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Abstract
Hepatectomy is currently considered the most effective option for treating 
patients with early and intermediate hepatocellular carcinoma (HCC). Unfortu-
nately, the postoperative prognosis of patients with HCC remains unsatisfactory, 
predominantly because of high postoperative metastasis and recurrence rates. 
Therefore, research on the molecular mechanisms of postoperative HCC 
metastasis and recurrence will help develop effective intervention measures to 
prevent or delay HCC metastasis and recurrence and to improve the long-term 
survival of HCC patients. Herein, we review the latest research progress on the 
molecular mechanisms underlying postoperative HCC metastasis and recurrence 
to lay a foundation for improving the understanding of HCC metastasis and 
recurrence and for developing more precise prevention and intervention 
strategies.

Key Words: Hepatocellular carcinoma; Recurrence; Metastasis; Mechanisms; Postope-
ration; Intervention
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Core Tip: Surgical resection is currently a vital treatment option for patients with early and intermediate 
hepatocellular carcinoma (HCC). Unfortunately, the prognosis of HCC patients remains unsatisfactory due 
to high rates of postoperative metastasis and recurrence. Therefore, studies on the molecular mechanisms 
of postoperative HCC metastasis and recurrence will help develop effective intervention measures to 
prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. 
Herein, we review the latest research progress on the molecular mechanisms underlying postoperative 
HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis 
and recurrence and for developing more precise prevention and intervention strategies.

Citation: Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and 
metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28(46): 6433-6477
URL: https://www.wjgnet.com/1007-9327/full/v28/i46/6433.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i46.6433

INTRODUCTION
Hepatocellular carcinoma (HCC) is extremely metastatic and invasive, with postoperative metastasis 
and recurrence causing much of its high mortality. HCC metastasis can be roughly divided into 
intrahepatic and extrahepatic metastasis. Intrahepatic metastasis chiefly results from the direct invasion 
of cancer cells or tumor thrombus shedding to form lesions (Figure 1A), while extrahepatic metastasis 
includes hematogenous, lymphatic and implant metastases, which can reach many organs and tissues 
throughout the body. Surgical resection is currently the preferred therapy for patients with early- and 
mid-stage HCC, but the rate of postoperative HCC recurrence is high, and no effective preventive 
scheme is available. Thus, the prognosis of HCC remains poor. Numerous clinical studies have 
indicated that the 5-year recurrence rate of HCC after surgery is as high as 70%[1,2]. Moreover, the 5-
year recurrence rate of small HCC tumors ranges from 50% to 60%[3]. Thus, HCC metastasis and 
recurrence have become the greatest obstacles to improving therapeutic efficacy and the long-term 
prognosis of HCC. Currently, the clinical detection and diagnosis of HCC metastasis and recurrence rely 
mainly on imaging examinations and the detection of traditional tumor markers, but the early detection 
of metastasis or recurrence is difficult. The molecular and biological characteristics of tumors are the key 
determinants of HCC metastasis and recurrence. Thus, elucidating the molecular mechanisms 
underlying HCC metastasis and recurrence and searching for early-warning molecules and metastasis-
related intervention targets will have important implications for prolonging the survival of HCC 
patients after surgery.

HCC metastasis and recurrence are closely correlated with a series of molecular changes whose 
mechanisms may involve oncogenes, tumor suppressors, the tumor microenvironment (TME), 
epithelial-mesenchymal transition (EMT), liver cancer stem cells (LCSCs), circulating tumor cells (CTCs) 
and epigenetic modifications (Table 1). To date, the mechanisms of HCC metastasis and recurrence have 
not been completely elucidated. Therefore, research on the molecular mechanisms of postoperative 
HCC metastasis and recurrence will facilitate the development of effective intervention measures to 
prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC 
patients. Herein, we review the latest research progress on the molecular mechanisms underlying 
postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of 
HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.

ONCOGENES AND SUPPRESSORS
Aberrant expression of cancer-related genes regulates tumor cell growth, differentiation, invasion and 
metastasis. The activation of oncogenes and the inactivation of tumor suppressor genes can lead to 
uncontrolled growth of cancer cells, enabling invasion and metastasis. In addition, the abnormal 
expression of certain cancer-related genes can lead to functional alterations in HCC cells and contribute 
to metastasis and recurrence. The main genes closely connected with HCC metastasis and recurrence are 
described below.

Oncogenes
H-ras: H-ras proto-oncogenes encode G proteins. The 12th codon of Ras interacts with GTPase-activating 
protein. After binding with guanosine triphosphate (GTP), H-ras participates in intracellular 
information transmission. In normal cells, H-ras almost completely binds to guanosine diphosphate and 
is in an inactive state. However, H-ras is abnormally highly expressed in tumor tissues[4]. The abnormal 

https://www.wjgnet.com/1007-9327/full/v28/i46/6433.htm
https://dx.doi.org/10.3748/wjg.v28.i46.6433
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Table 1 Molecular mechanisms associated with postoperative hepatocellular carcinoma metastasis and recurrence in this review

Molecular marker Association with HCC metastasis and 
recurrence Ref.

