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Abstract
Mesenchymal stem cells (MSCs) have gained wide-ranging reputation in the 
medical research community due to their promising regenerative abilities. MSCs 
can be isolated from various resources mostly bone marrow, Adipose tissues and 
Umbilical cord. Huge advances have been achieved in comprehending the 
possible mechanisms underlying the therapeutic functions of MSCs. Despite the 
proven role of MSCs in repairing and healing of many disease modalities, many 
hurdles hinder the transferring of these cells in the clinical settings. Among the 
most reported problems encountering MSCs therapy in vivo are loss of tracking 
signal post-transplantation, insufficient migration, homing and engraftment post-
infusion, and undesirable differentiation at the site of injury. Magnetic nano-
particles (MNPs) have been used widely for various biomedical applications. 
MNPs have a metallic core stabilized by an outer coating material and their ma-
gnetic properties can be modulated by an external magnetic field. These magnetic 
properties of MNPs were found to enhance the quality of diagnostic imaging 
procedures and can be used to create a carrying system for targeted delivery of 
therapeutic substances mainly drug, genes and stem cells. Several studies 
highlighted the advantageous outcomes of combining MSCs with MNPs in 
potentiating their tracking, monitoring, homing, engraftment and differentiation. 
In this review, we will discuss the role of MNPs in promoting the therapeutic 
profile of MSCs which may improve the success rate of MSCs transplantation and 
solve many challenges that delay their clinical applicability.

Key Words: Mesenchymal stem cells; Magnetic nanoparticles; Tracking; Homing; 
Migration; Differentiation
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Core Tip: Mesenchymal stem cells (MSCs) have been thoroughly investigated in many disease models and 
they showed great therapeutic potential. Despite the confirmed therapeutic abilities of MSCs, many 
challenges still exist which hinder the transfer of these cells to the treatment guidelines. The incorporation 
of magnetic nanoparticles (MNPs) with MSCs has been reported to increase the therapeutic outcomes of 
MSCs by solving major challenges that impede their long–term regenerative effects. MNPs are able to 
improve the ability to track and deliver MSCs and to increase their migration, homing, survival and differ-
entiation in vitro and in vivo. This may help increase the success rate of MSCs transplantation and thus 
increase the chance to include these cells in the treatment guidelines used in different clinical settings.

Citation: Abu-El-Rub E, Khasawneh RR, Almahasneh F. Prodigious therapeutic effects of combining 
mesenchymal stem cells with magnetic nanoparticles. World J Stem Cells 2022; 14(7): 513-526
URL: https://www.wjgnet.com/1948-0210/full/v14/i7/513.htm
DOI: https://dx.doi.org/10.4252/wjsc.v14.i7.513

INTRODUCTION
Mesenchymal stem cells (MSCs) are the mostly investigated stem cells due to their enchanting, wide-
range therapeutic and regenerative potential[1]. Since their discovery by Friedenstein in 1970, MSCs 
have been thoroughly analyzed and characterized to discover the mechanistic explanations for their 
therapeutic abilities[2]. MSCs are easily reached stem cells and can be isolated from many sources 
including bone marrow (BM), adipose tissues and umbilical cord (UC)[3]. These cells are extensively 
studied compared to other types of stem cells because they are ethically benign and have low 
teratogenic tendency[3]. In addition, MSCs have an acceptable safety profile and less likely to cause 
serious side effects[3]. MSCs beneficial effects have been linked primarily to the ability of MSCs to 
secrete a cocktail of therapeutically active paracrine factors[4]. These paracrine factors secreted by MSCs 
can attenuate many pathological processes including apoptosis, necrosis, fibrosis, and inflammation and 
initiate repairing mechanisms in the damaged organs[4]. MSCs immunomodulatory functions also 
contribute strongly to their curative potential[5]. Moreover, MSCs can exert actual regeneration of the 
injured tissues by adopting the intrinsic machinery and differentiating to many functional cell types 
such as osteocytes, chondrocytes, adipocytes, and cardiomyocytes-like cells[6]. Endogenous or 
exogenous MSCs must migrate and home in the damaged tissues in order to gain their therapeutic 
benefits[3]. After homing in the damaged tissues, MSCs should endure the harsh microenvironment that 
may present[7]. Despite the numerous studies that highlighted the therapeutic efficiency of MSCs, many 
serious obstacles encumber the shift of MSCs from bench to bedside and delay their presence in the 
treatment guidelines[8]. The most reported post-transplantation challenges that researchers bump into 
when they use MSCs in clinical studies: (1) The disparities in the differentiation potential between in 
vitro and in vivo[9]; (2) The shift in their immunological characteristics and cytokines secretion profile 
under different stress microenvironments that may exist at the site of injury mainly Hypoxia and 
inflammation[5]; (3) The poor homing and migratory abilities of administered MSCs which may vary 
based on the route of injection and microenvironment status[10]; and (4) The loss of signal emitted from 
labelled cells due to the leakage of contrast agent after being injected, leads to difficulties in tracking and 
monitoring of these cells[11].

