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Abstract
Gastrointestinal cancer (GIC) is the most common cancer with a poor prognosis. 
Currently, surgery is the main treatment for GIC. However, the high rate of 
postoperative recurrence leads to a low five-year survival rate. In recent years, 
immunotherapy has received much attention. As the only immunotherapy drugs 
approved by the Food and Drug Administration (FDA), immune checkpoint 
blockade (ICB) drugs have great potential in cancer therapy. Nevertheless, the 
efficacy of ICB treatment is greatly limited by the low immunogenicity and 
immunosuppressive microenvironment of GIC. Therefore, the targets of immuno-
therapy have expanded from ICB to increasing tumor immunogenicity, increasing 
the recruitment and maturation of immune cells and reducing the proportion of 
inhibitory immune cells, such as M2-like macrophages, regulatory T cells and 
myeloid-derived suppressor cells. Moreover, with the development of nanotech-
nology, a variety of nanoparticles have been approved by the FDA for clinical 
therapy, so novel nanodrug delivery systems have become a research focus for 
anticancer therapy. In this review, we summarize recent advances in the appli-
cation of immunotherapy-based nanoparticles in GICs, such as gastric cancer, 
hepatocellular carcinoma, colorectal cancer and pancreatic cancer, and described 
the existing challenges and future trends.
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Core Tip: Recently, immunotherapy has received substantial attention. Although there are several Food and 
Drug Administration-approved immune checkpoint blockade (ICB) drugs, the efficacy remains limited, 
and the response rate is less than 20%. Because gastrointestinal cancer (GIC) is a group of immunosup-
pressive cancers, the efficacy of ICB treatment is also limited. Therefore, enhancing the immunogenicity 
of GIC or reversing the immunosuppressive microenvironment of GIC have become potential approaches 
for GIC immunotherapy. There are many studies on nanoparticle-based cancer therapy. However, there are 
only a few studies on immunotherapy-based nanoparticles in GIC. Here, we summarize recent advances in 
the application of immunotherapy-based nanoparticles in GIC and present our thoughts about this topic.

Citation: Ding YN, Xue M, Tang QS, Wang LJ, Ding HY, Li H, Gao CC, Yu WP. Immunotherapy-based novel 
nanoparticles in the treatment of gastrointestinal cancer: Trends and challenges. World J Gastroenterol 2022; 
28(37): 5403-5419
URL: https://www.wjgnet.com/1007-9327/full/v28/i37/5403.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i37.5403

INTRODUCTION
Gastrointestinal cancer (GIC) has been among the most commonly diagnosed cancers in recent decades
[1-3]. In recent reports, the incidence and mortality rates have gradually decreased for gastric cancer 
(GC), hepatocellular carcinoma (HCC) and esophageal cancer in China; in contrast, the rates for 
colorectal cancer (CRC) have increased[4]. Regardless of the changes in the incidence and mortality rates 
of GIC, the disease has greatly affected the quality of life of many individuals.

Similar to other types of cancer, GIC has several therapies available. As the most conventional means 
of cancer treatment, surgery, chemotherapy and radiotherapy play important roles. Although 
traditional therapies effectively prolong survival for patients with GIC, there are still many drawbacks 
that cannot be ignored[5]. Surgery, especially minimally invasive surgery and radiotherapy, can 
effectively shrink the tumor and even make the local tumor disappear; chemotherapy can be 
administered systematically to kill cancer cells[6-8]. However, these treatments cannot prevent 
recurrence. Moreover, for GICs, the side effects of radiotherapy and chemotherapy on the digestive 
system seriously affect the quality of life of patients and cannot be ignored[9-11]. To improve the 
therapeutic effect and reduce the occurrence of adverse reactions, clinicians often try a variety of 
therapeutic combinations to achieve complementary advantages[12,13].

With progress in the concept of cancer treatment and the development of diagnosis and treatment 
technology, various precision treatment methods, such as targeted therapy, photodynamic therapy 
(PDT), photothermal therapy (PTT) and immunotherapy, have emerged as new sources of hope for 
patients[14-19]. Some scholars believe that the characteristics of the GIC immune microenvironment are 
related to the high mortality of patients with GIC; therefore, treatments that target the GIC immune 
microenvironment are gradually being recognized[20]. As one of the therapeutic methods that targets 
the cancer immune microenvironment, immune checkpoint blockade (ICB) treatment has achieved great 
success in clinical practice, laying a good foundation for the development of cancer immunotherapy[21].

Recently, a variety of nanobased drugs (such as Eligard[22], Marqibo[23], Onivyde[24], Doxil[25], 
Abraxane[26], Ontak[27] and Nanotherm[28]) have been widely used in clinical practice due to several 
characteristics, including their low toxicity, long circulation and passive targeting ability[29,30]. 
However, most of the nanobased drugs mentioned above are liposomes. In addition to liposomes, there 
are also other types of nanoparticles that possess the same potential for clinical translation. Similar to 
liposomes, small extracellular vesicles and cell membrane vesicles also have lipid bilayers, and they 
have better biocompatibility than liposomes due to their origin[31-34]. Furthermore, due to their simple 
production process and high drug loading efficiency, polymersomes are also considered candidate 
nanoparticles for clinical translation[35-37]. There are also many kinds of novel nanoparticles, such as 
gold nanoparticles, manganese dioxide nanoparticles, upconversion nanoparticles (UCNPs), metal 
organic framework nanoparticles and mesoporous silica nanoparticles (MSNPs), which can also play 
important roles in different diseases or cancers through their own characteristics[38-42]. Here, among 
the GICs, we focus on GC, HCC, CRC and pancreatic cancer and summarize the application trends of 
immunotherapy-based novel nanoparticles in these cancers as well as the challenges and opportunities 

https://www.wjgnet.com/1007-9327/full/v28/i37/5403.htm
https://dx.doi.org/10.3748/wjg.v28.i37.5403
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in the future.