Oncogenes and tumor suppressors

Oncogens

H-ras Increased expression Ma et al[9]

OPN Increased expression Yu et al[22]; Zhu et al[25]

S100A9 Increased expression Chiou and Lee[29]; Liao et al[31]

Tumor suppressors

Mutated p53 Increased expression Nikolova et al[40]; Chaudhary et al[44]

Nm23 Decreased expression Khera et al[50]

KAI1 Decreased or lost expression Xu et al[55]

Tumor microenvironment

Tumor stromal cells

Immune cells

T lymphocytes Decreased expression Cai et al[68]; Gabrielson et al[70]; Li et al[71]

NK cells Decreased expression Wu et al[85]; Lee et al[90]

DCs Decreased expression Shi et al[108]

M2-TAMs Increased expression Yao et al[128]; Park et al[133]; Liao et al[134]

MDSCs Increased expression Kalathil and Thanavala[143]; Lu et al[147]

Tregs Increased expression Xiong et al[155]; Trehanpati and Vyas[159]

N2-TANs Increased expression Zhou et al[172]; Yang et al[175]

HSCs Increased expression Barry et al[198]; Cheng et al[200] 

CAFs Increased expression Gao et al[217]; Zhang et al[220]

TECs Increased expression Tahmasebi et al[236]; Dong et al[239]

ECM

Adhesion enhancement in tumor cell-ECM

ICAM-1 Increased expression Chen et al[255]

E-Cadherin Decreased or lost expression Ren et al[267]; He et al[269]

Integrins

Oncogenic integrins Increased expression Zhang et al[276]; Huang et al[279]

Tumor-suppressive integrins Decreased expression Zhang et al[282]

Selectins

P-selectin Increased expression Xu et al[288]

CD44V6 Increased expression Chen et al[292]

ECM degradation

uPA Increased expression Song et al[293]

MMP-2 and MMP-9 Increased expression Liu et al[296]; Fu et al[297]

Cytokines

IFN-γ Decreased expression Li et al[302]

Interleukin

IL-6 Increased expression Jiang et al[315] 

IL-8 Increased expression Zhang et al[327]
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IL-1β Increased expression Duan et al[332]

TNF-α Increased expression Hammam et al[338]

Chemokines

CCL2/CCR2 axis Increased expression Avila and Berasain[348]

CXCL12-CXCR4 axis Increased expression Li et al[355]

Growth factors

VEGF Increased expression Zhang et al[365]

TGF-β Increased expression Sun et al[375]

Exosomes Increased expression Watanabe and Tanaka[385]; Luo et al[404]

EMT

E-cadherin Decreased or lost expression Xu et al[413]; Helal et al[417]

N-cadherin and Vimentin Increased expression Xu et al[413]; Helal et al[417]

LCSCs

CD133 Increased expression Liu et al[363]

EpCAM Increased expression Tsuchiya et al[435]; Krause et al[437]

CD90 Increased expression Yamashita and Kaneko[440]; Hwang et al
[441]

CTCs Increased expression Schulze et al[463]

Epigenetic modifications

DNA methylation

Tumor suppressors Hypermethylation He et al[476]; Qian et al[478]

Oncogenes

Noncoding RNAs

Hypomethylation Zhou et al[479]; Chen et al[480]

LncRNAs

Oncogenic lncRNAs Increased expression Shi et al[484]

Tumor-suppressive lncRNAs Decreased expression Song and Qiu[486]

CircRNAs

Oncogenic circRNAs Increased expression Gu et al[499]

Tumor-suppressive circRNAs Decreased expression Sun et al[501]

miRNAs

Tumor-suppressive miRNAs Decreased expression Yao et al[508]

Oncogenic miRNAs Increased expression Wang et al[510]