Magnetic nanoparticles (MNPs) have gained great attention among the medical researchers due to 
their unique biochemical and physical characteristics, their intrinsic biocompatibility and being 
biodegradable through normal cellular pathways which make them suitable for wide range of 
biomedical applications[12]. The intrinsic magnetic field elicited by the MNPs, which can be modulated 
externally by an applied magnetic field , is the basis for using these MNPs as contrast agents for 
biomedical imaging[13], biomarkers and biosensors[14], and targeted drug[15], cell and gene delivery
[16]. Combining MNPs with stem cells was found to enhance their therapeutic performance and solve 
many challenges that hamper their regenerative potential and delay their clinical applications[17]. There 
are many types of MNPs that have been fabricated, but the most non-toxic and non- immunogenic 
MNPs that have been used with MSCs are iron oxide nanoparticles (IONs) such as magnetite (Fe3O4) or 
its oxidized form maghemite (γ-Fe2O3)[18-20]. These iron oxides based MNPs can be synthesized with 
different particles’ diameters such as Superparamagnetic iron oxide (SPIO) nanoparticles (50–200 nm 
diameter)[21] and ultra-small SPIO (USPIO) nanoparticles (around 35 nm diameter)[22] and different 
types of stabilizing non-toxic coating substrates such as dextran, polyethylene glycol, and Silica[23]. In 
general, the uptake of MNPs by MSCs is mediated mostly through endocytosis. MNPs usually are 
engulfed by MSCs to form endosomes, which then transformed into Mature multivesicular endosomes 
(MVEs). The MVEs then combined with lysosomes and get digested and decomposed into Fe3+. The free 
iron released into the cytoplasm of MSCs modified many cellular pathways to induce and promote their 
survival, migration, homing, anti-apoptosis and anti-inflammatory, and differentiation. These 
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magnetized MSCs can be further modulated and guided to enhance their therapeutic outcomes by 
external magnetic fields. The internalization of MNPs inside MSCs can be also achieved by passive 
diffusion if their particle size is small and by using MNPs that bind specific cell surface immune marker 
found on MSCs. The prodigious power of using MNPs with MSCs to potentiate their tracking, 
migration and homing, differentiation and regenerative abilities will be the focus of this review.

MNPs AS A CONTRAST AGENT TO TRACK MSCs
The use of MSCs in the clinical settings requires more accurate tracking methods of MSCs after 
transplantation to determine their destinations, survival and final differentiated fates[24]. To visualize 
transplanted MSCs using imaging modalities importantly the computed tomography, positron emission 
tomography, and magnetic resonance imaging (MRI), these cells must be labelled with contrast agents
[25-28]. The problem with the traditional contrast agents is the high leakage rate which causes the loss of 
emitted signal after short time course[29]. The contrast features of MNPs and their high safety profile 
encouraged many researchers to use them for labeling MSCs prior to injection[18]. MSCs labelled with 
MNPs have less leaking tendency and do not affect their stemness[30], rate of proliferation and the 
differentiation potential beside providing higher contrast-to-noise ratio for effective imaging[31,32].

IONs are the most commonly used MNPs for labelling and tracking MSCs due to their non-toxic and 
non-immunogenic features, high spatial resolution and penetration depth, and the non-ionizing 
radiation characteristics[33]. Superparamagnetic iron oxide nanoparticles (SPIONs), ultra-small SPIO-
poly (acrylic acid) (USPIO-PAA)[34], glucosamine-modified USPIO-PAA (USPIO-PAA-GlcN)[35], and 
microgel iron oxide (MGIO)[36] are the most studied MNPs for MSCs labelling and tracking by multiple 
imaging methods. Using SPIONs for stem cell labeling and tracking is a relatively new application. 
Recently, ferumoxytol (Feraheme®, AMAG Pharmaceuticals), an ultrasmall SPION used clinically as an 
MRI contrast agent[37]. Ferumoxytol colloidal particle size is less than 50 nm and can be phagocytized 
efficiently by the MSCs–which have an inherited phagocytosis property- and can then be imaged and 
tracked by MRI[37]. FeraTrackTM, a dextran coated SPIONs, have a positive surface charge making it cell 
penetrable through a vesicular endocytosis route[38]. FeraTrackTM has gained utility as a biocompatible 
MRI contrast agent for cell tracking purposes due to their high safety profile[38]. Mesentier-Louro et al
[39] used FeraTrack to track BM-MSCs at site of injury in a rodent model of optical nerve injury[39]. 
They reported that the after injecting FeraTrackTM labeled MSCs intravitreously, they migrated to the 
site of optical nerve injury and remained there for up to 18 wk which is suitable to monitor their 
integration with the host tissues at the site of injury using MRI. The incorporation of cationic 
compounds such as poly-l-lysine and protamine onto the surface coating of SPIONs can enhance 
labeling of MSCs by promoting interactions with the negatively charged cell surface[39]. Guldris et al
[35] studied the contrast characteristics of SPIOs and USPIOs coated with PAA, and USPIO-PAA-GlcN 
as labeling agents for MSCs in vitro[35]. A portion of these MNPs was cultured with MSCs for 24 h at a 
concentration of 100 μg mL–1. In the second group, the conditions were maintained, but polylysine 
(PLL) was used to promote particle uptake. The study found that in the absence of PLL, SPIO-PAA 
showed a very low and non-homogeneous labeling efficiency. USPIO-PAA and USPIO-PAA-GlcN 
showed little to no internalization by MSCs, while combining USPIO-PAA-GlcN with polylysine 
enhances their biocompatibility with MSCs and increases the detection sensitivity by MRI in both in 
vitro and in vivo experiments[35]. Studies also reported that using an external pulsed magnetic field 
opened channels in the cell membrane and increased the uptake of SPIONs by MSCs which intensified 
the contrast signal[40,41]. Interestingly, Ngen and Artemov[42] developed a dual-contrast agent by 
combining SPIONs and gadolinium chelate to monitor and track MSCs[42]. This dual contrast agent 
generates powerful positive contrast and increases the signal gain[42]. Furthermore, this dual-contrast 
agent was also able to distinguish between dead and live cells at the site of injury. This helps in 
estimating the percentage of MSCs survival rate, as Gadolinium dependent positive contrast is 
expunged in the live cells, whereas enhanced contrast level found in dead cells[42].