IMMUNOTHERAPY-BASED NOVEL NANOPARTICLES IN GC
GC remains one of the most common causes of cancer-related death globally. Although a variety of 
treatments have been developed, the main treatment for GC is still surgery or endoscopic resection. The 
probability of patients experiencing recurrence after surgery is approximately 60%[43]. Currently, the 
median overall survival time with fluoropyrimidine-based combination chemotherapy is less than one 
year. In general, the overall clinical therapeutic effect of GC is not satisfactory[44,45]. In addition, 
immunotherapy for GC will become an important treatment option in the future, and nanoparticles, as 
highly efficient drug carriers, have played an important role in clinical practice[46-48]. Whether the 
combination of immunotherapy and nanoparticles can produce improved therapeutic effects is also 
worth examining.

Immune checkpoint inhibitors (ICIs), such as anti-programmed death receptor-1 (anti-PD-1) antibody 
and anti-programmed death receptor-ligand 1 (anti-PD-L1) antibody, can effectively block the PD-
1/PD-L1 pathway and enhance the anticancer immune response[49]. Based on ICI treatment, Xu et al
[50] prepared a novel nanoparticle named docetaxel (DOC)-PEG-PCL-monoclonal antibody (mAb) NP, 
which contained DOC as the chemotherapeutic drug and conjugated PD-L1 mAb on the surface of the 
nanoparticle. This nanodrug delivery system (NDDS) can effectively improve drug delivery efficiency 
and the solubility of hydrophobic drugs such as DOC. In addition, the system can target PD-L1-positive 
GC cells, exhibiting clinical translation potential. Recently, scientists found that a gradually acquired 
heritable de novo methylation program inhibited T-cell proliferation and clonal diversity during PD-1 
blockade therapy[51]. Inspired by this study, Hu et al[52] designed copolymers loaded with the 
epigenetic agent 5-Aza-20-deoxycytidine (DAC), and an anti-PD-1 antibody was conjugated to the 
surface of the nanoparticles. The nanoparticles increased the stability of DAC and improved the 
therapeutic effect of ICI treatment in vivo.

Due to the characteristics of the cancer immune microenvironment, T-cell infiltration in GC patients is 
insufficient, which limits the effect of ICB treatment in GC[53]. Guo et al[54] constructed an NDDS 
named HMON@IR820/Pt-NPs, which coencapsulated platinum nanoparticles (chemo-prodrugs) and 
IR820 (photosensitizer) into hollow mesoporous organosilica nanoparticles. IR820-mediated PDT can 
lead to the release of oxidative mitochondrial DNA (mitoDNA). In addition, this oxidative process can 
oxidize Pt(0) to cytotoxic Pt(II), which can lead to the dysfunction of nuclear DNA (nDNA). The dual 
damage of mitoDNA and nDNA can activate the c-GAS/stimulator of interferon genes (STING) 
pathway, which can directly stimulate innate immunity and increase the infiltration of CD8+ T cells, 
thus improving the efficacy of immunotherapy for GC.

Multiple studies have confirmed that tumor-associated macrophages (TAMs) are also involved in the 
composition of the tumor immune microenvironment. Moreover, M2-like macrophages can inhibit 
tumor immunity and promote tumor immune escape[55,56]. Zhang et al[57]’s group designed a novel 
human serum albumin (HSA)-Au(III) thiosemicarbazone agent nanoparticle delivery system for 
chemotherapy and immunotherapy in GC. This NDDS can simultaneously directly kill GC cells and 
polarize TAMs into M1-like macrophages, providing a new immunotherapy strategy for clinical 
translation.

The majority of cancer patients are often unable to activate adequate levels of anticancer immunity, 
whereas therapeutic tumor vaccines can help patients proactively generate adequate anticancer immune 
responses against tumor-specific antigens (TSAs) and tumor-associated antigens[58]. Among the 
different types of tumor vaccines, dendritic cell (DC)-based tumor vaccines have been explored in 
clinical experiments[59,60]. Kohnepoushi et al[61] prepared poly(lactic-co-glycolic) acid nanoparticles to 
protect the human gastric tumor antigen against proteolytic enzymes. In addition, nanoparticles that 
contain human gastric tumor antigen can facilitate DC maturation and further enhance the efficacy of 
DC vaccines in clinical practice.

In addition to ICB treatment and other therapies that can improve the cancer immune microenvir-
onment, immunoadjuvants can act as a potential adjunctive therapy to stimulate anticancer immunity
[62,63]. Zhang et al[64] developed a gold nanoshell-based NDDS that can convert near-infrared (NIR) 
light into thermal energy, enabling PTT. Moreover, high temperature can also break thiol bonds to 
release gene therapy agents and oligooxynucleotides that contain cytosine-guanine (CpG) motifs (which 
are also known as immunoadjuvants). This study designed a novel NDDS combined with hyperthermia, 
gene therapy and immunotherapy, which exhibited encouraging anticancer efficacy against GC in vitro 
and in vivo (Table 1).

IMMUNOTHERAPY-BASED NOVEL NANOPARTICLES IN HCC
Primary liver cancer is among the most commonly diagnosed cancers, most of which are HCC[65,66]. 
Due to the high infection rate of hepatitis B virus, the incidence of HCC in China remains high[67]. 
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Table 1 Overview of immunotherapy-based novel nanoparticles in the treatment of gastric cancer [PubMed Search (immunotherapy) 
AND (nanoparticle) AND (gastric cancer)]

Type of nanoparticle Treatment strategy Drugs or active 
substance involved

The main involvement 
of immune cells Ref.

Copolymers ICIs, chemotherapy DOC, PD-L1 mAb T cells Xu et al[50]

Copolymers ICIs, epigenetic treatment DAC, nivolumab PD1+CD8+ TILs Hu et al[52]

Hollow mesoporous 
organosilica nanoparticles

Dual-damage to nDNA and mitoDNA 
activates the c-GAS/STING pathway to 
stimulate innate immunity

Platinum, IR820 CD8+ T cells, DCs Guo et al[54]

HSA nanoparticles Targeted chemotherapy and immuno-
therapy

Au(III) thiosemicarbazone 
agent

TAMs Zhang et al[57]

Polymers DC vaccine Human gastric tumor 
antigens

DCs Kohnepoushi et al
[61]

Gold nanoshell Gene therapy, hyperthermia and immuno-
adjuvants therapy

HER-2 targeted siRNA, 
gold, CpG

DCs, T cells Zhang et al[64]

ICIs: Immune checkpoint inhibitors; DOC: Docetaxel; PD-L1: Programmed cell death ligand 1; mAb: Monoclonal antibody; DAC: 5-Aza-20-deoxycytidine; 
TILs: Tumor-infiltrating T cells; DCs: Dendritic cells; HSA: Human serum albumin; TAMs: Tumor-associated macrophages; HER-2: Human epidermal 
growth factor receptor-2; CpG: Cytosine–guanine.

