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Abstract
Hepatitis B virus (HBV) has posed a threat to public health, mainly resulting in 
liver damage. With long-term accumulation of extracellular matrix, patients with 
chronic hepatitis B are at high risk of developing into liver fibrosis and cirrhosis 
and even life-threatening hepatic carcinoma. The occurrence of complications 
such as spontaneous bacterial peritonitis and hepatic encephalopathy greatly 
increases disability and mortality. With deeper understanding of the bidirectional 
interaction between the liver and the gut (gut-liver axis), there is a growing 
consensus that the human health closely relates to the gut microbiota. Supported 
by animal and human studies, the gut microbiota alters as the HBV-related liver 
fibrosis initials and progresses, characterized as the decrease of the ratio between 
“good” and “potentially pathogenic” microbes. When the primary disease is 
controlled via antiviral treatment, the gut microbiota dysfunction tends to be 
improved. Conversely, the recovery of gut microbiota can promote the regression 
of liver fibrosis. Therapeutic strategies targeted on gut microbiota (rifaximin, 
probiotics, engineered probiotics and fecal microbiota transplantation) have been 
applied to animal models and patients, obtaining satisfactory results.

Key Words: Hepatitis B virus; Gut microbiota; Liver fibrosis; Liver cirrhosis; Hepatic 
encephalopathy; Fecal microbiota transplantation
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Core Tip: Intimate connection between the gut microbiota alteration and hepatitis B virus (HBV)-related 
fibrosis and complications has been supported by animal and human studies. Researchers and clinicians 
are making effort to control and reverse fibrosis by rebuilding a healthy gut microbiota. We herein discuss 
the gut microbiota alteration in HBV-related fibrosis and therapies targeted on reconstruction of gut 
microbiota homeostasis.
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28(28): 3555-3572
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INTRODUCTION
Hepatitis B virus (HBV) has brought about substantial global health problems, giving rise to approx-
imately 1.5 million new infections in 2019[1]. Balancing the pathogenic ability and immunity defense, 
some patients may experience chronic HBV infection, and even chronic hepatitis B (CHB). The different 
phrases are designed by the presence of hepatitis B e antigen (HBeAg), HBV DNA levels, alanine 
aminotransferase (ALT) values and liver inflammation, and CHB is mainly characterized by elevated 
ALT levels and moderate/severe liver diseases[2]. Chronic HBV infection tends to be asymptomatic 
initially, however, tissue repair against chronic inflammation may result in an immoderate accumu-
lation of extracellular matrix (ECM), so CHB patients are at high risk of developing progressive fibrosis 
and life-threatening cirrhosis. Complications, such as portal hypertension, spontaneous bacterial 
peritonitis (SBP)[3] and hepatic encephalopathy (HE)[4], are difficult to prevent and address. With 
hepatocellular carcinoma (HCC) coming along stealthily[5], approximately 820000 deaths were caused 
by HBV infection–related causes in 2019[1].

The human intestine, as an organ directly connected with the outside world, is colonized by microbes 
progressively after birth[6]. The human gut microbiota is now considered to be composed of approx-
imately 1014 bacteria[7], 200-300 fungal species[8] and abundant bacteriophages[9], and is increasingly 
seen as a significant superorganism[10]. Predominant strains in the adult intestine belong to 
Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria: Bacteroidetes and Firmicutes are the most 
dominant phyla and are mainly composed of gram-negative bacteria and gram-positive clostridia 
respectively[11]. The composition of the gut microbiota is influenced by age, race, nutrition, diet, 
immunity, disease and medication use, and has a strong interaction with the host[12-14]. The intimate 
association between gut microbiota homeostasis and multiple organ disease progression has been 
confirmed in the past decade, especially in some metabolic disorders[15], and intestinal and liver 
diseases[16].

The liver is closely connected with the gut via the gut-liver axis, defined as the bidirectional 
interaction between the liver and the gut via transport of bile acids, immunoreactive substances, 
nutrients, etc.[17]. When impairment of intestinal barriers and disturbances of the gut microbiota occur, 
gut-derived microbe/antigen translocation may lead to invasion of the liver. The association between 
gut microbiota alterations and chronic liver diseases (CLDs) has received great attention.

This review will concentrate on gut microbiota alterations in HBV-related liver fibrosis and 
summarize the cutting edge of new therapeutic strategies. We will summarize and discuss: (1) Gut 
microbiota alteration in HBV-related liver fibrosis; (2) Gut microbiota-related mechanisms of liver 
fibrosis; (3) Gut microbiota dysfunction in liver fibrosis complications; and (4) Gut microbiota-related 
treatment toward HBV-related fibrosis and complications.

GUT MICROBIOTA ALTERATION IN HBV-RELATED LIVER FIBROSIS
HBV-infected populations tend to obtain a gut microbiota that differs from that of healthy people 
(Table 1). Depending on host and viral factors, patients with HBV infection may experience different 
phrases[2]. In this part, gut microbiota alteration in the HBV persistence and different stages of HBV 
infection will be discussed.

HBV persistence
After the infection, HBV may be spontaneously cleared or cause chronic infection in different 
individuals: 95% of adult-acquired infections result in spontaneous clearance, while over 90% of 
newborn infections lead to chronic infections[18]. The same phenomenon has been observed in animal 

https://www.wjgnet.com/1007-9327/full/v28/i28/3555.htm
https://dx.doi.org/10.3748/wjg.v28.i28.3555
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Table 1 Gut microbiota alteration and additional findings in hepatitis B virus-related fibrosis

Ref. Population (n) Detection 
method Gut microbiota alteration Additional findings

Phylum

Bacteroidetes ↓

Firmicutes ↓

Family

Lu et al
[30]

Healthy volunteers (n = 32); 
HBV carriers (n = 30); CHB (
n = 31); Decompensated 
HBV-LC (n = 31)

qPCR

Bifidobacteria/Enterobacteriaceae 
↓

Copies of operons that code for virulence factors markedly 
increased. Fecal sIgA and TNF-α in decompensated HBV-LC 
patients were higher than other groups

Species 

(Bifidobacterium specific)

B. catenulatum ↓

B. longum ↓

Xu et 
al[142]