MGIO particles were studied to track human fetal MSCs through using 1.5T MRI[43]. MGIO particles 
were found to achieve high detection sensitivity with low cellular toxicity through a simple incubation 
protocol, which makes them useful for cellular tracking using standard MRI scanners[43]. These results 
were similar to that reported by Mailänder et al[44] using adult BM-MSCs[44]. The tracking efficacy 
achieved by MGIO was higher than that achieved with USPIO particles and the larger polystyrene 
particles[43]. Extracellular vesicles (EVs) are secreted lipid bilayered vesicles containing enzymes, 
nucleic acids and lipoproteins that are involved in intercellular communication. MSCs can activate 
various repairing machineries by secreting EVs[45]. SPIONs were also used to facilitate the labelling and 
imaging of EVs derived from MSCs. Dabrowska et al[46] labeled these EVs derived from MSCs using 
the fluorescent lipophilic stain PKH26 and SPION nanoparticles conjugated with rhodamine (Molday 
ION Rhodamine B™) which was found to be highly biocompatible with EVs to be imaged using MRI
[46]. The prospective use of MNPs in MSCs tracking is highly encouraging. MRI and MNPs are comple-
mentary and provide integrated information, like tracking and monitoring MSCs transplanting and 
engulfing overtime, and this will provide more information to guide further therapy.
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MNPs TO ENHANCE THE HOMING OF TRANSPLANTED MSCs
Most of MSCs curative applications require injecting these cells directly to the injured tissues or 
delivering them intravenously, which requires their migration and homing in the damaged tissues[47,
48]. MSCs homing is one of the major challenges in clinical settings because only a small percentage of 
delivered MSCs reaches the desired injury site and integrates with host tissues, while the majority of the 
administrated cells are trapped in the draining organs and get washed.

Recently, MNPs have been used to improve the homing percentage of transplanted MSCs at the site 
of injury[49]. Among all nanoparticles, SPIONs are the most extensively used nanomaterials to increase 
MSCs homing tendency without affecting their viability, proliferation and differentiation[31,32]. MSCs 
labeled with SPIONs exhibit enhanced homing due to magnetic attraction[50]. Several research groups 
have investigated the homing and tracking of MSCs after being labelled with SPIONs. Meng et al[51] 
used SPIONs and green fluorescent protein (GFP) reporter gene to create a double labelling of 
Wharton’s Jelly human umbilical cord-derived MSCs (WJ-MSCs)[51]. These cells were injected to a nude 
mouse with cutaneous tissue injury. In this work, they used 25 μg/mL of SPION, and they divided the 
nude mice into three groups: The first group treated with WJ-MSCs only, the second group treated with 
GFP/SPIONs-positive WJ-MSCs, and the third group treated with SPIONs/GFP-positive WJ-MSCs and 
exposed to an external magnetic field (0.5T)[51]. In all three groups, MSCs were injected subcu-
taneously. The results showed a remarkable increase the migration abilities of GFP/SPIONs-labeled WJ-
MSCs in vivo without changing their inherited characteristics. The employment of a non-invasive 
external magnetic field provides a rapid guided homing of WJ-MSCs to the targeted injury site. Yun et al
[48] used 15 μg/mL Rhodamine B, which was added to SPIONs to label MSCs that were injected to 
mouse model of wounded olfactory bulb. The Rhodamine B/SPIONs-labelled MSCs showed an 
improved homing by upregulating various homing factors mainly CXCR4 and CXCR4-SDF-1[51]. Yun 
et al[48] also used a magnetic field of 0.32 T to direct the Rhodamine B/SPIONs-labelled MSCs rapidly 
to the site of injury. Based on many studies, SPIONs enhance the MSCs homing by stimulating the 
expression of chemokine receptors mainly CXCR4-SDF-1α signaling[48].

A recent study by Braniste et al[52] in which they created a semiconductor nanoparticle by combining 
nanometer scale GaN thin layers with a sacrificial zinc ferrite core (ZnFe2O4)[52]. Braniste et al[52] 
incubated MSCs with (10 mg/mL) semiconductor nanoparticles and applied a remote magnetic field to 
control the direction of their movement. They found that these semiconductor nanoparticles were 
effectual to redistribute and rearrange MSCs according to the remote magnetic field intensity, thus 
enhanced the long term tracking and monitoring of the injected cells in vivo[52].

