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Abstract
MicroRNAs have become recognized as key players 
in the development of cancer. They are a family of 
small non-coding RNAs that can negatively regulate 
the expression of cancer-related genes by sequence-
selective targeting of mRNAs, leading to either mRNA 
degradation or translational repression. Lung cancer is 
the leading cause of cancer-related death worldwide 
with a substantially low survival rate. MicroRNAs have 
been confirmed to play roles in lung cancer develop-
ment, epithelial-mesenchymal transition and response 
to therapy. They are also being studied for their future 
use as diagnostic and prognostic biomarkers and as po-
tential therapeutic targets. In this review we focus on 
the role of dysregulated microRNA expression in lung 
tumorigenesis. We also discuss the role of microRNAs 
in therapeutic resistance and as biomarkers. We further 
look into the progress made and challenges remaining 
in using microRNAs for therapy in lung cancer.
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Core tip: Lung cancer is a prolific and high mortality dis-
ease, with few effective treatments. MicroRNAs have a 
role in the biogenesis and maintenance of lung cancer, 
with oncogenic and tumor suppressive effects. They are 
also a significant factor in resistance to current forms of 
therapy. There is evidence that microRNAs will be use-
ful as diagnostic and predictive biomarkers in the future 
and, if delivery challenges can be overcome, they may 
become integrated into treatments.
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INTRODUCTION
MicroRNAs (miRNAs) are small (19-22 nucleotides) non-
coding RNAs that were first discovered in Caenorhabditis 
elegans[1]. MiRNAs silence their target genes by binding to 
the 3’ untranslated region (3’-UTR) of  target messenger 
RNAs (mRNAs), causing either degradation or inhibi-
tion of  translation. In animals, miRNAs are part of  an 
approximately 70-100 nucleotides RNA with a stem-loop 
structure, known as a pre-miRNA that is included in hun-
dreds or thousands of  nucleotides long primary miRNA 
precursors (pri-miRNAs). The first step of  microRNA 
biogenesis involves the transcription of  the pri-miRNA 
and this is mediated by RNA polymerase Ⅱ ( Pol-Ⅱ)[2], al-
though a minor group of  microRNAs can be transcribed 
by RNA polymerase Ⅲ (Pol-Ⅲ)[3]. Then the pri-miRNA is 
processed in the nucleus by the RNase Ⅲ enzyme Drosha 
and the protein Pasha/DGCR8 into pre-miRNAs[4]. The 
pre-miRNA undergoes a second processing step within 
the cytoplasm, and a small double-stranded RNA struc-
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ture approximately 22 nucleotides in length is excised from 
the pre-miRNA hairpin by another RNase Ⅲ enzyme, 
Dicer[5,6]. Finally, the mature single-stranded microRNA is 
loaded into the RNA-induced silencing complex, which 
mediates the degradation or translation inhibition of  tar-
get mRNA by binding to its seed sequence in the target 
mRNA’s 3’-UTR (Figure 1). Dysfunctional microRNAs 
are commonly found in a variety of  solid cancers and are 
attractive candidates for next-generation therapeutics. 

Lung cancer remains the leading cause of  cancer-
related death worldwide, and non-small cell lung cancer 
(NSCLC) accounts for approximately 80% of  all cases[7,8]. 
Although novel therapies targeting early diagnosis have 
been developed, the 5-year survival rate for NSCLC pa-
tients remains at a low 15%[9]. Takamizawa et al[10] were the 
first to relate microRNA expression to lung cancer. Since 
then there have been large number of  studies relating mi-
croRNA expression with lung cancer. Here we describe the 
roles of  microRNAs as tumor suppressors and oncogenes 
and their role in prognosis and diagnosis of  lung cancer. 
Moreover, we discuss the contribution of  microRNAs 
in radioresistance and chemoresistance as well as several 
therapeutic ventures involving microRNAs in lung cancer.

MICRORNAS AS TUMOR SUPPRESSORS 
AND ONCOGENES
Numerous studies have reported finding mutation or ab-

errant expression of  microRNAs in lung cancer patients. 
Investigators have shown that microRNAs whose expres-
sion is altered in tumors, may function as a novel class of  
oncogenes or tumor inhibitor genes. Several microRNAs 
are dysregulated in lung cancer, target cancer-relevant tar-
gets and have been documented to have tumor-suppress-
ing or tumor-promoting activity in in vitro and/or in vivo 
models in lung cancer. 

TUMOR SUPPRESSOR MICRORNAS
Let-7
Let-7 was the first microRNA found to be dysregulated 
in lung cancer. Indeed, Takamizawa et al[10] reported that 
let-7 expression levels are frequently reduced in lung 
cancers both in vitro and in vivo. Let-7 subsequently was 
reported to be inversely correlated with RAS protein 
expression in lung cancer tissues, providing a possible 
mechanism for let-7 in lung cancer[11]. Kumar et al[12] 
used both inducible and constitutive expression systems 
to show substantial tumor suppression by let-7g in xe-
nografts and a mouse lung tumor model in a K-Ras de-
pendent manner. Enforced expression of  let-7a in A549 
cells decreased NIRF (Np95/ICBP90-like RING finger 
protein) leading to a coordinated increase in p21WAF1[13]. 
NIRF binds with higher affinity to the methylated CpGs 
of  the promoter region through its SRA (SET and RING 
finger associated) domain and possibly recruits histone 
deacytylase-1 (HDAC1) through the same domain. This 
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recruitment of  HDAC1 to the methylated promoter re-
gions of  some tumor suppressor genes such as p21WAF1 
can suppress their expression[14]. Recently[15], let-7c was 
observed to be inversely correlated to and directly tar-
get ITGB3 (integrin b3, also known as CD61)[16], and 
MAP4K3, a member of  the MAP4K family[17] in NSCLC 
tissues. These observations support the assumption that 
let-7 may act as a tumor suppressor microRNA.