HCC: Hepatocellular carcinoma; OPN: Osteopontin; NK: Natural killer; DCs: Dendritic cells; TAMs: Tumor associated macrophages; MDSCs: Myeloid-
derived suppressor cells; Tregs: T regulatory cells; TANs: Tumor-associated neutrophils; HSCs: Hepatic stellate cells; CAFs: Cancer-associated fibroblasts; 
TECs: Tumor-associated endothelial cells; ECM: Extracellular matrix; ICAM-1: Intercellular adhesion molecule-1; MMP-2: Matrix metalloproteinase 2; 
MMP-9: Matrix metalloproteinase 9; uPA: Urokinase-type plasminogen activator; IL-6: Interleukin-6; IL-8: Interleukin-8; CCL2/CCR2: Chemokine ligand 
2/Chemokine receptor 2; CXCL12-CXCR4: Chemokine (C-X-C motif) ligand 12/Chemokine (C-X-C motif) receptor 4; VEGF: Vascular endothelial growth 
factor; TGF-β:Transforming growth factor-β; EMT: Epithelial-mesenchymal transition; LCSCs: Liver cancer stem cells; CTCs: Circulating tumor cells; 
lncRNAs: Long non-coding RNAs; CircRNAs: Circular RNAs; miRNAs: MicroRNAs.

activation of H-ras has been implicated in the invasiveness of multiple malignancies[5,6]. In HCC, H-ras 
mutations are closely associated with invasion and metastasis[7]. In addition, the EMT process is 
regulated by various signaling molecules, particularly transforming growth factor-β1 (TGF-β1)[8]. H-ras 
can induce EMT in HCC through the TGF-β1 pathway and thereby participate in HCC invasion and 
metastasis[9]. Thus, inhibition of H-ras activity may be a therapeutic target for HCC metastasis and 
recurrence.

Osteopontin: Osteopontin (OPN) is a glycoprotein and a secretory calcium-binding phosphoprotein 
with multiple biological activities encoded on chromosome 4q13. OPN can exert diverse functions by 



Niu ZS et al. Molecular mechanisms of HCC recurrence and metastasis

WJG https://www.wjgnet.com 6437 December 14, 2022 Volume 28 Issue 46

Figure 1 Microscopic image. A: Microscopic image of intrahepatic hematogenous metastasis. The presence of tumor thrombi in the vessels indicates that the 
Hepatocellular carcinoma (HCC) cells have invaded the surrounding blood vessels and lymphatic vessels, which is a high-risk factor for HCC recurrence and 
metastasis (arrow, hematoxylin and eosin × 400); B: Microscopic image of mutant p53 expression in HCC cells. TP53 is highly expressed in HCC tissues (Right), but 
not in benign liver tissues (Left) (arrow, immunohistochemical staining × 200); C: Microscopic image of KAI1 expression in HCC cells. KAI1 expression is down-
regulated or absent in HCC cells (arrow, immunohistochemical staining × 200); D: Microscopic image of CD3+ T cells in HCC tissues and stromal tissues. CD3+ T cells 
are densely distributed in tumor stroma, while a single CD3+ T cell is occasionally distributed among HCC cells (arrow, immunohistochemical staining × 200). HCC: 
Hepatocellular carcinoma.

interacting with integrins or CD44 receptors to regulate cell adhesion and cell chemotaxis, regulate 
signal transduction, and facilitate tumor formation and progression[10]. OPN is also considered a 
metastasis-related gene given its high expression in metastatic cancer and tumors with high metastatic 
potential[11,12]. OPN overexpression is closely associated with tumor occurrence, metastasis and 
recurrence[13-15] and has become a molecular signature for the metastasis and recurrence of various 
malignancies.

OPN is overexpressed in HCC[16], in which it modulates overall signal transduction and performs a 
crucial role in invasion, metastasis and recurrence by binding to its receptors CD44 and integrin[17-20]. 
OPN promotes HCC metastasis and recurrence through several molecular mechanisms: (1) OPN 
inhibits apoptosis and promotes angiogenesis. Specific splice variants of OPN (OPN-b, OPN-c) inhibit 
tumor cell apoptosis, and OPN binding to the integrin receptors α9β1 and αvβ3 can induce angiogenesis 
and promote HCC metastasis[21]; (2) OPN induces EMT and increases the metastatic ability of HCC 
cells by directly upregulating the expression of Twist (an E-cadherin gene transcriptional regulator)[22]; 
(3) OPN increases the stemness of HCC cells. For example, it increases the stemness of CD133+/CD44+ 
cancer stem cells (CSCs) by regulating DNA methylation reorganization in HCC cells[23]; (4) OPN 
drives extracellular matrix (ECM) remodeling. OPN degrades the ECM by activating matrix metallopro-
teinase (MMP)-2 and urokinase-type plasminogen activator (uPA), resulting in HCC metastasis[24]; and 
(5) OPN mediates immune evasion. HCC cells secrete OPN, and serum OPN levels are elevated in HCC 
patients. OPN and programmed cell death ligand 1 (PD-L1) are linked in HCC, which implies that OPN 
is involved in immune evasion[25] and thus facilitates HCC cell infiltration and metastasis. Therefore, 
OPN may be a target for regulating HCC metastasis and recurrence.