Silva et al[53] fabricated gold and maghemite nanoparticles that were functionalized with 2,3-
dimercaptosuccinic acid (DMSA) (Au-DMSA and γ-Fe2O3-DMSA)[53]. These nanoparticles were 
incubated with human MSCs and these labelled MSCs were inoculated through intranasal route and 
tracked using standard computed microtomography. Despite the high biocompatibility of these 
nanoparticles with MSCs, γ-Fe2O3-DMSA and Au-DMSA based contrast was not strong enough for 
tracking MSCs in vivo by standard computed microtomography[53]. An innovative iron-doped 
hydroxyapatite nanoparticles (FeHA NPs) were prepared by Panseri et al[54] and were found to be 
superior to SPIONs in improving the survival of MSCs due to rapid degradation and lower resulting 
intracellular iron content[54]. The unique magnetic properties of FeHA NPs make them a suitable 
carrier for delivering MSCs to the injury site and other therapeutically active products such as drugs, 
growth factors, and miRNA[54].

Moayeri et al[55] used a poly-L-lysine hydrobromide coated SPIONs to label adipose-derived stem 
cells (ADSC-SPION/PLL)[55]. These labeled ADSCs were injected in the medial forebrain bundle in a 
rat model of Parkinson’s disease (PD), and simultaneously an external magnetic field were placed on the 
top of rat skull for 2 wk[55]. The results of this study showed a significant improvement in the 
migration and homing of these labeled ADSCs in the damaged sites of substantia nigra[55]. These 
abovementioned studies provided strong evidence about the importance of these non-toxic and biocom-
patible MNPs in potentiating the homing percentage of transplanted MSCs which may improve the 
successful rate of MSCs transplantation in different disease models.

MNPs TO IMPROVE THE MIGRATION ABILITIES OF TRANSPLANTED MSCs
Migration and subsequent engraftment following the infusion of MSCs are essential to enkindle the 
regenerative power of MSCs. The desultory, undirected movement of MSCs and poor accumulation at 
the injured site can hinder their therapeutic abilities. It has been found that MNPs can improve the 
migratory features of MSCs and directed them to the target site[56]. Dextran-coated iron oxide 
nanoparticles have been reported by Chung et al[57] to boost MSCs migration and the subsequent trans-
differentiation into dopaminergic like neurons in a mouse model of PD[57].

Li et al[33] also examined the in vitro migration of rat BM-MSCs to an injury site in the presence or 
absence of polydopamine (PDA)-capped Fe3O4 (Fe3O4@PDA) superparticles[33]. The results showed a 
significant difference in the number of migrated cells between control MSCs and MSCs labeled with 
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these superparticles[33]. Iron oxide nanoparticles were also found to increase the number of MSCs in the 
S-phase, their proliferation index, migration ability and secretion of vascular endothelial growth factor
[47]. This suggests that labeling with iron oxide nanoparticles increased MSCs migration, while the cell 
cycle progression was unaffected. It was also demonstrated that labeling MSCs with Fe3O4@PDA NPs 
increase their migration towards laser burn injury sites in a living rat model, as well as their expression 
of CXCR4[47]. The latter could explain the increased migration ability of labeled MSCs. Indeed, 
previous studies had showed that the migration process is heavily dependent on the interaction 
between SDF-1α and CXCR4, and the internalization of magnetic iron oxide nanoparticles elevates 
CXCR4 levels in MSCs[58,59]. Furthermore, SPIONs have been found to activate the hepatocyte growth 
factor/tyrosine-protein kinase Met pathway in MSCs to regulate their migratory and engraftment 
properties[60].