miR-126
MiR-126 overexpression in lung cancer cell lines de-
creases Crk protein and leads to decreased adhesion, 
migration and invasion[18]. Crk is an adaptor protein that 
mediates several intracellular signal pathways[19] that are 
important in cell growth, motility, differentiation, and 
adhesion[20]. Liu et al[21] used an RNA protection assay to 
show downregulation of  miR-126 in many lung cancer 
cell lines. MiR-126 overexpression efficiently reduced the 
expression of  vascular endothelial growth factor (VEGF) 
and inhibited cell proliferation in vitro and tumorigenic-
ity in vivo. Futhermore, enforced expression of  miR-126 
impaired NSCLC cell proliferation and tumor growth in 
xenografts model by targeting PIK3R2 and thus regulat-
ing the PI3K-Akt pathway[22], confirming a tumor sup-
pressive role in lung cancer.

miR-145
Introduction of  miR-145 was reported to dramatically 
suppress the c-Myc/eIF4E pathway by targeting c-Myc, 
which has been demonstrated to be crucial for cell pro-
liferation in NSCLC cells. Cell growth was inhibited and 
the G1/S transition was blocked by miR-145 overexpres-
sion in A549 and H23 cells[23]. Enforced expression of  
miR-145 negatively regulated the expression of  EGFR 
and NUDT1[24]. NUDTI (8-oxo-dGTPase) is involved in 
accumulated mis-incorporation of  oxidized 8-oxo-dGTP 
into DNA that can lead to cell dysfunction and death[25,26]. 
When miR-145 was overexpressed in A549 cell line 
there was a reduction in proliferation of  CD133+ lung 
adenocarcinoma-initiating cells and tumorosphere growth 
capacity. This tumor suppressive effect involved miR-145 
targeting of  octamer-binding protein 4, a transcription 
factor of  embryonic stem cells[27,28].

miR-200 
miR-200c plays a central role in the process of  epithelial-
mesenchymal transition (EMT) in highly invasive/ag-
gressive NSCLC cells by targeting TCF8 (ZEB1) thus 
restoring its regulatory target E-cadherin[29,30]. Loss of  
miR-200c in invasive cells was observed to be a result of  
hypermethylation of  the promoter region[30]. Studies by 
Yang et al[31] reveal a novel Jagged2/miR-200-dependent 
pathway that mediates lung adenocarcinoma EMT and 
metastasis in mice. They showed that Jagged2 increased 
the expression of  GATA-binding factors that in turn 
suppressed members of  miR-200 family driving EMT 
and reciprocally, miR-200 inhibited GATA3 expression 
reversing EMT. Furthermore, overexpression of  miR-200 

in murine lung adenocarcinoma cells decreased their 
growth and metastasis by targeting Flt1/VEGFR1[32] con-
firming the EMT suppressive function of  miR-200. 

miR-34
The miR-34 family (miR-34a, -34b and -34c) is directly 
regulated by p53 and has been reported to induce apop-
tosis and cell cycle arrest in cancer cells[33,34] and is being 
studied for its anti-tumorigenic nature. The receptor ty-
rosine kinase Axl protein induces proliferation, migration 
and invasion in cancer[35]. Mudduluru et al[36,37] found an 
inverse correlation between Axl and miR-34a in NSCLC 
cell lines. ZEB1, a transcriptional repressor that promotes 
metastasis by downregulating microRNAs like the miR-200 
family[38], drives prometastic actin cytoskeletal remodeling 
in NSCLC cells by inhibiting miR-34a expression[39]. Exog-
enous miR-34 prevented tumor initiation and progression 
in a therapeutically resistant KrasG12D/+; Trp53R172H/+ mouse 
lung cancer model[40]. Studies in our lab have shown that 
miR-34a and miR-34c overexpression increased TNF-
related apoptosis inducing ligand (TRAIL)-induced apop-
tosis and decreased invasiveness of  lung cancer cells by 
targeting PDGFR-α and PDGFR-β[41]. 

ONCOGENIC MIRNAS
miR-17-92
The miR-17-92 intronic cluster comprising seven differ-
ent microRNAs namely miR-17-5p, -17-3p, -18a, -19a, 
-19b-1, -20a, and -92 was found by Hayashita et al[42] in 
lung cancer, mostly in small cell lung cancer (SCLC). 
Antisense oligonucleotides against mir-17-5p and miR-
20a induced apoptosis in miR-17-92 overexpressing lung 
cancer cells[43]. Several targets have been studied for the 
various members of  the miR-17-92 family. MiR-17-92 
directly targeted hypoxia-inducible factor (HIF)-1A and 
overexpression of  c-Myc led to downregulation of  HIF-
1A and induction of  miR-17-92, suggesting that the in-
duction of  miR-17-92 may play a part in c-Myc–mediated 
repression of  HIF-1A[44]. MiR-17-92 counterbalanced 
the generation of  DNA damage in RB-inactivated SCLC 
cells by reducing γ-H2AX foci[45]. Matrix metallopro-
teinase (MMP) play an essential role in tumorigenesis by 
regulating migration and invasion of  cells. In vivo MMP 
activity is controlled by the balance between MMPs and 
inhibitory proteins such as Reversion-inducing Cysteine-
rich protein with Kazal motifs (RECK)[46]. STAT3 was 
shown to upregulate miR-92a thereby repressing RECK 
via post-transcriptional inhibition and thus promoting 
MMP activity[47]. These studies suggest that miR-17-92 
may be an excellent therapeutic target candidate in the 
treatment of  lung cancer.