Healthy volunteers (n = 15); 
CHB (n = 16); HBV-LC (n = 
16)

qPCR

B. dentinum ↑

B. dentium, which was considered to be an opportunistic 
pathogen, increased in HBV-LC patients. Species composition 
of Bifidobacterium shifted from beneficial to pathogenic

Species (Lactobacilli specific)

L. rhamnosus ↓

Wu et 
al[143]

Healthy volunteers (n = 38); 
Decompensated HBV-LC (n 
= 61); HBV-LT (after LC) (n 
=74)

qPCR

L. fermentus ↓

Less complex fecal lactobacilli composition was found 
especially in decompensated HBV-LC patients

Phylum

Bacteroidetes ↓

Proteobacteria ↑

Family

Enterobacteriaceae ↑

Genera

Wei et 
al[38]

Healthy volunteers (n = 
120); HBV-LC (n = 120): 
CTP-A (n = 40); CTP-B (n = 
40); CTP-C (n = 40)

Solexa sequencing

Veillonella ↑

A negative correlation was observed between the Child-
Turcotte-Pugh scores and Bacteroidetes (P < 0.01)

Family

Lachnospiraceae ↓

Rikenellaceae, ↓

Porphyromonadaceae ↓

Ruminococcaceae ↓

Wang 
et al
[23]

Healthy volunteers (n = 22); 
CHB (n = 85): CP-A (n = 76); 
CP-B (n = 9)

16S rRNA 
sequencing

Veillonellaceae ↑

Streptococcus, Veillonella, Streptococcus and Haemophilus had 
strong correlations with liver function indices and serum 
metabolites. They were significantly higher in patients with 
higher Child-Pugh scores. The gut microbiota may be 
partially involved in the abnormal accumulation of serum 
metabolites

Phylum

Firmicutes/Bacteroidetes ↑

Genera

Megamonas ↓

Deng 
et al
[29]

Healthy volunteers (n = 20); 
HBV-LC (n = 80): CP-A (n = 
30); CP-B (n = 31); CP-C (n = 
19)

16S rRNA 
sequencing

Veillonella ↓

Gut microbiota alteration mentioned on the left were all 
independent risk or protective factors for HBV-LC. Serum 
endotoxin increased in patients with higher CP classes (P = 
0.000)

Phylum

Proteobacteria ↑

Bacteroidetes ↑

Firmicutes ↓

Family

Zeng 
et al
[140]

Healthy volunteers (n = 15); 
CHB (n = 21); HBV-LC (n = 
25); HBV-HCC (n = 21)

16S rRNA 
sequencing

Bifidobacteria/Enterobacteriaceae 
↓

Higher Bacteroidetes/firmicutes ratio represented for higher 
LPS exposure

Genera

Prevotella ↑

Wang 
et al

Healthy volunteers (n = 21); 
CHB (n = 69); F0-1 (n = 25); 

16S rRNA 
sequencing

Genera responsible for bile acid metabolism decreased in 
CHB fibrosis patients
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Bacteroides ↓[59] F2-4 (n = 44)

Ruminococcus ↓

Phylum

Actinobacteria ↑

Bacteroidetes ↓

Firmicutes ↓

Chen 
et al
[28]

Healthy volunteers (n = 21); 
HBV carriers (n = 23); CHB (
n = 28); HBV-LC (n = 25)

16S rRNA 
sequencing

Proteobacteria ↑

HBV-LC patients had higher bacterial network complexity 
with lower abundance of potential beneficial bacterial taxa

Yang 
et al
[27]

Healthy volunteers (n = 31); 
HBV carriers (n = 24); CHB (
n = 56); HBV-LC (n = 54); 
HBV-ACLF (n = 52)

16S rRNA 
sequencing

There are fluctuations in the 
changes

HBV carriers might be the most suitable donors for FMT for 
higher α diversity and abundance of potential beneficial 
bacteria

SpeciesWang 
et al
[37]

Healthy volunteers (n = 
877); CHB (n = 252); HBV-
LC (n = 162); HBV-ACLF (n 
= 212)

16S rRNA 
sequencing; 
metagenomic 
sequencing

Enterococcus faecium ↑

High abundance of Enterococcus is associated with 
progression while that of Faecalibacterium is associated with 
regression of HBV-ACLF

HBV: Hepatitis B virus; CHB: Chronic hepatitis B; ACLF: Acute-on-chronic liver failure; CP: Child-Pugh scores; CTP, Child-Turcotte-Pugh scores; FMT: 
Faecal microbiota transplantation; LC: Liver cirrhosis; LT: Liver transplant; qPCR: Quantitative polymerase chain reaction.

experiments, in which hepatitis B surface antigen (HBsAg) of immature mice remained positive[19]. The 
age-related difference in immune clearance of HBV is consistent with the stabilization time of the gut 
microbiota, and maturation appears to facilitate HBV clearance by diminishing the tolerance phenotype 
and stimulating the immunoreactive pathway[19,20]. Similarly, if the gut microbiota was greatly 
imbalanced by antibiotics, the depletion can impair intestinal barrier function and weaken the ability of 
humoral and cellular immunity to clear HBV: adult mice with a mature gut microbiota managed to clear 
HBV after 6 wk of infection, while they failed to do so after antibiotic use[19,21].

Acute HBV infection
Due to the difficulty of studying acute HBV infection in humans, animal studies have been used: the 
ratio of Firmicutes/Bacteroides increased in the early stages of infection (Day 14) and decreased 
significantly over time (Day 49) in two mouse groups that were constructed with different plasmids[22].

Chronic HBV infection and non-end-stage CHB
Compositional changes have already occurred in the gut microbiota in early-stage CHB patients: in the 
Child-Pugh A and B groups, the abundance of 5 operational taxonomic units (OTUs) belonging to 
Actinomyces, Clostridium sensu stricto, unclassified Lachnospiraceae and Megamonas increased, while 27 
OTUs decreased, which belong to Alistipes, Asaccharobacter, Bacteroides, Butyricimonas, Clostridium IV, etc.
[23].