MNPs TO POTENTIATE THE DIFFERENTIATION AND SURVIVAL OF TRANSPLANTED 
MSCs
The superparamagnetic properties of MNPs are not only suitable for improving the homing and 
migration properties of MSCs, studies found that MNPs can potentiate the MSCs survival and differen-
tiation[61,62]. Several studies demonstrated a substantial enhancement of MSCs differentiation when 
these cells are combined with magnetic iron oxide nanoparticles, magnetic field and a specialized differ-
entiation medium. MNPs improve the engraftment of MSCs at the injury site which is an essential step 
to adopt the cellular and molecular machinery required to initiate the differentiation to committed cell 
type[63-66]. MNPs can be also used to enhance the quality of MSCs cryopreservation and survival after 
thawing these cells[67]. Naseroleslami et al[68] transplanted a SPIONs-labelled human-derived MSCs 
(hAMSCs) in a rat model of isoproterenol-induced myocardial injury[68]. They reported that SPIONs-
labeled hAMSCs produce a remarkable activation of cardiac repair machinery in the presence of 
magnetic field through suppressing nuclear factor-kappaB/mitogen-activated protein kinases 
dependent inflammation[68]. Zhang et al[69] reconstructed a Fe3O4 MNPs by adding graphene oxide 
(GO) to generate Fe3O4@GO magnetic nanocomposites (MNCs) that were loaded with bone morpho-
genetic protein-2 (BMP2)[69]. This Fe3O4@GO MNCs were able to mitigate the cell damage caused by 
oxidative stress and through delivering BMP2, they also improved the osteogenic differentiation 
abilities of MSCs[69]. Wang et al[70] created a magnetic lanthanum-doped HA/CS scaffolds 
(MLaHA/CS)[70]. They found after placing the MLaHA/CS scaffolds into rats with calvarial defects, it 
significantly enhances the recruitment of endogenous MSCs and facilitated regeneration of new bone 
matrix[70]. The dose of internalized MNPs found to have a great influence on the preferential differen-
tiation of MSCs. When less than 10 pgFe/cell was used, the differentiation of MSCs into chondrocytes, 
adipocytes or osteocytes using citrate-coated maghemite nanoparticles was similar to that of control 
unlabeled cells[71]. On the other hand, when higher dose of 30 to 60 pgFe/cell was used, the chondro-
genesis was significantly turned off while the adipogenesis and osteogenesis were turned on. 
Intriguingly, the source of MSCs may also govern their response to certain MNPs[72]. Labusca et al[73] 
showed some discrepancies in the response of ADSCs and WJ-MSCs to uncoated MNPs, with average 
size of 20 nm[73]. When external magnetic field was applied, the chondrogenic differentiation was more 
pronounced in the ADSCs cell culture but not in WJ-MSCs cell culture[73]. The possible explanation for 
these findings was the presence of an active senescent protective mechanism in WJ-MSCs. Fan et al[74] 
studied the differences in intracellular iron content, labeling efficiency, cell viability, and Adipogenic 
and osteogenic differentiation potentials between AD-MSCs and BM-MSCs after labelling them with 
SPIOs. They found that SPIO-labeled AD-MSCs and SPIO-labelled BM-MSCs were similar in their 
labeling efficiency, intracellular iron level, survival, proliferation, differentiation potentials, and MRI 
imaging[74]. Since the presence of an external magnetic field can dictate the differentiation fate of MSCs, 
the same group of investigators, Labusca et al[75], also studied the effect of duration, intensity and 
frequency of magnetic field on the differentiation abilities of ADSCs labeled with MNPs[75]. These 
scientists revealed that using an intermittent low intensity magnetic field (0.5 MT) for short time (2 d) 
triggered their differentiation to adipocytes, while applying intermittent high intensity magnetic field 
(21.6 MT) for short time (2 d) or continuous low intensity magnetic field (0.5 MT) for longer time (7 d) 
activated the osteogenic machinery[75]. Wang et al[76] injected SPION-labeled ADSCs in a rat model of 
stress urinary incontinence. These magnetically labeled MSCs found to have a high survival rate post-
transplantation and efficiently enhanced the repairing process of the non-functional sphincter[76]. In the 
similar context, Xu et al[77] showed that UC-MSCs labelled with SPIONs can tolerate the inflammatory 
microenvironment in mouse model of sepsis by enhancing their immunomodulatory abilities and the 
expression of heme oxygenase-1 and tumor necrosis factor receptor-associated factor (TRAF1)[77]. These 
findings highlighted the advantageous outcomes of incorporating MNPs with MSCs therapy which may 
ultimately potentiate the success rate of MSCs transplantation and increase the chance to shift these cells 
toward bedside. Future studies should be designed to extensively investigate the long-term efficacy and 
safety of these MNPs labeled MSCs, and in parallel clinical trials must be conducted to reveal the 
translational possibilities of these MNPs–labeled MSCs. Table 1 summarizes the different studies that 
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Table 1 Summary of studies that used magnetic nanoparticles to improve the transplantation characteristics of mesenchymal stem 
cells

No. Ref. Magnetic nanoparticle Source of MSCs Application Outcomes

1 Maggio et al[78], 
2016

Iron MNP with poly(epsilon-
lysine) dendrons exposing 
carboxybetaine residue (CB-
MNP)

hBM-MSCs Viability and differen-
tiation

Survival, Adipogenic and osteogenic 
differentiation were significantly 
improved

2 Hu et al[79], 2021 3D printing Magnetic 
nanoparticles scaffold made 
from Ferumoxytol (γ-Fe2O3
@PSC) and polylysine

AD-MSCs Bone tissue engineering 
and Osteogenesis

Upregulated the MAPK signaling 
and PI3K-Akt signaling and 
increased the levels of RUNX2, ALP 
and SMAD 1/5/8 which promoted 
the Osteogenic differentiation

3 Huang et al[80], 
2017

Magnetic nanoparticle 
composite scaffold formulated 
using the magnetic 
nanoparticles Fe2O3, Nano-
hydroxyapatite and l-polylactic 
acid

BM-MSCs Osteogenic differen-
tiation of MSCs

The expression of type I collagen 
gene increased in MSCs with 
noticeable enhancement in their 
Osteogenic differentiation without 
toxic effects

4 Andrzejewska et al
[30], 2019

Molday ION Rhodamine B™ hBM-MSCs Tracking of transplanted 
MSCs

Basic hBM-MSC characteristics and 
functions might be affected by 
labeling. Molday ION Rhodamine 
B™ labeling had a better profile than 
other vital stains