miR-21
miR-21 has been reported to be overexpressed in nine 
types of  solid tumors including lung[48] as well as in hema-
tological malignancies such as leukemia[49,50] and has great 
therapeutic potential for lung cancer. Over-expression 
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miR-221 and -222
Our group has shown that miR-221 and -222 directly 
targeted PTEN and Tissue inhibitor of  metalloproteinase 
3 tumor suppressors inducing TRAIL resistance and en-
hancing cellular migration through the activation of  the 
AKT pathway and MMPs. We observed that MET onco-
gene activates miR-221/222 through the c-Jun transcrip-
tion factor[59]. The p53 up-regulated modulator of  apop-
tosis (PUMA) suppresses growth of  A549 cells through 
induction of  apoptosis and sensitizes cells to chemo-
therapeutic agents and irradiation[60]. It was reported that 
miR-221/222 directly target and co-modulate PUMA ex-
pression and knockdown of  miR-221/222 in A549 cells 
inhibited cell proliferation and induced mitochondrial-
mediated apoptosis[61]. Thus, targeting miR-221/222 
could be an effective strategy for therapy in lung cancer. 

MICRORNAS IN RESISTANCE
Radiotherapy, usually in combination with chemotherapy, 
is routinely used in lung cancer treatment, especially for 
NSCLC, allowing for better local control of  the disease 
and reduction of  metastasis occurrence. Both radiation 
resistance and chemoresistance is common, preventing 
successful long-term therapy and contributing to the 
dismal prognosis. Investigators are constantly trying to 
develop new effective therapies by studying the mecha-
nisms behind resistance. Aberrant expression of  several 
miRNAs has been correlated with the development and 
progression of  tumors, and the reversal of  their expres-
sion has been shown to modulate the cancer phenotype, 
suggesting the potential of  miRNAs as targets for anti-
cancer drugs. Here we describe the putative role(s) of  
microRNAs in the development of  resistance to therapy 
(Table 1).

Radiotherapy resistance
When living cells are exposed to ionizing radiation (IR), 
a series of  alterations occurs including transformation, 
cell cycle distress, mutations, sister-chromatid exchanges, 
chromosome aberrations, DNA repair, and apopto-
sis[62,63]. Among the IR-responsive genes, the activation of  
NFκB1 following genotoxic stress allows DNA damage 
repair and cell survival[64] and its inhibition can increase 
sensitivity of  cancer cells to chemotherapeutic agents 
and radiation exposure[65]. Overexpression of  miR-9 
has been shown to down-regulate the level of  NFκB1 
in γ-irradiated H1299 human lung cancer cell line and 
decrease the surviving fraction of  γ-irradiated cells. Inter-
estingly, let-7g also suppressed the expression of  NFκB1, 
although there is no canonical target site for let-7g in the 
NFκB1 3’-UTR[66]. Tumor suppressor p53 is another key 
player of  the complex DNA damage response activated 
in response to IR[63]. Overexpression of  p53-regulated 
miR-34b[33,34] in p53 wild type A549 cells increased radio-
sensitivity at low doses of  radiation and this effect was 
not observed in p53 null H1299 cells[67].

Several microRNAs are involved in inducing resis-
tance to irradiation. MiR-214 was shown to be upregulated 

of  miR-21 enhanced tumorigenesis through inhibition 
of  negative regulators of  the Ras/ MEK/ERK pathway 
and inhibition of  apoptosis[51]. MiR-21 was observed to 
repress phosphatase and tensin homolog (PTEN) and 
stimulated growth and invasion in NSCLC cell lines[52]. 
PTEN overexpression mimicked the same effects of  
anti-miR-21 such as inhibiting migration and invasion 
in NSCLC cells[53]. MiR-21 was shown to directly target 
the 3’-UTR of  human mutS homolog 2, a core DNA 
mismatch repair (MMR) protein[54], thus affecting the cell 
cycle and cell proliferation in NSCLC cell lines[55] further 
underlining the oncogenic role of  miR-21 in lung cancer. 

miR-31
MicroRNAs and DNA mismatch repair have been linked 
to human cancer progression. Human mutL homolog 1 
(hMLH1) is a core MMR gene and reduced expression of  
hMLH1 can lead to genetic instability in NSCLC[56]. MiR-
31-5p was reported to directly target and to be inversely 
correlated with MLH1 expression in NSCLC cell lines. 
Knockdown of  miR-31-5p increased hMLH1 protein 
expression and induced a cell cycle arrest at G2/M phase 
in NSCLC cells[57]. MiR-31 was overexpressed in malig-
nant lung tissues from humans and targeted the tumor-
suppressive genes large tumor suppressor 2 (LATS2) and 
PP2A regulatory subunit B alpha isoform (PPP2R2A). 
Engineered knockdown of  miR-31 repressed lung cancer 
cell growth and tumorigenicity in a dose-dependent man-
ner[58]. These findings reveal that miR-31 acts as an onco-
genic miRNA in lung cancer by targeting specific tumor 
suppressors for repression.

  miRNAs Target Drug/ Treatment R/S Ref.