Surgical resection of the liver is the main treatment for HCC. However, the prognosis after surgery is 
still poor. Recently, the development of molecular targeted therapy and immunotherapy for HCC has 
gained recognition in clinical studies[68]. Moreover, NDDSs can improve the efficiency of drug delivery 
into the tumor area and reduce side effects[69-71]. At present, a large number of studies using immuno-
therapy-based NDDSs have shown great potential for clinical translation.

ICB treatment has also emerged as a new option for advanced HCC[72]. However, ICB treatment 
alone has limited efficacy against HCC. Therefore, how to combine other kinds of therapies to improve 
the efficiency of ICB treatment has become a new academic topic. For example, Food and Drug 
Administration (FDA)-approved sorafenib-experienced patients used ipilimumab (anti-CTLA-4) 
combined with nivolumab (anti-PD-1) in March 2020[73]. In the last two decades, scientists have found 
that chemotherapeutic drugs, radiotherapy, PDT and some other treatments can induce immunogenic 
cell death (ICD), which can lead to the release of TSAs and increase tumor antigenicity[74]. Hence, ICD 
can improve the efficacy of ICB treatment by increasing tumor immunogenicity. According to the 
therapeutic strategies mentioned above, Xu et al[75] designed a cyclic arginine-glycine-aspartic acid 
peptide-modified self-assembling polymer-based NDDS. Cancer cells were damaged by PDT and 
chemotherapy, while induced ICD and enhanced tumor immunogenicity provided a suitable immune 
microenvironment for ICB treatment. Previous studies found that a lack of the p53 tumor suppressor 
gene leads to tumorigenesis and drug resistance[76-78]. With the development of research on the p53 
tumor suppressor gene, an increasing body of evidence indicates that the p53 protein plays an 
important role in anticancer immunity by regulating the cancer immune microenvironment[79-81]. 
Furthermore, a recent study suggested that ICD induced by cytotoxic agents, such as chemotherapy 
drugs, may be involved in the activation of the p53 pathway[82]. Xiao et al[83] developed a novel lipid-
polymer hybrid nanoplatform for mRNA delivery that can induce the expression of p53, effectively 
reprogramming the immune microenvironment of HCC. Moreover, combination with anti-PD-1 therapy 
can reverse the inhibitory immune microenvironment of HCC. To solve the problem of HCC recurrence 
after surgery, Li et al[84] designed a bionic NDDS consisting of MSNPs loaded with anti-PD-L1 and 
sorafenib and coated with platelet membranes at the surface of the MSNPs. This NDDS can target 
wounds and generate potent anti-HCC immunity, providing a new therapeutic idea for preventing 
recurrence in postsurgery HCC patients.

As we mentioned before, chemotherapy-based ICD can cause cancer cells to be more easily 
recognized by the immune system. However, the effect of single-drug-mediated ICD is very limited. 
Some studies have attempted to enhance the effect of ICD by combining two different ICD inducers to 
solve this problem. Yu et al[85] evaluated the potential of icaritin as an ICD inducer and utilized NDDS 
to deliver low doses of icaritin and doxorubicin simultaneously to the tumor area. This NDDS can 
reprogram the immune microenvironment and induce satisfactory anti-HCC effects. Furthermore, 
NDDS can lower the dose of chemotherapy to reduce the side effects.

TAMs play a major role in the immunosuppressive microenvironment of HCC[86]. Wang et al[87] 
screened chemokine C-C motif ligand (CCL)2 and CCL5 as two major chemokines responsible for the 
polarization of M2-like macrophages and designed a CCL2 and CCL5 dual-target lipid nanoparticle 
system. The combination of TAMs targeting lipid nanoparticles with ICB treatment achieved long-term 
survival in HCC mice. Similarly, as a common feature of the tumor microenvironment, hypoxia is also 
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common in HCC. Hypoxia can lead to radioresistance and the formation of an immunosuppressive 
microenvironment, including the accumulation of TAMs and depletion of effector T cells, which are 
closely related to the occurrence and development of cancer[88-90]. Dai et al[91] synthesized polydo-
pamine-nanoparticle-stabilized oxygen microcapsules that can deliver oxygen to the tumor region and 
rapidly increase the concentration of oxygen. In this study, oxygen microcapsules increased HCC 
sensitivity to radiotherapy and polarized M2-like macrophages into M1-like macrophages, consequently 
activating anti-HCC immunity. In addition to conventional immune cells, liver sinusoidal endothelial 
cells (LSECs) can also play a significant role in immunosuppressive regulation[92]. Yu et al[93] designed 
a simvastatin-loaded NDDS to target LSECs in HCC patients. This NDDS can reduce the capillarization 
of LSECs to improve the stromal microenvironment and recruit natural killer T cells to inhibit tumor 
progression.

Cationic lipid nanoparticles have been suggested to be suitable delivery vectors for RNA, and several 
messenger RNA vaccines are based on lipid nanotechnology that was approved by the FDA during the 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic[94-97]. Zhang et al[98] 
developed a total HCC-derived RNA-loaded lipid nanoparticle vaccine to target DCs and activate 
anticancer immunity (Figure 1 and Table 2).

IMMUNOTHERAPY-BASED NOVEL NANOPARTICLES IN CRC
CRC is the third leading cause of cancer-related deaths globally[99]. CRC is the only cancer that can be 
reduced by screening. Most CRC patients can be screened by flexible sigmoidoscopy or guaiac-based 
fecal occult blood tests[100]. However, approximately 25% of CRC patients are at stage 4, and the 5-year 
survival rate is only 11%[101,102]. To improve the survival rate of advanced CRC patients, immuno-
therapy and nanoparticle-based drug delivery systems have become the focus of basic and clinical 
research for the past few years[103-105].