5 Kono et al[81], 2021 Magnetic anionic 
liposome/atelocollagen 
complexes

mBM-MSCs Sarcopenia mouse model Magnetized MSCs have higher 
retention rate in the skeletal muscles 
after their local injection with 
significant enhancement in their 
immunomodulation abilities marked 
by upregulating IL-6 and IL-10 and 
downregulating TNF-α and IL-1β in 
the inflamed skeletal muscle which 
may be useful for effective 
Sarcopenia treatment

6 Guldris et al[35], 
2017

(1) SPIO-PAA; (2) USPIO-PAA; 
and (3) USPIO-PAA-GlcN

Rat MSCs Cell tracking by MRI SPIO-PAA combined with polylysine 
showed non-homogeneous cell 
internalization. USPIO-PAA showed 
no uptake. USPIO-PAA-GlcN 
featured high cellular uptake, bio-
compatibility, and sensitive in vitro 
and in vivo

7 Lee et al[36], 2010 MGIO Primary endothelial 
progenitor cells 

In vivo tracking of stem 
cells after 
transplantation

MGIO is an efficient label for the 
studying of relaxation induced by 
magnetic particles and cellular 
tracking by MRI

8 Thu et al[37], 2012 Self-assembling ferumoxytol- 
HPF nanocomplexes

(1) Hematopoietic stem 
cells; (2) Bone marrow 
stromal cells; and (3) 
Neural stem cells

Cell tracking by MRI HPF labeling facilitates the 
monitoring of infused or implanted 
cells by MRI

9 Unterweger et al
[82], 2017

Dextran-coated SPIONDex Human endothelial 
and monocytic cells

MRI imaging SPIONDex are extremely safe and 
represents a promising candidate for 
further clinical development

10 Han et al[83], 2021 3D-printed poly(lactic-co-
glycolic acid) scaffolds coated 
with IONPs

rBM-MSCs Rat Calvarial bone defect 
model to investigate 
Osteogenic differen-
tiation 

Increased the adhered cell number, 
and promoted cell spreading by 
upregulating the expression of 
integrin α1 and β1 and their 
downstream signaling molecules 
FAK and ERK1/2. ALP levels and 
Osteogenesis also significantly 
increased

11 Lee et al[43], 2009 MGIOs Human fetal 
mesenchymal stem 
cells

MSC tracking by MRI The use of M600 particles may be 
useful for cellular tracking using MRI

12 Mailänder et al
[44], 2008

Carboxylated superpara-
magnetic iron oxide particles

MSC Monitor trafficking of 
transplanted MSCs cells 
by MRI without 
transfection agents

Feasibility and efficiency of labeling 
MSC with SPIONs was determined

Superparamagnetic iron oxide 
nanoparticles conjugated with 

Molday ION is biocompatible with 
EVs. Labeling did not interfere with 

13 Dabrowska et al
[46], 2018

Human bone marrow 
MSCs EVs

Imaging of EVs 
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rhodamine (Molday ION 
Rhodamine B™)

the capability of EVs to re-enter 
hBM-MSCs. IONs have magnetic 
properties useful for imaging by MRI

14 Li et al[59], 2019 Fe3O4@PDA Rat bone marrow-
derived MSCs

Migration and homing of 
MSCs

Iron oxide nanoparticles increased 
the expression of CXCR4 in MSCs 
and improved their homing and ant-
inflammatory abilities

15 Yun et al[48], 2018 SPIONs with rhodamine B Mouse bone marrow-
derived MSCs

Enhanced homing effect 
in a model of olfactory 
injury

SPIONs-labeled MSCs produced 
better homing effects of MSCs in vivo

16 Meng et al[51], 
2017

SPIONs (Molday ION 
Rhodamine B™)

WJ-MSCs Gene carrying into 
cutaneous injury sites

Exposure to an external magnetic 
field increases transportation of 
SPIONs-labeled WJ-MSCs in vivo

17 Braniste et al[52], 
2020

ZnFe2O nanoparticles based on 
iron covered with a chemically 
stable crystalline GaN film

Rat bone marrow 
MSCs

Long term monitoring of 
tracked MSCs

These nanoparticles are compatible 
with MSCs. Increasing concen-
trations of nanoparticles inhibit 
proliferation of MSCs. GaN growth 
on zinc ferrite nanoparticles increases 
the chemical stability of the material

18 Silva et al[53], 2016 Gold and maghemite 
nanoparticles functionalized 
with DMSA: (1) Au-DMSA; and 
(2) γ-Fe2O3-DMSA

Dental pulp derived 
MSCs

Tracking of MSCs in vivo γ-Fe2O3-DMSA and Au-DMSA can 
be used as tracers for MSCs. Au-
DMSA is not suitable for visual-
ization and tracking. γ-Fe2O3-DMSA 
is a promising agent for MSC 
magnetic targeting

19 Moayeri et al[55], 
2020

PLL hydrobromide coated 
SPIONs

Rat ADSC Delivery and homing of 
transplanted MSCs in 
the target tissue

Transfection of ADSC by 
SPION/PLL is an appropriate 
protocol for cell therapy

20 Chung et al[57], 
2018

Dex-IO NPs hMSCs Accelerate and optimize 
MSC therapeutics for 
Parkinson disease