  miR-9, let-7g NFκB1 Radiotherapy S [66]
  miR-34b BCL2 Radiotherapy S [67]
  miR-214 N/A; PTEN Radiotherapy; 

gefitinib
R [68,88]

  miR-155 FOXO3A; Apaf-1 Radiotherapy; 
cisplatin

R [69,78]

  miR-210 Stabilizes HIF-1A in 
normoxia

Radiotherapy R [70]

  miR-181 N/A Cisplatin S [72]
  miR-451 N/A Cisplatin S [73]
  miR-98 TP53 Cisplatin R [74]
  miR-497 BCL2 Multiple drugs S [75]
  miR-200b BCL2, XIAP; E2F3 Cisplatin; docetaxel S [76,86]
  miR-21 PTEN, BCL2 Cisplatin R [79]
  miR-135a APC Paclitaxel R [82]
  miR-100 Plk1 Docetaxel S [85]
  miR-337-3p STAT3, RAP1A Paclitaxel and S [87]

docetaxel
  miR-221, 
  miR-222

P27kip1 TRAIL R [91]

  miR-130a MET TRAIL S [92]
  miR-212 PED TRAIL S [93]

Table 1  MicroRNAs in resistance

R: Resistance; S: Sensitivity; XIAP: X-linked inhibitor of apoptosis protein; 
STAT3: Signal transducer and activator of transcription 3; RAP1A: Ras-re-
lated protein Rap-1A; MET: met proto-oncogene (hepatocyte growth factor 
receptor); PED: Astrocytic phosphoprotein PEA-15; FOXO3A: Forkhead box 
O3; N/A: Not available; p27kip1: Cyclin-dependent kinase inhibitor 1B.
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in radioresistant NSCLC cells relative to radiosensitive 
counterparts and its overexpression protected radiosensi-
tive cells against RT-induced apoptosis[68]. Incubation of  
NSCLC cell lines in hypoxic environments was reported 
to induce miR-155 expression and decrease its target, 
FOXO3A, a tumor suppressive transcription factor that 
regulates cell cycle and apoptosis. These increased levels 
of  miR-155 radioprotected lung cancer cells and vice ver-
sa[69]. In another study, enforced expression of  miR-210 
increased radioresistance of  NSCLC cells by stabilizing 
HIF-1A[70]. These studies reveal a therapeutically impor-
tant link between miRNA expression, hypoxia, and irra-
diation.

Chemotherapy resistance
Platinum agents like cisplatin and carboplatin are some 
of  the principal chemotherapeutic agents used for treat-
ment of  NSCLC. These agents induce their cytotoxic 
effects by targeting cellular DNA and are active against a 
number of  tumour types[71]. However numerous studies 
have shown that an initial success associated with partial 
responses or disease stabilization is followed by the selec-
tion of  chemotherapy-resistant tumor cells, leading to 
chemotherapeutic failure. Numerous microRNAs have 
been implicated in cisplatin resistance. Galluzi and col-
leagues reported miR-181a and miR-630 to be the most 
upregulated miRNAs after cisplatin (CDDP) treatment 
however, pre-miR-181a enhanced while pre-miR-630 re-
duced CDDP-triggered cell death in A549 cells by modu-
lating steps of  the intrinsic pathway of  apoptosis[72]. An-
other group observed that ectopic expression of  miR-451 
might be involved in sensitizing A549 cells to cisplatin by 
inducing apoptosis via inactivation of  Akt signaling path-
way and enhancement of  caspase-3 activity[73]. Zhang et al[74] 
showed that transfection with miR-98/miR-453 inhibited 
p53 expression and upon treatment with cisplatin, the ex-
pression of  miR-98 decreases, while p53 increases. This 
led them to speculate that regulation of  p53 pathway 
might play an important role in the action of  cisplatin on 
A549 cell growth. Separate studies by Zhu et al[75,76] on 
miR-497 and miR-200b/429 cluster in multidrug resistant 
A549/CDDP cell line indicated an increased sensitivity 
to cisplatin in part by modulation of  apoptosis via target-
ing only B-cell CLL/lymphoma 2 (BCL2) or both BCL2 
and X-linked inhibitor of  apoptosis, respectively. In the 
cytosol, Apaf-1 can bind with cytochrome-c released 
from the mitochondrial inter-membrane, and activate the 
initiator caspase-9, eventually resulting in cellular apopto-
sis[77]. MiR-155 was observed to be inversely correlated to 
Apaf-1 in lung cancer tissues. Silencing miR-155 or over-
expressing Apaf-1 in A549 cell lines greatly increased the 
sensitivity of  A549 cells to cisplatin treatment through an 
Apaf-1 mediated pathway, involving increased expression 
of  Bax and caspase-9[78]. MiR-21 was reported to be criti-
cal in platinum resistance in NSCLC and modulated the 
sensitivity of  NSCLC cells to platinum, at least in part, by 
regulating PTEN and BCL-2 expressions[79]. 

Taxanes, such as paclitaxel and docetaxel, are chemo-
therapeutic drugs that stabilize microtubules and inhibit 