Similar to GC and HCC, ICB treatment is more widely used in CRC patients, but its curative effect is 
extremely limited, especially for mismatch repair-proficient/microsatellite stability/microsatellite 
instability-low CRC patients[106]. As we reported earlier, ICB treatment combined with ICD can 
achieve a “1 + 1 > 2” effect. A similar treatment strategy has also been applied in CRC research. For 
example, Yuan et al[107] utilized the ability of PDT to induce ICD and developed a photosensitive 
NDDS combined with ICB treatment that can enhance the response rate of anti-PD-L1 therapy in CRC. 
Zhu et al[108] also designed an oxaliplatin prodrug-conjugated photosensitive NDDS that can be 
stimulated by the NIR-II window (1000-1700 nm) for PTT, which is a proven to induce ICD. Moreover, 
oxaliplatin, a chemotherapy drug, is also known as an ICD inducer. This novel NDDS can induce ICD 
through both PTT and chemotherapy, which may provide a promising immunotherapy strategy for 
advanced CRC treatment. Shikonin (SK), a major active ingredient isolated from traditional Chinese 
medicine, has also been proven to induce ICD. Li et al[109] designed a versatile nanoparticle that can 
deliver knockdown siRNA for both the ICD inducer SK and PD-L1, which presents potential for CRC 
immunotherapy. Recently, ferroptosis was discovered as a nonapoptotic form of regulated cell death
[110]. In addition, Duan et al[111]’s group proved that dihydroartemisinin (DHA), as a reactive oxygen 
species (ROS)-producing drug and ferroptosis inducer, can also induce ICD to potentiate anticancer 
immunity. Therefore, the same research group developed a Zn-pyrophosphate core-shell NDDS 
codeliver DHA and pyropheophorbide-iron (pyro-Fe). Glutathione and other thiol-based reductants in 
cancer cells can reduce Pyro-FeIII to Pyro-FeII, which can catalyze the decomposition of DHA to induce 
ICD and ferroptosis. This novel NDDS overcame the deficiency of iron in solid tumors, enhanced the 
ability of DHA to induce ferroptosis and ICD, and increased the infiltration of CD8+ T cells in CRC.

In addition to actively increasing the immunogenicity of CRC, stimulating immune cells can also 
activate anti-CRC immunity. Immune cells can be activated by stimulating toll-like receptors (TLRs), 
such as DCs and macrophages. Several TLR agonists have been approved by the FDA. However, none 
are currently approved for CRC treatment. The major problem for TLR agonists is the small size of the 
drugs, which allows the drugs to spread rapidly from the administration site and cause severe systemic 
side effects (Figure 2)[112]. Fortunately, nanoparticle-based delivery systems can solve this problem. 
Bahmani et al[113] prepared a platelet membrane-coated nanoparticle loaded with the TLR7 agonist 
R848. This biomimetic NDDS enhanced the retention of the drug in the tumor and effectively stimulated 
the maturation of DCs, resulting in complete tumor eradication in a murine model of CRC.

Notably, long noncoding RNAs (lncRNAs) have recently been reported to be involved in the 
formation of the immunosuppressive cancer microenvironment and have become a potential immuno-
therapy target[114-116]. Liu et al[117] designed a bioscaffold loaded with a lncRNA-targeting 
biomimetic NDDS that modulated the cancer immune microenvironment against CRC recurrence after 
surgery. The biomimetic NDDS coated with a CRC membrane, which provides NDDS with a tumor-
homing capacity and carries TSAs into the tumor area, promotes the maturation of DCs. Moreover, a 
plasmid-encoding short hairpin RNA against Pvt1 was encapsulated inside the NDDS to enhance ICD 
and ameliorate granulocytic-myeloid-derived suppressor cell (G-MDSC)-mediated immunosup-
pression. This work provides a new perspective for NDDS-based lncRNA-targeted immunotherapy.
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Table 2 Overview of Immunotherapy-based novel nanoparticles in the treatment of hepatocellular carcinoma [PubMed Search 
(immunotherapy) AND (nanoparticle) AND (hepatocellular carcinoma)]

Type of nanoparticle Treatment strategy Drugs or active 
substance involved

The main involvement of 
immune cells Ref.

Nano-micelles ICD, chemotherapy, PDT PTX, TPABDTO CTLs, MDSCs, Tregs, DCs Xu et al[75]

Polymers p53 gene reprograms the immune 
microenvironment

p53 mRNA T cells, NK cells Xiao et al[83]

MSNPs Anti-angiogenic drugs, ICIs Sorafenib, PD-L1 antibody T cells Li et al[84]

Copolymers ICD, chemotherapy Icaritin, DOX T cells, DCs Yu et al[85]

Lipid nanoparticle CCL2 and CCL5 dual-target BisCCL2/5i mRNA TAMs Wang et al[87]

Microcapsules Improving hypoxia Oxygen TAMs Dai et al[91]

Copolymers Mitigates LSEC capillarization Simvastatin NKT cells Yu et al[93]

LNPs Antigen specific vaccine Tumor-derived RNA T cells, DCs Zhang et al[98]

ICD: Immunogenic cell death; PDT: Photodynamic therapy; CTLs: Cytotoxic T lymphocytes; PTX: Paclitaxel; MDSCs: Myeloid-derived suppressor cells; 
DCs: Dendritic cells; CCL2: Chemokine C-C motif ligand 2; CCL5: Chemokine C-C motif ligand 5; DOX: Doxorubicin; PD-L1: Programmed cell death 
ligand 1; NK cells: Natural killer cells; TAMs: Tumor-associated macrophages; Tregs: Regulatory T lymphocytes; MSNPs: Mesoporous silica nanoparticles; 
LSEC: Liver sinusoidal endothelial cells; LNPs: Lipid nanoparticles; NKT: Natural killer T.

