficial bacteria, such as Prevotella and Oscillibacter
[74]. This study also showed that probiotic treatment regulated T-cell differentiation in the gut by 
reducing Th17 polarization and increasing the differentiation of anti-inflammatory Treg cells.

Blockade of immune checkpoints
Dual anti-PD-1/VEGF receptor-2 therapy increased CD8 T cell infiltration and activation, reduced Tregs 
and infiltration of CCR2+monocytes, as well as the phenotype of tumor-associated macrophages (the 
M1/M2 ratio) in HCC tissue[75]. Another study also showed that Treg-mediated inhibition of IFN-γ 
production and cytotoxicity of CD8 T cells can be partially reduced by anti-PD-1 and anti-PD-L1 
antibodies in HCC[76].

Treg depletion-mediated by anti-CTLA-4 monoclonal antibody (clone 9H10) restored the function of 
tumor antigen-specific CD8 T cells, with a synergetic effect with anti-PD-1 treatment[77].

Other treatments
CCR4 expression in Tregs accompanied with an increased expression IL-10 and IL-35, resulting in 
suppression of CD8 T cells and HCC progression. Administration of a CCR4 antagonist or N-CCR4-Fc, a 
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Table 2 Clinical trials by targeting regulatory T cells to modulate the immune response

Trial Phase Treatment Results Ref.

NCT02476123 I Anti-CCR4 antibody 
mogamulizumab

Treg depletion induced by anti-CCR4 antibody (mogamulizumab), in 
combination with anti-PD-1 antibody (nivolumab) showed antitumor 
activity and increased CD8+ T cell infiltration

Doi et al[78], 
2019;  
Sánchez-Fueyo 
et al[83], 2020

NCT02166177 I Intravenous infusion of ex vivo 
expanded Tregs

Treg transfer can transiently increase circulating Tregs and inhibit anti-
donor T cell responses in patients with liver transplants

Fueyo et al[83], 
2020

NCT02166177 I Autologous Treg therapy To defect safety and efficacy study of regulatory T cell therapy in liver 
transplant patients

Whitehouse et al
[84], 2017

NCT01624077 I Injection of Tregs To defect safety and efficacy study of regulatory T cell therapy in liver 
transplant patients

Whitehouse et al
[84], 2017

NCT03654040 A single dose of alloantigen-
reactive Tregs (arTreg) (≥ 90 × 106 
total cells)

NCT03577431

I

arTreg-CSB (2.5 × 106 cells)

It is a single-center, prospective, open-label, non-randomized clinical trial 
exploring cellular therapy to facilitate immunosuppression withdrawal in 
liver transplant recipients

Cvetkovski et al
[85], 2021

NCT02260375 I Infusion of mesenchymal stromal 
cells

MSC infusion in liver transplant recipients slightly increased circulating 
Treg/memory Treg over baseline, without a statistically significant, but 
not in the control group

Casiraghi et al
[86], 2021

NCT02027116 I DNA vaccine GLS-6150 GLS-6150 decreases Treg cell frequency and enhances HCV-specific T cell 
responses without significant side effects

Han et al[87], 
2020

NCT02174276 II GS-4774, a yeast-based 
therapeutic vaccine

Treatment with GS-4774 increased T-cell functions by increasing the 
production of IFN-γ and TNF and reducing the cell number of Tregs

Boni et al[88], 
2019

NCT02360592 IV Combined therapy with 
interferon plus IL-1 and hepatitis 
B Vaccine

Combination therapy increased the level of hepatitis B surface antigen 
with partial restoration of Tregs and NK cells

Wu et al[89], 
2019

NCT02072486 None Sorafenib, a multiple kinase 
inhibitor

Treatment with sorafenib can significantly suppress extracellular signal-
regulated kinases+ FMS-like tyrosine kinase 3+ Tregs and myeloid-derived 
suppressor cells to benefit the survival of HCC patients

Kalathil et al
[90], 2019

CCR: C-C chemokine receptor; CSB: Co-stimulatory blockade; PD-1: Programmed cell death protein 1; Treg: Regulatory T cells; MSC: Mesenchymal 
stromal cells; DNA: Deoxyribonucleic acid; GLS: Glutaminase; IFN: Interferon; TNF: Tumor necrosis factor; IL: Interleukin; NK: Natural killer; FMS: Feline 
McDonough sarcoma.

neutralizing pseudo-receptor that can block Tregs accumulation in HCC, can enhance therapeutic 
efficacy to PD-1 blockade and sorafenib[37]. Treg depletion induced by anti-CCR4 antibody 
(mogamulizumab), in combination with anti-PD-1 antibody (nivolumab) showed antitumor activity and 
increased CD8+ T cell infiltration[78].

Treatment with resveratrol, a natural phenol, can inhibit H22 (a mouse HCC cell line)-induced 
orthotopic HCC tumor growth via decreasing the frequency of CD8+CD122+Tregs and M2-like 
macrophages in mice[79].

Ren et al[80] reported that Tregs were further increased in HCC patients compared to healthy and 
cirrhosis controls, as well as in HCC patients with Barcelona clinic liver cancer (BCLC) stage C 
compared to that in HCC patients with BCLC stage B. The authors also showed that treatment with 
microparticles-transarterial chemoembolization dramatically decreased Treg cell proportion at 1-2 wk 
post-treatment. Overall, the treatment options for HCC associated with Treg regulation were 
summarized in Table 1.

CLINICAL TRIALS
Tregs display multiple roles in the development and progression of HCC. The ratio of Treg/Th17 cells 
in peripheral blood can be applied to monitor immune tolerance as immune markers in liver 
transplantation[81]. The balance of Treg/Th17 cells or other effector T cells is essential for suppressing 
autoimmune diseases and cancers[82]. Therefore, treatments including diverse immunomodulatory 
therapies can regulate Tregs to enhance the antitumor immune response. In Table 2, potential therapies 
in clinical trials were summarized. Treatments including infusion of Tregs[83-85] and mesenchymal 
stromal cells (MSCs)[86], vaccines[87-89], and kinase inhibitors[90].
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CONCLUSION
Tregs modulate the intestinal and intrahepatic immune response, contributing critically important roles 
in the gut-liver axis. Functional changes of Tregs are involved in the pathogenesis of chronic liver 
diseases, such as ALD and NAFLD, causing factors for HCC. Several important molecules investigated 
in recent studies are summarized and targeting them may potentially treat HCC by modulating Treg 
function and/or frequency. Clinical trials are undergoing to further explore the new treatments for 
HCC, which modulate the function of the frequency of Tregs. In the future, multi-omic analysis 
including metabolic and proteomic data for Treg metabolism and function during the progression of 
HCC is critical to illustrate the underlying mechanisms of Tregs in HCC pathogenesis and find out new 
therapeutic targets.
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