their disassembly to tubulin interfering with proper for-
mation of  the mitotic spindle, which leads to activation 
of  the mitotic spindle checkpoint and mitotic arrest[80]. 
Drug-treated cells then undergo apoptosis as a result of  
the abnormal mitosis[81]. Studies reporting the role of  mi-
croRNAs in taxane resistance can provide novel adjuvant 
strategies along with taxanes in the treatment of  lung can-
cer. Knockdown of  miR-135a was reported to upregulate 
adenomatous polyposis coli gene (APC) and sensitize 
paclitaxel-resistant NSCLC cell lines to paclitaxel-induced 
cell death[82]. APC is a tumor suppressor that regulates the 
mitotic checkpoint by binding to microtubules during mi-
tosis[83]. Polo-like kinase (Plk)-1 is a cell cycle protein that 
plays an important role in spindle dynamics and chromo-
some segregation during mitosis[84]. Feng et al[85] showed 
that introduction of  miR-100 resensitized docetaxel resis-
tant SPC-A1/DTX cells to docetaxel by suppression of  
cell proliferation, enhancement of  apoptosis, and cell ar-
rest in G2/M phase of  cell cycle at least partially by Plk-1 
targeting. The same group also reported that ectopic 
expression of  miR-200b reversed docetaxel resistance of  
SPC-A1/DTX cells in part by targeting E2F3[86]. Du and 
colleagues identified a novel regulatory pathway involving 
STAT3 and RAP1A that modulates miR-337-3p medi-
ated paclitaxel sensitivity in lung cancer cells[87]. 

Patients with NSCLC who have activating epidermal 
growth factor receptor (EGFR) mutations derive clini-
cal benefit from treatment with EGFR-tyrosine kinase 
inhibitors (EGFR-TKIs)-namely gefitinib and erlotinib. 
However, these patients eventually develop resistance to 
EGFR-TKIs. Wang et al[88] established a gefitinib resistant 
cell line-HCC827/GR and found that miR-214 was sig-
nificantly up-regulated in these cells compared to control 
HCC827 cells. Knockdown of  miR-214 in HCC827/GR 
resulted in upregulation of  PTEN and inactivation of  
p-AKT and this in turn re-sensitized the cells to gefitinib. 
To understand the role of  microRNAs in TKI-resistant 
NSCLCs, our group examined miRNA dysregulation 
mediated by TK receptors. MiR-30b, -30c, -221 and -222 
were found to be modulated by both EGFR and MET 
receptors whereas miR-103 and miR-203 were controlled 
only by MET. We showed that these miRNAs influenced 
the response to gefitinib of  NSCLC cells in vitro and in 
vivo by inhibiting the expression of  the genes encoding 
BCL2-like 11 (BIM), apoptotic peptidase activating factor 
1 (APAF-1), protein kinase Cε (PKC-ε) and sarcoma viral 
oncogene homolog[89].

Treatment with TRAIL induces programmed cell 
death in a wide range of  transformed cells, both in vitro 
and in vivo, without producing significant effects in nor-
mal cells[90]. However, a significant proportion of  human 
cancer cells are resistant to TRAIL-induced apoptosis, 
and the mechanisms of  sensitization vary among cell 
types. To define novel pathways that regulate TRAIL-
sensitivity in NSCLC, our lab performed genome-wide 
expression profiling of  microRNAs. Levels of  miR-221 
and -222 were increased in TRAIL-resistant NSCLC 
cells and their knockdown rendered CALU-1-resistant 
cells sensitive to TRAIL. Conversely, H460-sensitive cells 
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treated with pre-miR-221 and -222 developed a resis-
tance. Interference with TRAIL signaling by miR-221 and 
-222 was mainly through targeting p27kip1[91]. Another 
study from our lab further reported that miR-130a, ex-
pressed at low level in lung cancer cell lines, by targeting 
MET was able to reduce TRAIL resistance in NSCLC 
cells through the c-Jun-mediated downregulation of  
miR-221 and miR-222[92]. Ectopic expression of  miR-212 
increased TRAIL-induced cell death in NSCLC cells by 
targeting PED/PEA-15 (PED), a death effector domain 
family member with a broad anti-apoptotic function[93]. 
These studies enhance our understanding of  the mecha-
nisms responsible for TRAIL resistance. 

MIRNAS IN DIAGNOSIS 
The diagnosis of  lung cancer is performed through 
several methods with varying degrees of  sensitivity and 
reliability. X-ray imaging, along with positron emission 
tomography and computed tomography (CT) scans, is 
often the first diagnostic procedure utilized. While these 
methods provide valuable information when anomalies 
are easily visible, problems with lung segmentation and 
positioning in the chest cavity, human error and com-
petent detection software prevent imaging from always 
producing successful diagnoses. Similarly, while tissue 
sampling though bronchoscopy has become the standard 
practice in diagnosing lung cancer, it presents its own 
difficulties, including complications in obtaining viable 
samples due to patient symptoms, proper imaging and 
tumor position[94]. 

MicroRNAs show potential as biomarkers for the di-
agnosis of  lung cancer that can complement and improve 
upon other techniques. Promising lung cancer microRNA 
biomarkers can be found circulating in the bloodstream, 
in sputum and inside cells, and are detected at an abnor-
mal level when cancer is present. Ideally, these biomark-
ers should be detected through minimally invasive meth-
ods and with limited discomfort to patients. There are 
currently several dozen microRNAs under investigation 
for their biomarker properties (Tables 2 and 3). 

MiR-21 has a well-documented correlation to lung 

cancer. Detected in both serum and sputum, elevated 
miR-21 corresponds to lowered survival rate, lymphoid 
invasions and KRAS mutations[53,95]. Promisingly, assays 
for miR-21 in sputum from lung cancer patients have 
shown higher sensitivity than traditional sputum cytology 
with very high specificity[96,97]. MiR-21, in combination 
with miR-210 and miR-486-5p, was shown to be ex-
pressed significantly higher in the plasma of  patients with 
malignant solitary pulmonary nodules (SPNs) compared 
to those with benign SPNs. Solitary pulmonary nodules 
have been increasingly diagnosed with the improvement 
of  CT scan technology and its widespread use. However, 
only a small fraction of  SPNs are malignant. The com-
bination of  miR-21 testing and CT scans could provide 
a minimally invasive method of  determining the cancer 
status of  patients with SPNs[98].