In recent years, as an important component of the immunosuppressive cancer microenvironment, 
MDSCs have also been identified as potential targets for cancer immunotherapy. Additionally, recent 
studies reported that MDSCs could be selectively enlarged because of the enrichment of Fusobacterium 
nucleatum (Fn) in CRC tissue, resulting in a cancer immunosuppressive microenvironment[118-121]. 
Dong et al[122] proposed a phage-based antibacterial system that used the broad-spectrum antibacterial 
effect of silver nanoparticles (AgNPs) for antibacterial activity and then transported phage M13 into the 
tumor and utilized the recognition mechanism of phages to selectively kill Fn, thus preventing the 
recruitment of MDSCs. In addition, phages are highly immunogenic and can directly stimulate the 
maturation of DCs and promote the activation of M1-like macrophages, significantly enhancing the anti-
CRC immune response.

Over the years, CRC vaccines have been a focus of scientific research. Zhang et al[123] designed an in 
situ cancer vaccine. They reported a supramolecular assembled programmable immune activation 
nanomedicine (PIAN) that can produce strong and durable anticancer immunity in situ. PIAN entered 
the tumor area through enhanced permeability and retention (EPR) after tail vein injection and was then 
disassembled by the high ROS within the tumor tissue. The release of poly-[(N-2-hydroxyethyl)-
aspartamide]-Pt(IV)/beta-cyclodextrin simultaneously mediated tumor cell death and antigen release. 
In addition, CpG/polyamidoamine (CpG/PAMAM) captured the released antigen and entered the 
tumor draining lymph node to stimulate DC maturation, thus activating anti-CRC-specific immunity. 
This excellent work provides a new idea for designing nanomedicine-based programmable in situ 
cancer vaccines for cancer immunotherapy (Table 3).

IMMUNOTHERAPY-BASED NOVEL NANOPARTICLES IN PANCREATIC CANCER
As one of the most aggressive and fatal cancers, pancreatic cancer has been the leading cause of cancer-
related deaths worldwide in the last few decades[124,125]. Most patients experience no obvious 
symptoms during the development of the disease. Therefore, it is difficult to diagnose the disease in the 
early stage, and patients often miss the optimal treatment time after they have been diagnosed with 
pancreatic cancer. Moreover, the majority of patients eventually relapse, even if they receive potentially 
radical treatment[126]. In contrast to other malignant tumors, stromal hyperplasia is the main feature of 
the pancreatic cancer microenvironment[127]. As a result, pancreatic cancer does not have a sufficient 
blood supply, so antiangiogenic drugs are not suitable for pancreatic cancer[128]. In addition, the tumor 
stroma of pancreatic cancer acts as a natural physical barrier between the tumor tissue and the body’s 
immune system, which also limits the application of immunotherapy[129,130]. Until now, most phase I 
and II clinical trials of immunotherapy in pancreatic cancer have failed. Interestingly, ICB treatment 
combined with chemotherapy and/or radiotherapy has shown encouraging clinical efficacy[131]. In 
recent years, with the continuous development of nanotechnology, scientists have proposed a variety of 
nanodelivery systems aimed at the unique pathological characteristics of pancreatic cancer. They 
attempted to utilize NDDSs to achieve synergistic therapy and improve the tumor microenvironment to 
reverse the current situation of pancreatic cancer[132].
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Table 3 Overview of Immunotherapy-based novel nanoparticles in the treatment of colorectal cancer [PubMed Search (immunotherapy) 
AND (nanoparticle) AND (colorectal cancer)]

Type of nanoparticle Treatment strategy Drugs or active substance involved
The main 
involvement of 
immune cells

Ref.

Copolymers PDT induces HIF-1α 
expression, leading to the 
upregulation of PD-L1 
expression, ICIs

Photosensitizer, PD-L1 antibody DCs, CD8+T cells, 
memory T cells

Yuan et al[107]

Polymeric nanoparticle PTT, chemotherapy, ICD PBOXA, donor–spacer–acceptor–spacer–donor 
type fluorophore

DCs, T cells, CTLs Zhu et al[108]

Copolymers ICD, ICIs SK, PD-L1 knockdown siRNA DCs, TAMs, Tregs, T 
cells

Li et al[109]

Polymers ICD, ferroptosis DHA DCs, T cells Duan et al[111]

Platelet membrane-coated 
nanoparticle

TLR7 treatment R848 DCs Bahmani et al
[113]

Liposomes with cell 
membrane

ICD, chemotherapy, 
lncRNA-targeting therapy

Oxaliplatin, shPvt1 DCs, MDSCs, CD8+T 
cells

Liu et al[117]

Silver nanoparticles Anti-Fn Phage M13 MDSCs, DCs, TAMs Dong et al[122]

Supramolecular assembled 
programmable immune 
activation nanomedicine

In-situ cancer vaccine, ICD PPCD, CpG/PAMAM DCs, CD8+T cells Zhang et al[123]

ICIs: Immune checkpoint inhibitors; HIF-1α: Hypoxia-inducible factor 1α; PDT: Photodynamic therapy; PTT: Photothermal therapy; ICD: Immunogenic cell 
death; PD-L1: Programmed cell death ligand 1; PBOXA: Oxaliplatin prodrug; SK: Shikonin, DHA: Dihydroartemisinin; TLR: Toll-like receptor; shPvt1: 
Short hair-pinned RNA against Pvt1; Fn: Fusobacterium nucleatum; PPCD: Poly-[(N-2-hydroxyethyl)-aspartamide]-Pt(IV)/beta-cyclodextrin; PAMAM: 
Polyamidoamine; MDSCs: Myeloid-derived suppressor cells; DCs: Dendritic cells; CTLs: Cytotoxic T lymphocytes; TAMs: Tumor-associated macrophages; 
Tregs: Regulatory T lymphocytes; MDSCs: Myeloid-derived suppressor cells.