To further understand the gut microbiota dynamics in chronic HBV infection and CHB, there are also 
studies concentrating on the association with clinical indicators reflecting liver function and infection 
state. The gut microbiota of subjects from the chronic HBV infection group with normal ALT (NALT) 
levels was rather similar to those from the healthy volunteers, while significantly different from those 
from the high ALT level group[24]; however, in a recent study, the authors presented a slightly different 
perspective that the microbial diversity and abundance of Lactobacillus, Clostridium, and Bifidobacterium 
were lower in CHB-NALT patients than in healthy volunteers[25]. Streptococcus, Veillonella, Streptococcus 
and Haemophilus showed high correlations with some serum metabolites, including aromatic amino 
acids (phenylalanine and tyrosine), which are assumed to play pathogenic roles the progression of CHB
[23]. The gut microbiota also varies according to viral load: HBV-infected individuals with a low viral 
load showed high diversity and carry a predominance of taxa associated with fatty acid and lipid 
metabolism[26].

As the disease progresses, the gut microbiota changes dynamically: the α diversity of asymptomatic 
HBV carriers slightly increased compared with that of healthy donators, while that of patients in the 
other three groups (CHB, liver cirrhosis, and acute-on-chronic liver failure (ACLF)) decreased with the 
severity of the disease[27]. The gut microbiota of patients with liver cirrhosis showed lower diversity 
and higher network complexity[28]. Veillonellaceae and Lachnospiraceae families were depleted in patients 
with liver cirrhosis compared with those in healthy volunteers, while Megamonas and Veillonella genera 
were depleted and enriched in patients, respectively[29]. Additionally, copy numbers of Enterobac-
teriaceae increased and lactic acid bacteria were depleted, with marked variation in the intestinal 
community of CHB patients[30]. The Bifidobacteria/Enterobacteriaceae ratio can be used for tracing the 
progression of liver disease[30]. With the magnitude of severity of liver disease (estimated as increasing 
liver Child-Pugh score), partial functional genes were correlated, such as those encoding aspartate-
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ammonia ligase, transaldolase, adenylosuccinate synthetase and IMP dehydrogenase[31]. According to 
the combined results of multiple studies, there is a well-acknowledged decrease in Firmicutes abundance 
and increase in Proteobacteria during the progression of HBV-related fibrosis.

HCC and end-stage CHB
Liver cirrhosis is a dangerous premalignant condition with an increasing incidence of genetic 
aberrations and an elevated risk of HCC[32,33]. HCC patients tend to present a distempered gut 
microbiota and abnormal metabolites[34]. The butyrate-producing genera were depleted, while 
lipopolysaccharide (LPS)-producing genera were enriched in liver cirrhosis and HCC patients, and 
Clostridioides abundance was generally observed to be positively related to the tumor size of HCC[35]. In 
another study, Bacteroides, Lachnospiracea incertae sedis, and Clostridium XIVa were enriched in HCC 
patients, and there was a consistency of positive correlation with the tumor burden[36]. By integrating 
the clinical characteristics and database analysis, serum bile acids may be the communication mediators 
between these three genera and the host transcriptome[36]. HCC can be secondary to a number of 
causes, including HBV, Hepatitis C virus (HCV) and so on. Compared with non-HBV non-HCV HCC, the 
abundance of Prevotella was much greater in HBV-related HCC group[34]. HBV-related HCC group had 
higher abundance of pathways related to DNA formation and function (including chaperones and 
folding catalysts, DNA replication proteins and chromosome), which supported that HBV can impair 
the normal function of DNA[34].

Additionally, dynamic alteration of gut microbiota is a valuable indicator to predict the prognosis of 
end-stage liver disease. The richness of Enterococcus was significantly higher in the HBV-related ACLF 
progression group, while a high abundance of Faecalibacterium was associated with regression (groups 
were divided according to the model for end-stage liver disease at discharge)[37]; a higher abundance of 
E. coli is consistent with an increasing level of LPS ligand in the circulation of patients with end-stage 
liver disease[38-40].

GUT MICROBIOTA-RELATED MECHANISMS OF LIVER FIBROSIS
Liver fibrosis is fibrous scar caused by excess accumulation of ECM[41]. It is driven by the chronic and 
persistent occurrence of parenchymal injury and the activation of the inflammatory response, followed 
by a continuous repair reaction and liver fibrogenesis[42]. For HBV infection, liver infringement comes 
from not only HBV but also gut-derived microbe/antigen translocation and abnormal metabolites.

There is a close connection between the gut and liver through known organic pipelines (bile duct and 
portal vein)[43], and whether there are detours needs further study. The liver produces and sends 
primary bile acids (BAs) and immunologic active materials (some antimicrobial peptides) through the 
biliary tract to assist in intestinal digestion and immunity. Conversely, the portal vein carries secondary 
BAs, nutrients, gastrointestinal metabolites from the gut to the liver, to provide nutrients and get detoxi-
fication and biotransformation[17,44] (Figure 1A).

In a non-disease state, intestinal physical and chemical barriers effectively block pathogens or toxic 
substances and decrease bacterial colonization. The barriers mainly include mucin proteins secreted by 
goblet cells, secretory IgA (sIgA) secreted by plasma cells in lymphoid follicles of the lamina propria 
and tight junctions between intestinal epithelial cells (IECs)[45] (Figure 1B). Disorders of these barriers 
can lead to increased intestinal permeability and translocation of microbial components or metabolites 
(LPS, microbial DNA) in CLD patients, allowing microbes and antigens to translocate into the portal 
vein[45], and subsequently induce chronic or acute inflammatory responses of different tissues and 
organs[46] (Figure 1C).