MiR-155 is a prominent oncomiR, with various roles 
in lung cancer including proliferation and drug resistance. 
Used in a panel with miR-197 and miR-182, miR-155 was 
able to distinguish between NSCLC patients and control 
samples by real time PCR of  plasma. Patients with me-
tastasizing cancer consistently exhibited higher levels of  
plasma miR-155, which could additionally aid in staging 
the disease[99]. Several studies have found that miR-155 
is only elevated in EGFR/KRAS-negative lung cancer. 
Samples from surgically resected lung specimens and fine 
needle aspirations (FNAs) both demonstrated this ef-
fect[100,101]. FNAs are considered to be safe, minor surgical 
procedures compared to excisional biopsies, thus further 
development of  its use for collection of  miR-155 to de-
termine mutational status could be beneficial. An even 
less invasive technique was used by Yao and colleagues to 
determine levels of  miR-155 in vivo[102]. They developed a 
novel molecular beacon that can be introduced into mice 
with lipid-DNA complexes and detect miR-155 in lung 
cancer xenografts through in vivo fluorescent imaging. 
The authors posit that these results may be translatable to 
human lung tumors, possibly improving on the problem-
atic imaging resources currently available for diagnostics.

The miR-183 family (miR-96, miR-182, and miR-183) 
is a group of  oncomiRs that have been confirmed to 
be overexpressed in lung tumors and serum in NSCLC. 
Targets for these miRs support a variety of  biological 
processes, including growth, migration, invasion and an-
giogenesis. MiR-182 in particular has been found to be 
strongly correlated to primary tumors while all three are 
expressed more in squamous cell carcinoma than in ad-

Traditional Procedures Possible microRNA 
biomarkers

  Diagnosis
     Detect abnormalities X-ray, CT scan 21
     Confirm malignancy Biopsy, sputum/fluid 

cytology
let-7, 29a, 34c, 205, 375

  Prognosis
     Staging CT scan, PET, MRI 21, 125b, 155, 182/183
     Mutational status Sequencing, PCR, 

microarray
21, 155

Table 2  MicroRNA in diagnosis and prognosis. Traditional 
methods of diagnosing and evaluating lung cancer and their 
corresponding potential microRNA biomarkers

  Treatment Potential prognostic 
biomarkers

Potential role in resistance

  Surgery Let-7, 21
  Radiotherapy 155, 210 Let-7g, 9, 34, 155, 210, 214
  Chemotherapy 21, 125b 21, 30b/c, 98, 100, 103, 130a, 

135a, 155, 181, 200b, 203, 212, 
214, 221/222, 337, 451, 453, 

494, 630

Table 3  MicroRNAs with potential relevance to common 
types of lung cancer treatment 

CT: Computed tomography; PET: Positron emission tomography; PCR: 
Polymerase chain reaction; MRI: Magnetic resonance imaging.
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enocarcinoma[103-105]. Additionally, miR-182 showed a high 
specificity and sensitivity, and readily differentiates stage 
I lung cancer from normal control samples, making it a 
tantalizing possibility for non-invasive clinical diagnostics. 
MiR-183, on the other hand, has been demonstrated as 
being able to differentiate between early and late stage 
NSCLC, while not being able to discriminate early stage 
lung cancer from normal cells[106]. 

The miR-34 family, in particular miR-34a and miR-
34c, has been shown by multiple groups to be potential 
biomarkers in lung cancer[100]. Mascaux and colleagues 
detailed an inverse relationship between miR-34 levels 
and lung carcinogenesis, and later expounded on this by 
showing that changes in lung cell histology are reflected 
by miR-34c independent of  any treatment[107]. However, 
these studies used biopsies as their source tissue, and 
have not yet confirmed that other extraction methods 
(sputum, serum, etc.) could be used to circumvent normal 
tissue sampling and histology. Akbas et al[108] have found 
that dysregulation of  34c can be confirmed through se-
rum in chronic obstructive pulmonary disease (COPD) 
- an inflammatory disease that increases the risk of  lung 
cancer - making further development of  34c as a lung 
cancer biomarker a likely avenue of  research.

NSCLC is the most common form of  lung cancer, 
and is divided into two subtypes, squamous cell carcino-
ma (SCC) and adenocarcinoma. Diagnosing the correct 
subtype is critical for treatment and microRNA biomark-
ers that are able to distinguish between these subtypes 
would be a useful tool in a clinical setting. MiR-205 - a 
tumor suppressor - has been found by several research-
ers to be a highly effective identifier of  squamous cell 
histology through its downregulation, both in NSCLC 
tissues and serum[109,110]. Similarly, members of  the let-7 
family are significantly downregulated in SCC, likely due 
to the fact that let-7 regulates RAS expression, and RAS 
mutations are far more common in SCC than adenocar-
cinomas[111,112]. As lung tissue has one of  the highest ex-
pressions of  let-7 in the body, its characteristic decrease 
in SCC has the potential to make it an easily identifiable 
biomarker[113]. However, because this large decrease in 
expression has only been identified in lung tissue and 
not sputum, serum or bronchial fluids, the only current 
options for assaying let-7 are tissue biopsy or bronchial 
brushing. Thus, let-7 as a biomarker will have to show 
greater efficacy than traditional cytopathology to warrant 
clinical use.