NPs enhance the migration of hMSCs 
toward damaged DA-like cells, 
induce hMSCs to differentiate to DA-
like neurons and promote the 
protection/regeneration effects of 
hMSCs

21 Li et al[84], 2020 Fe3O4@PDA NPs Mouse bone marrow 
MSCs

Optimization of MSC-
based therapeutic 
strategies for burn 
wound healing

NPs effectively incorporated into the 
MSCs without negative effects on cell 
properties and enhanced their 
migration ability

22 Dai et al[61], 2019 MIONs mESCs Induction of neural 
differentiation of stem 
cells

MIONs promoted the differentiation 
of the embryonic stem cells into 
nerve cells

23 Hachani et al[85], 
2017

3,4-dihydroxyhydrocinnamic 
acid (DHCA) functionalized 
IONPs

hBM-MSCs Imaging and contrast It was significantly phagocytized by 
MSCs and produced significant 
contrast enhancement for proper 
tracking

24 Daquinag et al[66], 
2013

Iron oxide (Fe2O3) and gold 
(Au) nanoparticles cross-linked 
with PLL

WAT ASC WAT transplantation 
applications and WAT-
based cell therapy

This NP-based 3D methodology 
potentially enhance WAT 
transplantation efficacy

25 Wang et al[67], 
2016

Superparamagnetic Fe3O4 
nanoparticles

hUCM-MSCs Long-term banking of 
living cells

Magnetic induction heating in a 
magnetic field with Fe3O4 
nanoparticles facilitates rewarming 
and cryopreservation outcome of 
hUCM-MSCs

26 Naseroleslami et al
[68], 2021

SPIONs hUCM-MSCs Protection against 
myocardial injury

SPION-labeled MSCs in the presence 
of magnetic field reduces inflam-
mation following myocardial injury

27 Zhang et al[69], 
2020

Fe3O4@GO MNCs Rat bone marrow 
mesenchymalstem cells

Bone tissue regeneration Fe3O4@GO MNCs reduced cell 
damage caused by ROS, improved 
the activity of MSCs and promote 
osteogenic differentiation

28 Hamid et al[86], 
2022

Combining Static Magnetic field 
with Samarium Cobalt (SmCO5)

hUC-MSCs Proliferative properties o 
MSCs

Enhancement of MSCs proliferation 
without changing their stemless and 
immunophenotype

Intracellular de novo synthesis of 
magnetic nanoparticles was 
demonstrated due to the overex-
pression of H-subunit of ferritin. This 

29 Van de Walle et al
[72], 2019

Citrate coated iron oxide 
(maghemite) nanoparticles

hBM-MSCs The long-term 
intracellular fate of MNP 
in MSCs and differen-
tiation status
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process could prevent long-term 
cytotoxicity and enhance MSCs 
differentiation

30 Labusca et al[73], 
2021

Fe3O4 MNP (1) Human primary 
adipose derived MSCs; 
and (2) hWJMSCs

Cartilage engineering Exposure to magnetic field increases 
ADSC-MNP chondrogenesis in 
ADSC, but not in WJMSC

31 Labusca et al[75], 
2020

Fe3O4 magnetite MNP Primary human 
ADSCs

Treatment of 
osteoporosis 

Parameters of magnetic field and the 
exposure way interfere with ADSCs 
differentiation in terms of adipogenic 
and osteogenic conversion.

32 Ishmukhametov et 
al[87], 2022

Citrate-stabilized MNPs that are 
Functionalized with calf thymus 
DNA solution (50 μg/mL) and 
immobilized on glass surface

Human ADSCs Differentiation of MSCs Enhanced the Chondrogenesis and 
Osteogenesis in hTERT-transduced 
MSCs and the use of glass surface 
increased the chondrogenesis rate 
and reduced the need to high level of 
growth factors in the differentiation 
medium

33 Hao et al[88], 2021 Magnetic Scaffold made from 
Chitosan, Laponite and Fe3O4

hUC-MSCs Proliferation and 
Osteogenesis

Enhanced the proliferation of hUC-
MSCs and increased Osteogenesis 
markers; ALP, OCN and type I 
collagen

34 Zhang et al[89], 
2022

3D magnetic scaffolds fabricated 
by incorporating MNPs into 
electrospun gelatin nanofibers 
coated with either citric acid or 
polyvinylpyrrolidone

BM-MSCs Osteogenesis and 
Chondrogenesis

Chondrogenesis-related genes 
COL2A1 and ACAN were selectively 
enhanced by magnetic scaffolds with 
citric acid-coated MNPs (CAG). 
Osteogenesis-related genes (RUNX2 
and SPARC were selectively 
upregulated by magnetic scaffolds 
with polyvinylpyrrolidone-coated 
MNPs

35 Ohki et al[90], 2020 SPIO and USPIO hUC-MSCs Labelling, Proliferation 
and differentiation

Remarkable increase in the signal 
intensity, proliferation and three-
lineage differentiation (Osteogenesis, 
Adipogenesis, and Chondrogenesis)

36 Theruvath et al[91], 
2021

Ferumoxytol and Ascorbic acid BM-MSCs Knee cartilage 
regeneration in minipigs

Hyaline-like cartilage regeneration in 
the knee joints of minipigs and 
improved Chondrogenesis were 
observed with significant upregu-
lation in the amount of collagen type 
II