As we mentioned above, the tumor stroma of pancreatic cancer limits the efficacy of immunotherapy. 
Wang et al[133] reported a pH-responsive clustered nanoparticle (iCluster) loaded with both siPD-L1 
and transforming growth factor-β (TGF-β) receptor inhibitors (LY2157299). iCluster can deliver siPD-L1 
and LY2157299 to tumor blood vessels and then release small PAMAM at acidic tumor extracellular pH 
(pHe). Therefore, siPD-L1 can penetrate into tumor tissue as deeply as possible to activate anticancer 
immunity, and a TGF-β receptor inhibitor can reduce the barrier function of the tumor stroma to help 
more drugs penetrate into the tumor tissue, further promoting the activation of anticancer immunity. 
Similarly, Yu et al[134] designed a size-adjustable nanoparticle consisting of IR780 containing the 
thermosensitive ICB drug (BMS-202) conjugated to HSA-BMS. Under mild hyperthermia therapy, this 
novel nanoparticle releases the small HSA-BMS into the tumor site and relieves the immunosuppressive 
environment to normalize immunity. In recent years, some studies have reported that RNA interference 
(RNAi) has emerged as a better agent for inducing anticancer immunity than antibodies or small 
molecules in vivo[135]. PLGA polymers have been proven to be a potentially excellent siRNA delivery 
vector exhibiting low toxicity, sustained release and the EPR effect[136,137]. Jung et al[138] developed a 
poly(lactic-co-glycolic) acid (PLGA)-based siRNA nanoparticle named siPD-L1@PLGA. siPD-L1@PLGA 
increased the infiltration of CD8+ T cells and significantly inhibited tumor growth.

The poor immunogenicity and excessive immunosuppressive cancer microenvironment of pancreatic 
cancer result in a lack of adequate antigen-presenting cells in the tumor microenvironment. Lorkowski 
et al[139] reported a dual-immunostimulatory nanoparticle that was simultaneously loaded with a 
STING agonist and TLR4 agonist. These dual-immunostimulatory nanoparticles can be taken up by DCs 
in the tumor site to significantly increase the number of mature DCs and activate anticancer immunity 
in pancreatic cancer. Theoretically, cancer immunosuppressive cells mainly include TAMs, MDSCs and 
regulatory T cells (Tregs). Recent studies have shown that MDSCs are the major inhibitory immune cells 
in the immunosuppressive microenvironment of pancreatic cancer[140]. A previous study found that 
low-molecular-weight heparin-D-α-tocopheryl (LMWH) could significantly inhibit G-MDSC recruit-
ment[141]. Therefore, Lu et al[142] designed a paclitaxel-loaded 3-aminophenylboronic acid-modified 
LMWH-based nanoparticle. This novel LMWH-based nanoparticle can inhibit the recruitment of 
MDSCs and weaken the immunosuppressive state.

Pyroptosis is a mode of programmed cell death[143]. Recent studies have shown that pyrophosis can 
induce powerful anticancer immunity[144-146]. However, pyrophosis is usually induced by chemo-
therapeutic drugs, which limits the applications of pyrophosis in drug-resistant tumors[147]. Ding et al
[148] designed biodegradable K3ZrF7:Yb/Er UCNPs (ZrNPs) as self-therapeutic agents and pyrophosis 
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Figure 1 Tumor vaccine and tumor immunotherapy. Total tumor RNA was extracted and mixed with an immune adjuvant to formulate tumor vaccine. 
Tumor antigen was expressed and presented or cross-presented to Th and Tc cells by antigen presenting cells in lymph node to generate specific anti-tumor 
response. Citation: Zhang Y, Xie F, Yin Y, Zhang Q, Jin H, Wu Y, Pang L, Li J, Gao J. Immunotherapy of Tumor RNA-Loaded Lipid Nanoparticles Against 
Hepatocellular Carcinoma. Int J Nanomedicine 2021; 16: 1553-1564. Copyright ©The Authors 2011. Published by Dove Medical Press. The authors have obtained 
the permission for figure using from the Dove Medical Press Publishing Group (Supplementary material). Ab: Antibody; Ag: Antigen; BCR: B cell receptor; TCR: T-cell 
receptor; MHC: Major histocompatibility complex; PRR: Pattern recognition receptors; Th1/2: T helper type 1/2; CTL: Cytotoxic T-lymphocyte; CTLA4: Cytotoxic T-
lymphocyte-associated protein 4; Treg: Regulatory T cell; DC: Dendritic cell; NK: Natural killer cell; MDSC: Mmyeloid-derived suppressor cell; ADCC: Antibody-
dependent cellular cytotoxicity; CDC: Complement-dependent cytotoxicity; SIRPα: Signal regulatory protein α; LILRB1: Leukocyte immunoglobulin like receptor B1; 
TIM-3: T-cell immunoglobulin and mucin domain-3; PD1: Programmed cell death protein 1; PD-L1: Programmed death-ligand 1; IL-2: Interleukin-2; IFNγ: Interferon γ; 
KIR: Killer cell immunoglobulin-like receptor; NKG2D: Natural killer group 2 member D.

inducers for the first time. ZrNP can lead to osmotic pressure disorder and further result in an increase 
in ROS, the activation of caspase-1 protein, the cleavage of gasdermin, the maturation of interleukin-1β, 
and ultimately cytolysis. ZrNP-induced pyrophosis can lead to DC maturation and activate effector 
memory T cells, as well as inhibit tumor growth and metastasis.

Gemcitabine is among the most effective FDA-approved chemotherapy drugs to prolong survival in 
patients with pancreatic cancer. However, the immunosuppressive cancer microenvironment, especially 
the presence of TAMs, significantly weakens the efficacy of gemcitabine. It has even been reported that 
gemcitabine can induce an increase in TAMs and promote the establishment of a tumor-suppressive 
immune microenvironment, which further increases gemcitabine drug resistance[149]. Furthermore, 
gemcitabine can even induce an increase in TAMs and promote the establishment of an immunosup-
pressive tumor microenvironment, which further leads to gemcitabine drug resistance[150]. Thus, Wang 
et al[151] developed a biomimetic nanoparticle named PG@KMCM consisting of gemcitabine-loaded 
PLGA nanoparticles coated with stable M2-like macrophage targeting peptides (M2pep). Pancreatic 
cancer cell membranes can deliver PG@KMCM to pancreatic cancer and target M2-like macrophages by 
M2pep to reprogram TAMs and reverse gemcitabine drug resistance. Cao et al[152] also considered 
TAMs to be a therapeutic target and reported a reduction-responsive RNAi NDDS to regulate the 
function of TAMs and reprogram tumor lipid metabolism. On the one hand, this novel NDDS can block 
the activity of monoacylglycerol lipase (MGLL) by MGLL siRNA to reduce the production of free fatty 
acids and thus cut off the tumor’s nutrition supply. On the other hand, MGLL blockade may lead to the 
accumulation of 2-arachidonoylglycerol, which can be secreted into the cancer microenvironment and 
activate the endocannabinoid receptor-2 (CB-2), which can transform TAMs into M2-like macrophages. 