Though less common and with comparatively little 
research, small cell lung cancer presents serious problems 
for patients, with a tendency toward rapid and widespread 
metastasis. Therefore, accurate and expeditious diagnostic 
markers are desirable. Two studies have found miR-375 
to accurately discriminate between NSCLC and SCLC. 
Huang et al[114] used snap-frozen and paraffin-embedded 
surgical lung specimens, finding miR-29a and miR-375 
to be superior to traditional cytopathology for diagnos-
ing SCLC. In the other study, Zhao and colleagues found 
extremely elevated miR-375 expression in four human 

SCLC cell lines and four SCLC-like cell lines generated 
in mice[115]. These results are promising, but require more 
study with larger sample populations and examinations 
of  extracellular microRNA levels to evaluate the useful-
ness of  miR-375 as a clinical biomarker. 

MIRNAS IN PROGNOSIS
An essential facet of  cancer treatment involves the cor-
rect and efficient prognosis of  the type of  cancer and the 
expectations of  survival and mortality. This prevents the 
unneeded use of  potentially harmful drugs, and allows 
for the correct prescription of  treatment strength and se-
verity. As microRNAs have been confirmed to play roles 
in lung cancer development, migration and response to 
therapy, they may also find future use as biomarkers to 
give accurate prognoses to physicians.

Liu et al[116] found that miR-21 was significantly ele-
vated in the serum of  NSCLC patients with lower survival 
rates and showed a strong association with lymph node me-
tastasis and advanced clinical stage. Yang et al[117] confirmed 
this result with a meta-analysis while others found similar 
results in three ethnically-diverse cohorts, including sig-
nificant associations between elevated miR-21 and high-
mortality stage Ⅰ tumors[118,119]. These findings have the 
potential of  allowing physicians to quickly evaluate and 
escalate treatments in response to early stage NSCLC 
diagnoses. Studies examining post-operative lung cancer 
patients also found that miR-21 serum levels significantly 
decreased in response to successful surgery, with higher 
miR-21 expression corresponding to shorter survival 
time and disease recurrence[120]. However, another study 
evaluating the use of  miR-21 as a predictive biomarker in 
SCLC found no correlation between miR-21 expression 
and patient outcome[121]. The same study found similar 
results with 6 other important NSCLC-related miRs, 
underlying both the inherent differences between SCLC 
and NSCLC and also the paucity of  data involving SCLC 
biomarkers. MiR-155 has been shown to have a similar 
elevation in expression in NSCLC, which is associated 
with low survival and high rates of  recurrence[122,123]. Both 
miR-21 and miR-155 have been examined in sputum 
samples and found in readily detectable quantities, and 
while Xie and collaborators found only miR-21 produces 
adequate differentiation in expression for use as a bio-
marker[97], others have found using both in combination 
with three other miRs to be a highly sensitive panel for 
clinical applications[124].

The let-7 family, in addition to discriminating between 
SCC and adenocarcinoma, has also been found to be 
associated with survival rate. Low let-7a expression has 
been shown by multiple studies to correlate to a poor 
prognosis, both pre- and post-operative, particularly in 
SCC[125]. There is some evidence that this preferential 
prognostic ability comes from the squamous cell carcino-
ma’s reliance on the downregulation of  tumor suppressor 
miRs, including let-7, compared to adeocarcimoma’s de-
pendence on the upregulation of  oncomiRs[111]. 
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Several miRs have been identified as having the po-
tential to predict the effectiveness of  therapy. MiR-125b 
is an oncomiR that has been found to be significantly 
increased in stage Ⅲ and Ⅳ NSCLC. Cui et al[126] exam-
ined the expression of  a panel of  miRs, finding that miR-
125b levels were markedly higher in patients that did not 
respond to cisplatin treatment. This corroborates several 
other studies that found that miR-125b inhibited cisplat-
in-induced apoptosis in breast and ovarian cancers[127,128]. 
Similarly, miR-21 shows promise as predictive biomarker 
for the response to adjuvant platinum based chemothera-
pies (cisplatin, oxaliplatin, etc.) in NSCLC[79]. Serum taken 
from patients after surgery and platinum based treatment 
showed elevated levels of  miR-21 compared to a pre-
treatment baseline if  there was a low chemotherapeutic 
response. A recent study found that serum miR-210 
consistently determined the success of  platinum based 
chemotherapy. MiR-210 is upregulated in NSCLC and 
recent findings have shown that patients who responded 
well to treatment had significantly lower expression of  
miR-210 in serum, near levels expected in healthy control 
subjects[129]. Another study reported that NSCLC cells 
overexpressing miR-210 were conferred with radioresis-
tance as well, displaying an ability to rapidly repair dou-
ble-strand DNA breaks[70]. As radiotherapy is a common 
treatment in lung cancer, with more than half  of  patients 
receiving irradiation, potential microRNA biomarkers - 
miR-210 for example - that predict the efficacy of  this 
procedure would make an immediate impact on patients 
and physicians’ decisions. In its role as a mediator of  ra-
dioresistance, miR-155 may also have potential as a prog-
nostic biomarker, with elevated expression corresponding 
to lower survival rate in patients who have received radio-
therapy[69,130].

MIRNAS AS POTENTIAL TREATMENTS
Increasing evidence supporting the essential role of  
microRNAs in the machinery of  cancer points to the 
possibility of  using microRNAs as treatments in lung 
cancer. The most evident problem blocking clinical use 
of  microRNA therapies is delivery. Specifically targeting 
cancer cells, maintaining microRNA stability in bodily 
fluids and penetration of  cellular membranes are areas of  
intense investigation. Some modifications to microRNA 
and anti-microRNA oligonucleotides (AMOs), including 
2’-O-methyl, 2’-O-methoxyethyl and locked nucleic acids, 
provide nuclease resistance for greater longevity during 
serum transport, but additional methods are needed to 
enhance the cell permeability of  these molecules[131]. 