37 Xu et al[77], 2021 SPIOs hUC-MSCs Survival and 
Immunomodulation in 
Mouse Sepsis model

Enhanced the survival and 
immunomodulatory abilities of 
MSCs by increasing the levels of HO-
1 and TRAF1 and promoted the 
polarization of macrophages to the 
M2 type. This was found to improve 
the liver- related injury in Sepsis

38 Liu et al[92], 2021 Fe3O4@PDA hUC-MSCs Homing and differen-
tiation in rat model of 
Sciatic Nerve Chronic 
Compression Injury

Fe3O4@PDA-labeled MSCs showed 
better homing to the spinal cord 
under magnetic field guidance and 
decreases decreased spinal nerve 
demyelination and c-Fos expression

hBM-MSCs: Human bone marrow-derived mesenchymal stem cells; PDA: Polydopamine; SPIOs: Superparamagnetic iron oxide nanoparticles; AD-MSCs: 
Adipose tissue-derived mesenchymal stem cells; BM-MSCs: Bone marrow derived Mesenchymal stem cells; USPIO: Ultrasmall superparamagnetic iron 
oxide; MNPs: Magnetic nanoparticles; OCN: Osteocalcin; ROS: Reactive oxygen species; GO: Graphene oxide; WAT: White adipose tissue; ASC: Adipose 
stromal cells; MIONs: Magnetic iron oxide nanoparticles; Dex-IO NPs: Dextran-coated iron oxide nanoparticles; PLL: Poly-L-lysine; DMSA: 2,3-
dimercaptosuccinic acid; WJ-MSCs: Wharton’s Jelly of the human umbilical cord-derived MSCs; EVs: Extracellular vesicles; HPF: Heparin-protamine; 
MGIO: Microgel iron oxide nanoparticle; MAPK: Mitogen-activated protein kinases; PI3K: Phosphatidylinositol 3-kinase; mESCs: Mouse embryonic stem 
cells; IL: Interleukin; TNF-α: Tumor necrosis factor-α; MRI: Magnetic resonance imaging; USPIO-PAA-GlcN: Glucosamine-modified iron oxide 
nanoparticles; MNC: Magnetic nanocomposites; HO-1: Heme oxygenase-1.

used MNPs to improve the transplantation characteristics of MSCs. Combining Nanotechnology with 
MSCs opens new avenues to enhance their therapeutic outcomes and long-term regenerative abilities. 
The incorporation of MNPs with MSCs has been extensively investigated and it revealed great chances 
to increase their survival, promote their homing and retention at the site of injury, improve their 
tolerance to stress microenvironments and enhance their integration with host tissues and trigger their 
differentiation. The use of MNPs with MSCs still in need for further investigation to answer many 
concerns surrounding their combination. Some of these concerns are related to assessing the safety 
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Figure 1 The prodigious therapeutic outcomes of combining mesenchymal stem cells with magnetic nanoparticles. MSC: Mesenchymal stem 
cell; MAPK: Mitogen-activated protein kinases; JNK: c-Jun NH2-terminal kinase; ERK: extracellular signal-regulated kinase; ROS: Reactive oxygen species; PI3K: 
Phosphatidylinositol 3-kinase; AKT: Protein kinase B; FOXO: Forkhead box O.

profile of MNPs on the long-run, determining the optimal non-toxic dose that can be added to MSCs 
based on the type of pathology and the ultimate target to be achieved, finding the best coating substrate 
to be used with MNPs without affecting their therapeutic functions, exploring the possibility of 
combining more than one MNPs for synergistic effects, finding the exact molecular mechanisms that are 
exerted by MNPs to alter the cellular pathways in MSCs, and studying the impact of the internal 
microenvironment which varies based on and the type of disease in influencing the uptake of MNPs by 
MSCs and their ultimate response. Future studies should also focus on addressing the role of MNPs in 
solving other MSCs therapy challenges including cellular heterogeneity which highly depends on the 
source of MSCs and the culturing procedures being used, the undesirable pre-transplantation differen-
tiation, and the switch in their immunological characteristics under stress microenvironments. A 
Schematic summary depicted the role of MNPs in improving the transplantation and biological charac-
teristics of MSCs can be found in Figure 1.

CONCLUSION
The regenerative abilities of MSCs have been thoroughly investigated and discussed. Despite the great 
improvement in understanding the curative mechanisms of MSCs, many challenges are still there which 
slow down the transferring of these cells in the treatment guidelines. Loss of tracking signal, poor 
migration and homing to the injury site, and undesirable differentiation are the most reported hurdles 
that thwart the therapeutic outcomes of MSCs in clinical trials. The new strategy of combining MSCs 
with MNPs has been proven to boost the success rate of MSCs transplantation. MNPs have been 
employed as an effective contrast agent for long term tracking and monitoring of injected MSCs. MNPs 
also increase the migration and homing tendency of MSCs and enhance the committed differentiation of 
these cells. Future studies should be designed to investigate the long term safety profile of these MNPs 
and determine the suitable formulation and doses based on the specificity of each disease model and the 
source of MSCs.
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