Intestinal barrier impairment
The gastrointestinal mucus layer is the first line of defense against microbes, and the mobility enables 
the layer to carry pathogens distally and reduce microbial colonization[47]. The experimental mouse 
models with liver cirrhosis [induced by bile-duct ligation (BDL) or tetrachloromethane (CCl4)] show a 
reduced thickness of the mucus layer, with loss of goblet cells[48]. These cirrhotic mice show 
pathological bacterial translocation, which has not been found in healthy or pre-hepatic portal-
hypertensive mice[48]. sIgA is the predominant contributor to mucosal immunity, recognizing and 
eliminating bacterial protein antigens, and it also participates in barrier layer limitation of 
microbe/antigen translocation[49]. Patients with HBV-induced decompensated cirrhosis have increased 
sIgA content in blood and stool[30], consistent with the increased bacterial migration. Simultaneously, 
intestinal tight junctions are weakened in patients with liver cirrhosis, and the expression of tight 
junction proteins is decreased[50,51]. Zonulin, an effective physiological regulator of tight junctions, is 
one of the markers of intestinal permeability[52]. Serum zonulin content is significantly increased in 
HBV-related liver cirrhosis and HCC patients and the levels are correlated with the stages[53].
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Figure 1 Mechanism of gut microbiota-related liver fibrosis/cirrhosis. A: Gut-liver axis. The close bidirectional connection between gut and liver is 
mainly through the portal vein and bile duct; B: Intestinal barriers. From the intestine lumen, intestinal barriers are mainly formed by mucin proteins, sIgA and 
intercellular junctions, especially tight junctions between intestinal epithelial cells. The asterisk means when the intestinal barriers are weakened or broken, 
microbe/antigen translocation ensues; C: Liver fibrosis/cirrhosis and gut microbe/antigen translocation. Compared with normal state, gut microbe/antigen translocation 
and liver fibrosis/cirrhosis may drive each other in chronic hepatitis B patients; D: Mechanisms of liver fibrosis/cirrhosis process and regression. Receiving the 
activation signal, hepatic stellate cells (HSCs) are activated into fibroblasts to form the fiber. As the activation signal ceases, the activated HSCs are inactivated or 
apoptotic. When fiber degradation predominated, fibrosis is reversed. HSCs: Hepatic stellate cells; LPS: Lipopolysaccharide; LSECs: Liver sinusoidal endothelial 
cells.

Gut-derived microbe/antigen translocation and metabolic dysbiosis 
The impairment of the intestinal barrier greatly reduces the efficiency of blocking microbe/antigen 
translocation. Gut-derived microbes or fragments and metabolites enter the venous system, travel 
through the portal vein to invade the liver. Diversity of circulating bacteria in cirrhosis patients is 
consistent with the presence of dysbiosis[54]. Recent studies have also supported that the occurrence of 
intestinal bacterial overgrowth and bacterial translocation in cirrhosis using methods such as bacterial 
DNA sequencing[55] and fluorescence microscopy[21] and suggested that the mechanism is associated 
with antimicrobial host defense[56]. Simultaneously, LPS is one of the component of the outer 
membrane of Gram-negative bacteria, mainly from Enterobacteriaceae[57]. The dysbiosis of the gut 
microbiota in mice leads to endotoxemia, which may bring about Kupffer Cell (KC) IL-10 production 
and KC-mediated T cell suppression[57]. And endotoxemia is highly related to the severity in liver 
diseases and complications[58].

Additionally, abnormal composition of the gut microbiota results in metabolic disorders, among 
which the metabolism of BAs has aroused great concern[25]. The level of fecal total BAs decreased and 
the ratio of conjugated and primary BAs increased in CHB patients without liver cirrhosis, which may 
be the prelude of following changes[25]. And there is a trend that abundance of the bacteria genera 
responsible for BA metabolism is decreased in CHB patients with moderate/advanced fibrosis[59,60]. 
There is also a link between gut bacteria-controlled BA metabolism and liver antitumor immunosur-
veillance via natural killer T (NKT) cells[61].

Immune-mediated fibrosis and regression
Pattern recognition receptors (PRRs) are highly conserved host sensors that are able to recognize 
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exogenous and endogenous antigens, including pathogen-associated molecular patterns (PAMPs) and 
host-derived damage-associated molecular patterns (DAMPs)[62]. PRRs are expressed by a plethora of 
immune cells, especially macrophages[63]. Macrophages could be at the center of innate immune 
regulation, linking microbe/antigen translocation and liver inflammation or fibrosis[64]. Recognition of 
PRRs sends the initial signal to active downstream adaptor proteins to undergo maturation and 
assemble transcription factors, such as nuclear factor (NF)-κB[65,66]. The produced cytokines then 
recruit inflammatory cells, drive antimicrobial activities and promote myofibroblast formation[67].

Myofibroblasts, the collagen-producing cells, are not present in healthy livers[68]. In response to toxic 
liver injury, myofibroblasts are mainly transformed from activated hepatic stellate cells (HSCs)[69]. 
There are four different stages of HSCs, namely, quiescent, activated (equivalent to collagen type I-
producing myofibroblasts), inactivated and senescent[41]. Under physiological conditions, quiescent 
HSCs stay in the space of Disse and function as the major vitamin A storage site[70]. Simulated by 
several cytokines (especially transforming growth factor (TGF)-β)[71], quiescent HSCs modulate 
phenotypes and transform into activated HSCs, and the activated HSCs migrate and secrete ECM to 
produce a fibrous scar[41]. After removing the initial driver, there is a decrease in the levels of pro-
inflammatory cytokines (interleukin-6, interleukin-1β and tumor necrosis factor) and TGF-β, and a rapid 
decline of the counts of activated HSCs[41]. Activated HSCs can be transformed into inactivated or 
senescent cells, and stop producing type-I collagen fibers[72]. Later, when fiber degradation by matrix 
metalloproteinases overwhelms fiber formation, liver fibrosis can be controlled, regressed and even 
reversed[73].

In conclusion, increased microbe and endotoxin loads in the portal vein cause PRR activation on 
immune cells, especially on macrophages, which leads to the activation of quiescent HSCs into activated 
HSCs[44,66]. Later, activated HSCs proliferate in response to various cytokines, secrete type-I collagen 
fiber and make liver fibrotic[41]. Upon cessation of underlying injury, myofibroblasts undergo 
inactivation or apoptosis, and fibrosis can be discontinued or reversed[41] (Figure 1D). This is the 
mechanism of effective treatment to control and regress liver fibrosis.