https://f6publishing.blob.core.windows.net/819081a0-cf4a-4925-b33a-277d211df428/WJG-28-5403-supplementary-material.pdf
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Figure 2 Altering an immunosuppressive tumor microenvironment into a pro-inflammatory microenvironment with the use of toll-like 
receptor agonists. Citation: Haegebaert RMS, Kempers M, Ceelen W, Lentacker I, Remaut K. Nanoparticle mediated targeting of toll-like receptors to treat 
colorectal cancer. Eur J Pharm Biopharm 2022; 172: 16-30. Copyright ©The Authors 2022. Published by Elsevier. The authors have obtained the permission for 
figure using from the Elsevier Publishing Group (Supplementary material). Treg: T regulatory cell; MDSCs: Myeloid-derived suppressor cells; CAF: Cancer-associated 
fibroblast; Th1: T-helper 1; CD8+ T cells: Cytotoxic T cells; NK: Natural killer; TLR: Toll-like receptor.

Therefore, they prepared CB-2 siRNA to block CB-2 expression, preventing the transition of M2-like 
macrophages. The dual-RNAi NDDS developed in this research shows significant enhancement of the 
immunological environment in pancreatic cancer.

PTT has achieved satisfactory results in animal experiments, but it is difficult to apply widely in the 
clinic. The main reason is poor light penetration. It is harder to achieve the desired therapeutic effect for 
pancreatic cancer due to the depth of pancreatic cancer and the presence of the tumor stroma. To solve 
this conundrum, Wang et al[153] proposed magnetic resonance imaging (MRI)-guided interventional 
PTT (IPTT). They designed an iron oxide-based nanoparticle loaded with indocyanine green for PTT 
and imiquimod (IMQ) as an immunostimulant. IPTT can induce in situ cancer vaccination, which can be 
amplified by IMQ. In addition, iron oxide is a widely used MRI contrast agent. A recent study reported 
that iron oxide can modulate the cancer microenvironment by transforming M2-like macrophages into 
M1-like macrophages[154]. Overall, these novel iron oxide-based nanoparticles can improve therapeutic 
effects by directly killing cancer cells and activating the long-lasting immune effect by in situ vaccination 
and regulation of the immune microenvironment (Table 4).

FUTURE DIRECTIONS
In recent years, the increased development of immunotherapy has provided hope to patients with 
advanced cancer. Several ICB drugs have been approved by the FDA for clinical application in cancer 
treatment. However, due to the immunosuppressive microenvironment, only approximately 20% of 
patients can benefit from ICB treatment. In addition to ICB treatment, some conventional therapies, such 
as chemotherapy and radiotherapy, are also closely related to the immunosuppressive tumor microen-
vironment. The facts we mentioned above also exist in GIC. Therefore, we believe that in addition to 
ICB treatment, we should focus on reversing the immunosuppressive microenvironment in the future. 
Moreover, advances in nanotechnology have made drug delivery more efficient, allowing us to deliver 
drugs at specific times and locations based on the characteristics of the cancer and the drugs. We 
wondered whether the combination of nanotechnology and immunotherapy could achieve satisfactory 
therapeutic efficacy in GIC. Here, we summarize recent advances in immunotherapy-based novel 
nanoparticles in the treatment of GIC.

Since GC, HCC and CRC share similar tumor immune microenvironments, we will discuss the 
application of immunotherapy-based nanoparticles in these three kinds of GICs in the following 
paragraphs. Due to the limited monotherapy effect of ICB treatment, nanoparticles, as drug delivery 
vehicles, cannot significantly improve the therapeutic effect of ICB treatment. Thus, basically all ICB-
based nanoparticles are combined with other therapeutic strategies. ICB treatment can reverse tumor 
immune escape from T cells. However, the low immunogenicity of the tumor results in insufficient T-
cell infiltration in the tumor tissue. Hence, most studies have attempted to promote the therapeutic 
effect of ICB-based nanoparticles by inducing ICD.

ICD can increase tumor immunogenicity, but similar to ICB treatment, the immune-stimulating effect 
of ICD is limited. To amplify the ICD effect, some studies utilized the drug-loading capacity of 
nanoparticles and adopted a combination of multiple ICD inducers to enhance the immune response. 
Even so, we still do not recommend the combination of multiple ICD inducers to promote anticancer 
immunity. On the one hand, this strategy does not solve the problem of insufficient T-cell infiltration; on 

https://f6publishing.blob.core.windows.net/819081a0-cf4a-4925-b33a-277d211df428/WJG-28-5403-supplementary-material.pdf
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Table 4 Overview of Immunotherapy-based novel nanoparticles in the treatment of pancreatic cancer [PubMed Search (immunotherapy) 
AND (nanoparticle) AND (pancreatic cancer)]

Type of nanoparticle Treatment strategy Drugs or active substance 
involved

The main involvement of 
immune cells Ref.