Liposomes are a promising avenue of  microRNA 
therapy delivery. These artificial, spherical vesicles made 
from a lipid bilayer are used to administer pharmaceutical 
drugs, microRNA or small interfering RNA (siRNA). Ex-
periments using mouse models have found both neutral 
lipid emulsions and cationic lipoplexes to be effective in 
delivering microRNAs to lung tumors. Multiple studies 
have used a neutral lipid emulsion to deliver tumor sup-
pressors miR-34a and let-7 to NSCLC tumors in mice, 

which resulted in a 60% reduction in tumor area[132,133]. 
Wu and colleagues found that cationic lipoplexes were 
over 50-fold more effective in delivering pre-miR-133b, 
a known inhibitor of  NSCLC proliferation, to NSCLC 
mice than NeoFX complexes, a standard transfection 
reagent, and with lower cytotoxicity[134,135]. Recently, this 
same team used cationic lipoplexes to deliver miR-29b 
into murine A549 xenografts, finding similar success in 
cellular penetration, along with documenting a decrease 
in tumorigenicity and improved functionality of  cispla-
tin[136]. Shi and colleagues have used a novel technology - 
solid lipid nanoparticles (SLNs) - to transport AMOs to 
suppress miR-21 in lung cancer and introduce miR-34a 
into lung cancer stem cells, inhibiting cell migration and 
inducing cell apoptosis[137]. SLNs boast superior cellular 
uptake rates and decreased oligonucleotide degradation, 
which allow AMOs to be introduced without stability-
adding modifications that reduce specificity. Future di-
rections for liposome therapy reseach include increasing 
stability of  liposomes and better targeting through the 
use of  tumor-recognizing antibodies and peptides. Some 
studies have already shown that incorporating ligands 
that target overexpressed lung cancer receptors into li-
posomes dramatically improves liposome uptake into 
NSCLC cells[138] while others have used synthetic antigens 
to activate tumor-targeting immune cells[139].

Viral delivery systems are a platform that offers natu-
rally high infection rates and high miRNA expression 
levels for lung cancer treatment. Adenoviruses have been 
used as a vector for the delivery of  miR-122, a tumor 
suppressor, into NSCLC NCI-H460 cells. The result-
ing 2000-fold higher expression of  miR-122 led to the 
activation of  intrinsic apoptotic pathways[140]. Sun and 
colleagues used a lentiviral vector to infect hepatocellular 
carcinoma cells with osteopontin-suppressing microR-
NAs that decreased tumorigenicity in mice and down-
regulated the oncogenic MEK/ERK/1/2 pathway[141]. 
These results may be transferable to lung cancer, as os-
teopontin has been identified as a pro-metastatic factor 
in NSCLC[142]. Overall, adenoviruses are considered the 
better option for microRNA vectors as they do not inte-
grate into the genome. There are complications with viral 
delivery of  microRNAs, though, including immunogenic-
ity and cellular toxicity that will need to be addressed in 
further research.

As liposome delivery often produces toxicity and 
requires considerable optimization to maintain adequate 
stability and efficacy, and viral vectors are limited by im-
munogenicity much research has recently focused on the 
use of  nanoparticles. These small, solid spheres offer 
reduced immune response, lower toxicity and cheap, ef-
ficient production methods that result in high complex 
stability. 

Protamine, a biologically derived molecule, has been 
complexed with microRNA, resulting in higher transfec-
tion rates than with lipoplexes[143]. Chen et al[144] utilized 
protamine complexes with miR-34a to inhibit the growth 
of  lung metastases of  melanoma. These nanoparticles 
incorporated a liposome shell around the nanoparticles, 
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with great effectiveness. Further studies are needed to 
determine the necessity of  liposomal encirclement of  
protamine complexes, taking into account microRNA 
degradation, cellular uptake and immune response. Gold 
and silica nanoparticles have also been utilized in mi-
croRNA delivery[145,146], but as of  yet, there are no studies 
demonstrating their use in treating lung cancer.

CONCLUSION
MiRNAs have become recognized as key players in can-
cer. Their ability to regulate expression of  cancer-related 
genes has immense implications for the diagnosis and 
treatment of  cancer. Lung cancer is the leading cause 
of  cancer-related death worldwide and currently has a 
substantially lower survival rate than many other com-
mon cancers. In this review, we discuss how dysregulated 
miRNA expression has been shown to contribute to the 
genesis and maintenance of  lung cancer, through the 
down-regulation of  tumor suppressors and up-regulation 
of  oncomiRs. Additionally, miRNAs may be essential in 
the development of  chemo- and radioresistance in lung 
cancer. Due to their importance in the regulatory struc-
ture of  cancer, miRNAs may soon be used to improve 
diagnosis and predictions of  outcomes and response to 
therapy, although more studies will be needed with larger 
sample groups to resolve conflicting reports of  disease-
state expression patterns for some miRNAs. Implement-
ing miRNAs and anti-miRNAs as treatments presents 
some additional difficulties, mostly related to delivery and 
stability inside the body, but holds promise as a less toxic 
therapy that can target multiple genes simultaneously. The 
investigation into miRNAs and cancer is still relatively 
new, and more study will be needed to form consensuses 
on the critical functions of  miRNAs inside cancer cells, 
what information can be gleaned from changes in their 
expression and the best methods for therapeutic adminis-
tration, but these unique compounds show great promise 
as tools against lung cancer.
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