GUT MICROBIOTA DYSFUNCTION IN LIVER FIBROSIS COMPLICATIONS
As mentioned above, gut microbiota alterations may drive immune-related inflammation and fibrosis in 
the liver. Due to the accumulation of collagen fiber, liver stiffness is increased, bloodstream transport is 
blocked, healthy liver parenchyma is replaced and liver biotransformation and detoxification abilities 
are weakened[74]. As the disease progresses into the decompensation stage, patients may experience 
deadly complications, such as portal hypertension, spontaneous bacterial peritonitis (SBP) and HE. The 
relationship among gut microbiota alteration, liver fibrosis and portal hypertension is similar to the 
question of the chicken and the egg, as they drive and affect each other[75]. Compared with 
compensated cirrhosis, gut microbiota composition is characterized by an increase in the abundance of 
potentially pathogenic bacteria in the decompensation stage, especially Alcaligenaceae, Porphyromon-
adaceae, Veillonellaceae and Enterobacteriaceae[76].

SBP 
SBP refers to the infection of ascites without an apparent intra-abdominal focus[77]. It is a severe 
infection and is often fatal in patients with cirrhosis and ascites[78]. The pathogen of SBP in liver 
cirrhosis patients is mainly from the intestinal tract.

More than two decades ago, DNA fragments of 30 bacterial isolated from ascites, mesenteric lymph 
nodes, portal blood, and ileal flora were compared[79]. The same bacterial strain was simultaneously 
isolated in ascites and in mesenteric lymph nodes and/or the ileum in 7/8 (87%) instances[79]. 
Intraperitoneal LPS increased TLR4 (Toll-like receptor 4, the canonical PRR for LPS) expression and 
amplified portal hypertension in rat liver fibrosis[80].

HE
HE is a fatal central nervous system complication caused by acute and chronic hepatitis or 
decompensated cirrhosis[81], which is considered consciousness disturbance after ammonia-related 
cerebral edema[82]. HE patients tend to have a poor prognosis and high mortality and recurrence rates, 
with greatly increasing economic and nursing burdens[83].

Currently, there is an increasing consensus that the gut microbiota and gastrointestinal metabolites 
play an important role in the initiation and progress of HE. On the basis of the gut-liver axis mentioned 
above, researchers proposed the concept of the gut-brain-liver axis to describe the role of the gut 
microbiota[84]. Cognitive dysfunction in cirrhosis is related to a decrease in the abundance of autoch-
thonous families and an increase in Alcaligenaceae and Porphyromonadaceae[85,86].

On the one hand, gut microbiota alteration in the decompensation stage is consistent with the 
accumulation of microbe-derived products, including ammonia, mercaptans, benzodiazepine-like 
substances, and indoles[76]. These products can pass the blood-brain barrier and alter astrocyte 
function, resulting in osmotic or oxidative stress, mitochondrial dysfunction, neurotransmission 
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disorder, etc.[81]. On the other hand, neurotransmitters produced by the microbiota, including 
serotonin, dopamine, and aminobutyric acid, can act on specific receptors of exogenous primary afferent 
neuron cells, or cross the blood-brain barrier to act as active neurotransmitters[87]. The complex 
network among the enteric nervous system, the autonomic nervous system and the neuroendocrine and 
neuroimmunity systems of the central nervous system has a mutual impact on the gut microbiota, and 
the up-down or down-up regulation mechanisms need further exploration[84].

GUT MICROBIOTA-RELATED TREATMENT TOWARD HBV-RELATED FIBROSIS AND 
COMPLICATIONS
Based on the fibrosis regression theory mentioned above, removing the cause is the key to controlling 
and reversing liver fibrosis (Tables 2 and 3). For more than a decade, antiviral therapy has been 
recognized as an effective method to prevent, control and even reverse fibrosis and cirrhosis[88]. 
Rifaximin reduces the virulence of the overgrown gut microbiota[89]. With further understanding of the 
connection between the gut microbiota and HBV-related fibrosis, scientists have suggested that host 
health depends on the balance of the composition of the entire microbial community rather than one or 
a few dominant organisms[90]. New therapeutic strategies for HBV-related fibrosis, cirrhosis and 
complications have been broadened to regulate the gut microbiota through probiotic supplementation 
and microbiota transplantation from healthy donors.

Gut microbiota stabilization with antiviral treatment
At present, the main endpoint of all current treatment strategies is to maintain long-term suppression of 
HBV replication[2]. Two main options are nucleoside analogs (NAs) and interferon alpha[91]. NAs with 
a high barrier to HBV resistance, including entecavir (ETV), tenofovir disoproxil fumarate (TDF) and 
tenofovir alafenamide (TAF), are believed to be favorably safe and long-acting[92]. Antiviral treatment 
(AVT) exerts a positive influence on survival rate and quality of life by preventing disease progression, 
reversing and degrading fibrosis and cirrhosis[93,94], and even reducing HCC incidence and mortality 
in CHB patients[95].

ETV therapy reverses gut microbiota dysbiosis induced by HBV infection in a mouse model[96]. And 
in a controlled cross-sectional and longitudinal real-world study, the species abundance of the gut 
microbiota increased markedly after ETV treatment[97]. After 8 wk of ETV treatment, the abundance of 
Clostridium sensu stricto 1, Erysipelotrichaceae UCG-007 and Intestinibacter increased significantly, and that 
of Streptococcus, Atopobium and Murdochiella was markedly reduced[97]. Although the addition of 
Clostridium butyricum (CB) to ETV failed to improve the serum biochemical, immunologic and virologic 
variables, addition of CB affected the gut microbiota in CHB patients treated with ETV[98]. While there 
is a lack of dynamic and synergetic studies on liver fibrosis outcomes and gut microbiota alterations 
during AVT, collaborative microbes contributing the most to antiviral-intervened HBV-related fibrosis 
cannot be pinpointed definitively.

Rifaximin
Rifaximin is a rifamycin-based nonsystemic antibiotic with low gastrointestinal absorption and good 
antibacterial activity[89,99]. The gastrointestinal tract is the main therapeutic target of rifaximin, and it 
has been widely used in controlling HE with infrequent side effects and a favorable long-term safety 
profile[100,101].