Clustered nanoparticle ICIs, TGF-β receptor inhibitors LY2157299, siPD-L1 T cells Wang et al[133]

HAS-Liposomes ICD, ICIs, PTT BMS-202, IR780 DCs, CTLs, T cells Yu et al[134]

Copolymers ICIs siPD-L1 CD8+T cells, NK cells Jung et al[138]

LNPs STING and TLR4 therapy STING agonist, R4 agonist DCs, Tregs, TAMs Lorkowski et al[139]

Micellar nanoparticle Inhibit G-MDSCs recruitment, 
chemotherapy

LMWH, PTX G-MDSC, CD8+T cells, CD4+T 
cells

Lu et al[142]

UCNPs Pyroptosis K3ZrF7:Yb/Er UCNPs DCs, memory T cells Ding et al[148]

Cancer cell membrane with 
copolymers

ICIs, M2-macrophages targeting M2pep, TAAs, PD-L1 
antibody

TAMs, CD8+T cells Wang et al[151]

PDSA-based nanoplatform Suppression of FFAs, repolar-
ization of TAMs

siMGLL, siCB-2 TAMs Cao et al[152]

Copolymers PTT, immunotherapy ICG, IMQ, IONs TAMs, CD8+T cells, CD4+T 
cells, CD4+T cells

Wang et al[153]

IONs Repolarization of TAMs Ferumoxytol TAMs Zanganeh et al[154]

ICIs: Immune checkpoint inhibitors; PD-L1: Programmed cell death ligand 1; TGF-β: Transforming growth factor-β; ICD: Immunogenic cell death; DCs: 
Dendritic cells; STING: Stimulator of interferon genes; LMWH: Low molecular weight heparin; MDSCs: Myeloid-derived suppressor cells; G-MDSCs: 
Granulocytic myeloid-derived suppressor cells; UCNPs: Upconversion nanoparticles; M2pep: Peptides targeting M2-like macrophages; TAAs: Tumor-
associated antigens; PDSA: Poly (disulfide amide); FFAs: Free fatty acids; siMGLL: MGLL siRNA; siCB-2: CB-2 siRNA; ICG Indocyanine green; IMQ: 
Imiquimod; IONs: Iron oxide nanoparticles; PTX: Paclitaxel; PTT: Photothermal therapy; TAMs: Tumor-associated macrophages; Tregs: Regulatory T 
lymphocytes; TLR: Toll-like receptor.

the other hand, ICD inducers themselves can directly kill tumor cells. It is difficult to determine whether 
tumor inhibition is due to cytotoxicity or ICD-induced anticancer immunity.

Compared with ICD and ICB treatment, we believe that reprogramming the immunosuppressive 
tumor microenvironment by targeting inhibitory immune cells (e.g., TAMs, Tregs and MDSCs) will be a 
revolutionary breakthrough in cancer immunotherapy in the future. Recently, many studies have 
attempted to successfully reprogram the tumor immune microenvironment by polarizing M2-like 
macrophages into M1-like macrophages. However, few reports have designed NDDSs to target Tregs 
and MDSCs in the tumor microenvironment. Therefore, it is of great significance to develop NDDSs for 
Tregs and MDSCs. In addition, the relationship between the intestinal flora and the immunosuppressive 
microenvironment of CRC also deserves future attention.

TLR agonists have also emerged as a promising treatment for cancer immunotherapy. However, due 
to the lack of targeting of TLR agonists, free TLR agonists often lead to serious systemic side effects. 
Therefore, it is necessary to deliver TLR agonists by nanoparticles. Numerous TLR agonists have been 
proven to be effective in stimulating anticancer immunity. In addition, combination therapies of TLR 
agonists with other immunotherapies are also anticipated. However, how to deliver TLR agonists to the 
tumor site stably and accurately and reduce serious systemic side effects are still problems that need 
prompt solutions.

With the successful large-scale clinical application of SARS-CoV-2 mRNA vaccines, research on 
cancer vaccines is also imminent. Due to the high heterogeneity of cancer, RNA vaccines are the best 
option. However, RNA is highly unstable. Liposomes, as mature NDDSs, can prepare cancer vaccines 
by encapsulating RNA. In addition, to improve the vaccine effect, NDDSs can be encapsulated with 
immune adjuvants to promote immune activation. RNA-based cancer vaccines, as a personalized cancer 
treatment strategy, can effectively improve anticancer immunity.

Next, we will discuss the application of immunotherapy-based nanoparticles in pancreatic cancer. 
Pancreatic cancer has several characteristics that are not found in other kinds of GICs, including the 
following: (1) Pancreatic cancer is surrounded by a tumor stroma, resulting in a physical barrier that 
isolates pancreatic cancer from the surrounding immune microenvironment; (2) Due to the anatomic 
position of the pancreas, pancreatic cancer is located deep in the abdominal cavity and therefore is not 
sensitive to PDT and PTT; and (3) Unlike other GICs, pancreatic cancer lacks blood supply and can 
adapt to nutrient deficiency and in a long-term hypoxic state.

To pass through the physical barrier of pancreatic cancer, size-adjusted NDDSs are the best option. 
Due to the deep location of pancreatic cancer, PTT has limited efficacy. Inspired by a previous study, we 
believe that IPTT and interventional PDT can be widely applied in the treatment of pancreatic cancer. 
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Additionally, interventional light-mediated therapy can be extended to GC, esophageal cancer and 
CRC, as well as HCC.

Compared with GC, HCC and CRC, pancreatic cancer has a similar immunosuppressive microenvir-
onment, and the immunosuppressive situation is even worse. Most of the treatment strategies 
mentioned in GC, HCC and CRC can also be applied in pancreatic cancer. In previous reports, immuno-
therapy-based nanoparticles mainly used liposomes and copolymer nanoparticles, which are chemical 
synthesis products. Therefore, the nanoparticles can be designed according to demand. To increase 
biocompatibility and deliver tumor antigens, some literature has used tumor cell membranes to prepare 
biomimetic NDDSs, which have also achieved good results. In addition to the abovementioned 
nanoparticles, we particularly recommend small extracellular vesicles (also known as exosomes) as 
immunotherapy-based nanoparticles. First, exosomes are naturally nanosized. Second, similar to cell 
membrane vesicles, exosomes derived from tumor cells can carry tumor antigens. Third, exosomes can 
use surface modification to achieve biological functions, such as targeting. Last, exosomes have a certain 
drug delivery capacity. Thus, exosomes are potential immunotherapy-based nanoparticles for GIC that 
have not been reported in previous studies.

CONCLUSION
GIC is a common tumor worldwide. The immune microenvironments of GC, HCC, CRC and pancreatic 
cancer have similarities and differences. There are still many mechanisms of immune escape in GIC that 
are not well understood. Therefore, we need an in-depth understanding of the characteristics of each 
kind of GIC to take advantage of its characteristics and design immunotherapy-based nanoparticles.
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