Current ideas suggest that rifaximin may have positive implications for liver cirrhosis and complic-
ations by acting on the gut microbiota. However, according to a randomized trial, there seems to be a 
minor impact on the composition of the gut microbiota[102]. Enrolled patients with cirrhosis and ascites 
were divided into two groups to receive rifaximin or placebo for 4 wk. Rifaximin decreased gut bacterial 
abundance, while no effect on particular species was observed; blood bacterial richness was decreased 
and the difference in Pseudomonadales abundance was relatively obvious[102]. And there was no 
difference in circulating markers of inflammation between the two groups[102]. Two additional studies 
also supported that rifaximin has little influence on gut microbiota abundance[103], but the metabolite 
levels altered: after rifaximin application, endotoxemia was relieved, and serum saturated and 
unsaturated fatty acid levels were increased significantly[104]. The former conclusion agreed with a 
study on experimental mice[105]. Therefore, rather than having a bactericidal effect, rifaximin seems to 
have direct effects on bacterial function and virulence[89].

Probiotics and synthetic probiotics
Probiotics are living nonpathogenic microorganisms, and treatment doses (at least 106 viable CFU/g) 
may help temper the gut microbiota[106]. Lactobacillus and Bifidobacterium genera are widely reported as 
clinically available probiotics[107]. In recent studies, probiotics have been broadly used to regulate the 
gut microbiota for further positive influences on primary diseases, such as gastrointestinal dysfunctions
[108,109], metabolic diseases[110,111] and psychoneurotic disorders[112,113].
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Table 2 Gut microbiota-related treatment toward hepatitis B virus-related fibrosis and complications (studies in animal models)

Ref. Study populations (n) Treatment and grouping (n) Conclusions

Antiviral therapy

Li et al[96] AAV-mediated persistent HBV 
infection (AAV-HBV) mice (n = 10)

35 d after HBV infection, 4 wk of daily 
ETV treatment. ETV (n = 5)

Gut microbiota dysbiosis of the AAV-HBV mice was 
reversed by ETV treatment with restored α diversity and 
changed proportion of Akkermansia, Lacnospiracea and 
Marvinbryantia

Rifaximin

Kang et al
[105]

Germ-free mice (n = 16) 15 d of rifaximin 100 mg/(kg·d), or 
humanized with stools from a HCV-
induced cirrhotic patient with MHE. 
Rifaximin (n = 4); Humanized (n = 4); 
Rifaximin + humanized (n = 4)

Rifaximin beneficially altered intestinal ammonia 
generation by regulating intestinal glutaminase expression 
independent of gut microbiota. MHE-associated fecal 
colonization resulted in intestinal and systemic inflam-
mation. It was ameliorated with rifaximin

Engineered probiotics

Nicaise et 
al[120]

Ornithine transcarbamoylase-
deficient Sparse-fur mice; Carbon 
tetrachloride rats; Thioacetamide-
induced acute liver failure mice

NCIMB8826 (wild-type strain Lactoba-
cillus plantarum), or EV101 (engineered 
Lactobacillus plantarum, LDH-/AlaD+) 
oral and intrarectal administration

EV101 administration was effective in controlling 
hyperammonemia in constitutive animal models with a 
significant effect on survival, which might be involved 
with direct ammonia consumption in the gut

Kurtz et al
[121]

Ornithine transcarbamylase-deficient 
spfash mice; Thioacetamide-induced 
acute liver failure mice; Healthy 
volunteers (n = 52)

Non-modified Escherichia coli Nissle 1917 
(EcN), SYNB1020 (engineered EcN, Δ
argR, ΔthyA, malEK:PfnrS-argAfbr) 
administration

SYNB1020 converted NH3 to l-arginine in vitro, and 
reduced systemic hyperammonemia, improved survival in 
mouse models. SYNB1020 was well tolerated in healthy 
volunteers

Ochoa-
Sanchez et 
al[122]

Bile-duct ligated rats Non-modified EcN, S-ARG, or S-ARG + 
BUT administration

S-ARG converted ammonia to arginine, it was further 
modified to additionally synthesize butyrate, which had 
the potential to prevent HE

FMT

Liu et al
[134]

Germ-free mice Sterile supernatant or entire stool from 
pre-FMT and post-FMT cirrhotic patients 
with HE was transplanted to Germ-free 
mice

Transferred microbiota mediated neuroinflammation. 
Cirrhosis-associated dysregulation of gut microbiota was 
related with frontal cortical inflammation

AAV: Adeno-associated virus; HBV: Hepatitis B virus; ETV: Entecavir; HCV: Hepatitis C virus; MHE: Minimal hepatic encephalopathy; HE: Hepatic 
encephalopathy; FMT: Fecal microbiota transplantation.

The role of probiotics in complications of HBV-related fibrosis and cirrhosis has been validated, 
especially for HE. Probiotics can drive the gut microbiota, triggering emotional brain signatures[114]. 
For minimal HE, probiotic therapy (Lactobacillus acidophilus) can improve blood ammonia and psycho-
metric tests and reduce the risk of overt encephalopathy deterioration[115]. Further studies confirmed 
that patients’ cognition, venous ammonia level and intestinal mucosal barrier function were 
significantly improved after 3 mo of probiotic use (Clostridium butyricum combined with Bifidobacterium 
infantis), and the predominant bacteria (Clostridium cluster I and Bifidobacterium) were obviously 
enriched in the probiotic-treated group, while Enterococcus and Enterobacteriaceae were depleted[116]. 
The combination of probiotics and lactulose is effective for the secondary prophylaxis of HE patients 
with cirrhosis[117]. Simultaneously, probiotics may work by promoting the growth of beneficial 
microbes and preventing PAMP-mediated liver inflammation and the anti-proliferative, anti-
angiogenic, and anti-metastatic effects of the antioxidant can block the progress of HCC[118].

Additionally, rapid progress in synthetic biology has brought more options, which makes engineered 
live biotherapeutics an available and promising strategy[119]. More than one decade ago, the genetically 
engineered ammonia-hyperconsuming strain NCIMB8826 was verified to exhibit a beneficial effect at a 
lower dose than its wild-type counterpart[120]. In recent years, more engineered bacteria have been 
constructed to accelerate ammonia metabolism, reduce blood ammonia concentration and reduce HE 
incidence[121,122]. One team from Synlogic Inc. engineered oral probiotic Escherichia coli Nissle 1917 
(Ecn) to create strain SYNB1020[121]. SYNB1020 is able to convert NH3 to L-arginine in vivo and reduce 
hyperammonemia in two mouse models (ornithine transcarbamylase-deficient spfash mice and 
thioacetamide-induced liver injury mice). Satisfyingly, it showed metabolic activity and good tolerance 
in a phase 1 clinical study of 52 healthy adult volunteers. Later, another group modified Ecn to consume 
and convert ammonia to arginine, which was further modified to additionally synthesize butyrate[122]. 
Both of these studies showed that engineered probiotics have positive therapeutic significance for 
hyperammonemia and underlying potential for HE prevention. However, these strains have not 
progressed to clinical studies in hyperammonemia patients, and the clinical effects need further study.
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Table 3 Gut microbiota-related treatment toward hepatitis B virus-related fibrosis and complications (studies in human)

Ref. Study populations (n) Treatment and grouping (n) Conclusions

Antiviral therapy

Lu et al
[97]

Healthy volunteers (n = 
30); CHB (n = 30)

8 wk of daily ETV treatment. ETV (n = 30) After ETV treatment, gut microbiota abundance increased 
markedly, blood biochemical, immunological and virological 
responses improved significantly

Lu et al
[98]

Healthy volunteers (n = 
30); CHB patients (n = 60)

8 wk of daily ETV treatment, or with 
additional CB. ETV (n = 30); ETV + CB (n = 
30)

Additional CB fail to improve blood biochemical, immunological 
and virological responses, but affects the gut microbiota in the 
CHB patients treated with ETV

Rifaximin

Bajaj et al
[104]

Decompensated LC 
patients with MHE (n = 
20):CHB (NM)

8 wk of rifaximin 550-mg BD. Rifaximin (n 
= 20)

Rifaximin affected little on gut microbiota, there was just a modest 
decrease in Veillonellaceae and increase in Eubacteriaceae. Rifaximin 
significantly improved cognition and endotoxemia, it increased 
increase in serum saturated and unsaturated fatty acids post-
rifaximin

Lutz et al
[144]

Decompensated LC 
patients with ascites (n = 
152): Viral hepatitis (n = 35)

Prophylactic antibiotic treatment before 
the time of paracentesis. Rifaximin (n = 
27); Other systemic antibiotics (n = 17)

Prophylactic rifaximin did not reduce SBP occurrence. Prophy-
lactic rifaximin was associated with the dominant bacteria in 
ascites: Escherichia coli and enterococci were dominant of patients 
without prophylaxis, klebsiella species were mostly recovered 
from the rifaximin group

Kimer et al
[102]

Decompensated LC 
patients (n = 54): CHB 
(NM)

4 wk of rifaximin 550-mg BD or placebo 
BD. Rifaximin (n = 36); Placebo (n = 18)

Rifaximin had minor effects on bacteria translocation and gut 
microbiota. Rifaximin showed little impact on the inflammatory 
state (reflected as the level of TNF-α, IL-6, IL-10, IL-18, SDF-1α, 
TGF-1β, CRP)

Kaji et al
[103]

Decompensated LC 
patients (n = 30): CHB (n = 
4)

4 wk of rifaximin 1200 mg/d. Rifaximin (n 
= 30)

Rifaximin alleviated HE and endotoxemia with improved 
intestinal hyperpermeability, and it is involved in a gut microbial 
change. Rifaximin didn’t affect serum proinflammatory cytokine 
levels (TNF-α, IL-6, IFN-γ, IL-10)

Probiotics

Agrawal 
et al[117]

LC patients with recovered 
HE (n = 235): CHB (n = 49)

3 mo of lactulose 30–60 mL/d, or 3 
capsules of probiotics per day, which 
contained 4 strains of Lactobacillus. 
Lactulose (n = 80); Probiotics (n = 77)

Lactulose and probiotics were effective for secondary prophylaxis 
of HE in cirrhotic patients

Ziada et al
[115]

Decompensated LC 
patients with MHE (n = 
90): CHB (NM)

4 wk of lactulose 30–60 mL/d, or 3 
capsules of probiotics per day, which 
contained Lactobacillus acidophilus. 
Lactulose (n = 30); Probiotics (n = 30)

Probiotic was better tolerated than lactulose. Both of them can 
improve blood ammonia and psychometric tests and reduce the 
risk of developing overt HE. Magnetic resonance spectroscopy 
showed more improvement in the levels of brain neurometabolites 
in the probiotic group

Xia et al
[116]

Decompensated HBV-LC 
patients with MHE (n = 67)

3 mo of probiotics 1500-mg TD, which 
contained Clostridium butyricum combined 
with Bifidobacterium infantis. Probiotics (n = 
30)

After probiotics treatment, the therapeutic bacteria were 
significantly enriched, while Enterococcus and Enterobacteriaceae 
were decreased. Probiotics contributed to the improved cognition 
and the decreased ammonia levels

FMT

Ren et al
[132]

CHB with positive HBeAg, 
received over 3 yr of 
antiviral treatment (n = 18)

FMT was performed by gastroscope every 
4 wk until HBeAg clearance. FMT (n = 5)

FMT was effective on HBeAg-positive CHB, especially in patients 
who could not cease the oral antiviral treatment even after long-
term treatment

Bajaj et al
[135]

Decompensated LC 
patients with recurrent HE 
(n = 20). CHB (NM)

After 5 d of antibiotics, FMT was 
performed by enema, or standard of care 
(SOC, rifaximin/lactulose) was applied. 
FMT (n = 10); SOC (n = 10)

FMT increased diversity and beneficial taxa of gut microbiota, 
improved cognition and showed good tolerance, other than SOC

Bajaj et al
[136]

Decompensated LC 
patients with recurrent HE 
(n = 20). CHB (NM)

FMT was performed by enema, or 
standard of care (SOC, 
rifaximin/lactulose) was applied. FMT (n 
= 10);  SOC (n = 10)

Oral FMT capsules are safe and well tolerated. Post-FMT, 
duodenal mucosal diversity increased with higher Ruminococcaceae 
and Bifidobacteriaceae and lower Streptococcaceae and Veillonellaceae. 
Reduction in Veillonellaceae were noted post-FMT in sigmoid and 
stool

Chauhan 
et al[133]

CHB with positive HBeAg, 
received over 1 years of 
antiviral treatment (n = 18)

6 FMTs were performed by gastroscope 
every 4 wk FMT (n = 12)

FMT appeared to be safe and effective on HBeAg-positive CHB in 
viral suppression and HBeAg clearance

CHB: Chronic hepatitis B; CB: Clostridium butyricum; CRP: C-reactive protein; EcN: Escherichia coli Nissle 1917; ETV: Entecavir; HBeAg: Hepatitis B e 
antigen; HE: Hepatic encephalopathy; IFN: Interferon; IL: Interleukin; LC: Liver cirrhosis; MHE: Minimal hepatic encephalopathy; NM: Not mentioned; 
SBP: Spontaneous bacterial peritonitis; SDF-1α: Stromal cell-derived factor 1-α; TDF: Tenofovir disoproxil fumarate; TGF-1β: Transforming growth factor β
-1; TNF: Tumor necrosis factor; FMT: Faecal microbiota transplantation.
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Fecal microbiota transplantation
Fecal microbiota transplantation (FMT) is an emerging treatment method that transfers the gut 
microbiota from a healthy donor to a patient[123]. Due to its ability to directly reshape or rebuild the 
recipient’s gut microbial communities, FMT is one of the most promising therapies balancing and 
stabilizing the gut microbiota[76], and it has been applied to research-based treatment in animal models 
of a variety of diseases[124,125] and to study the mechanisms[126,127]. In recent years, FMT has been 
expanded to clinical treatment for human disease as a noninvasive strategy for conditions including 
recurrent Clostridium difficile infection[128], inflammatory bowel disease[129], severe obesity and 
metabolic syndrome[130]. Regarding the mechanism, the gut microbiota structure can be improved by 
FMT, and a clinical trial employing autologous FMT supported this point[131].

Clinical trials have also aimed to determine whether CHB patients can benefit from FMT therapy. In a 
pilot study carried out in China, FMT showed the potential to induce HBeAg clearance in HBeAg-
positive CHB patients after long-term AVT: There was a significant HBeAg level decline in the FMT 
group (FMT combined with AVT), while no decline in the control group (AVT only) was found[132]. 
The results were consistent with a nonrandomized controlled clinical trial carried out in India: after 1 
year of FMT therapy for 6 terms, the FMT group (FMT + AVT) seemed to show potential effectiveness 
and safety compared with those of the AVT group (AVT only)[133]. Some researchers have also 
hypothesized that FMT of some potential beneficial bacteria can change the occurrence of disease, and 
HBV carriers might be the most suitable donors for slightly higher microbiota abundance[27]. However, 
due to the limitations of a small number of participants and a lack of randomized clinical trials, further 
well-designed clinical trials are needed to confirm the initial assumptions and promote clinical practic-
ability.

Studies on FMT for HE animal models or patients show satisfactory results. In animal experiments, 
neuroinflammation alleviation was found in cirrhosis model mice receiving FMT[134]. In a randomized 
clinical trial, FMT from rationally selected donors helped reduce and improve hospitalizations and 
improve cognition and dysbiosis for cirrhosis with recurrent HE[135]. Later, the same team verified the 
safety of FMT capsules through a phase 1, randomized and placebo-controlled clinical trial[136]. In 
addition to integral inoculation, selective inoculation of specific strains also plays an ameliorating role. 
Transplanting low-urease altered Schaedler flora to mice prepared with a depleted microbiota leaded to 
durable reduction in fecal urease activity and ammonia production[137]. The symbiotic pair of Lactoba-
cillus reuteri JBD400 and Streptococcus rubneri JBD420 cooperatively improved transplantation efficiency 
2.3 × 103 times more than that of sole transplantation and significantly lowered blood ammonia levels
[138].

CONCLUSION
Consequently, gut microbiota alteration has been observed to be related to HBV-related fibrosis 
initiation and progression, and it is a promising therapeutic target. According to current studies, HBV 
persistence and clearance show consistency with the maturity and health of the gut microbiota[19,21]. 
With an increase of Child-Pugh scores and the model for end-stage liver disease, the gut microbiota is 
characterized by a decrease in the ratio of “good” to “potentially pathogenic” bacteria, and species 
diversity tends to decrease[139,140]. However, it is difficult to clarify which is the initiating factor 
between gut microbiota alteration and HBV-related fibrosis progression. Existing studies tend to be 
descriptive and lack HBV-specific exploration. Gut microbiota-related mechanisms are based on the gut-
liver axis and immune-mediated response, briefly including intestinal barrier impairment, PRR 
activation, cytokine production, HSC activation and transformation, and fiber secretion and formation
[41]. When the driver is removed, activated HSCs are inhibited or become apoptotic, and fiber scars are 
degraded, resulting in fibrosis regression[41].

Beyond theory, quite a few studies have begun examining therapeutic inventions. AVT can effectively 
control or even reverse HBV-related liver fibrosis, during which the gut microbiota gradually returns to 
homeostasis[96,97]. Rifaximin may decrease the virulence of the overgrown gut microbiota[89]. 
Probiotics and FMT are the most popular gut microbiota targeted therapies, and they are moving from 
the laboratory to the clinic. In addition, synthetic probiotics and selective microbiota transplantation 
may make these therapies more precise, and bring fewer side effects.

However, current studies do have limitations. There is a lack of in-depth research on the specific 
molecular mechanisms of the gut microbiota. Further clinical studies are needed to determine its effect-
iveness in patients with HBV-induced liver cirrhosis in the real world[141]. We must also admit that 
age, host location, dietary habits have a great impact on the gut microbiota, which leads to the lack of 
consistency and comparability of the alterations in gut microbiota in different studies. Therefore, 
diagnosis potential of microbial markers should be considered the factors mentioned above. We are 
looking forward to more powerful studies to strengthen the theoretical foundation and promote clinical 
application.
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