S100A9: S100A9 belongs to the S100 family and contains an amino acid sequence that can bind calcium 
ions with high affinity and selectivity[26]. The gene encoding S100A9 is located on chromosome lq21. 
This region is easily affected by the internal and external environment, certain cytokines and other 
factors. Therefore, S100A9 exhibits poor stability and is prone to chromosomal deletion and translo-
cation, which are connected to the growth, differentiation and metastasis potential of various 
malignancies[27,28]. High S100A9 levels in the preoperative serum of HCC patients are closely 
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associated with metastasis and recurrence[29]. The mechanisms through which S100A9 mediates HCC 
metastasis are currently unclear. The possible mechanisms are as follows: (1) S100A9 in HCC tissues 
induces the migration and aggregation of bone marrow-derived myeloid-derived suppressor cells 
(MDSCs), a heterogeneous population composed of immature myeloid cells with immunosuppressive 
properties, and thereby the formation of a powerful immunosuppressive environment[30], which is 
conducive to HCC invasion and metastasis; (2) Immune neutrophils/macrophages in the HCC microen-
vironment induce cancer cells to produce S100A9, which acts as a proinflammatory factor associated 
with a high risk of HCC recurrence[31,32]; and (3) S100A9 is mainly expressed in epithelial cell adhesion 
molecule (EpCAM)-positive cells in HCC tissues, thereby promoting HCC recurrence[33].

Suppressors
p53: The tumor suppressor gene p53 encodes a transcription factor and stress sensor that can specifically 
bind to DNA sequences and is very important for maintaining genomic stability[34]. Compared with 
other tumor suppressor genes, which only lose their tumor suppressor function after mutation 
(nonsense mutation), p53 not only loses its original tumor suppressor function but also acquires a new 
oncogenic function after mutation (missense mutation)[35]. Mutated p53 facilitates cancer cell 
migration, invasion and metastasis through the activation of receptor tyrosine kinase signaling[36]. 
Mutant p53 is a valuable predictor of local recurrence in multiple malignancies[37,38].

TP53 alteration is the most common genetic alteration in HCC and participates in HCC metastasis 
(Figure 1B). The p53 gene has the potential to regulate HCC invasion and metastasis[39]; p53 gene 
mutations are closely related to vascular invasion and metastasis and serve as predictors of HCC 
metastasis, recurrence and poor prognosis[40-44]. Mounting evidence indicates that p53 gene mutation 
is related to loss of immune cells in the HCC microenvironment[45,46], which promotes the survival of 
HCC cells and their evasion of immune surveillance and thereby contributes to HCC metastasis. Thus, 
targeted therapy for p53 gene mutation may help improve the prognosis of HCC patients.

Nm23: Nm23 (synonym: NME) is a tumor metastasis-related suppressor gene located in the q22 region 
of chromosome 17. Nm23 has two isoforms, nm23-H1 and nm23-H2, which are regulated by two 
independent regulatory systems. Of the two, nm23-H1 is more closely related to tumor metastasis, with 
nucleoside diphosphate kinase and histidine protein kinase (PDK) activities[47]. Nm23-H1 has the 
potential to inhibit the metastasis of various malignancies[48,49]. In HCC, nm23-H1 participates in the 
regulation of metastasis: Low nm23-H1 expression reduces nm23-H1-mediated tumor suppression, 
which may be an important reason for HCC metastasis[50,51]. These findings suggest that reduced 
expression of nm23-H1 is related to HCC metastasis and recurrence and that nm23-H1 may be a 
therapeutic target for HCC.

KAI1: The KAI1 gene, also known as CD82, is a specific tumor suppressor gene[52]. The transmembrane 
domain of the KAI1 protein regulates tumor invasion and metastasis by relying on cell–cell or cell–ECM 
interactions or by regulating the expression of cell surface adhesion molecules[53,54]. The rate of 
KAI1/CD82-positive expression in HCC patients without intrahepatic metastasis is greater than that in 
patients with intrahepatic metastasis[55], which suggests that loss of KAI1/CD82 expression is linked to 
HCC local invasion and metastasis. In addition, KAI1 expression is downregulated or absent in HCC 
tissues (Figure 1C), resulting in decreased adhesion of tumor cells; this decreased adhesion allows the 
tumor to separate easily from the primary lesion, causing metastasis[55]. These findings suggest that the 
downregulation or absence of KAI1 expression may be a cause of HCC metastasis and that KAI1 may be 
a biomarker of HCC metastasis and recurrence. The regulation and activation of KAI1/CD82 expression 
may therefore be useful for HCC treatment.

TME
The TME is a local steady-state environment that is required for tumor occurrence, progression and 
metastasis during the growth process. The HCC TME mainly consists of HCC cells, tumor stromal cells, 
ECM and exosomes[56]. In the TME, interactions occur at different levels, and links between tumor cells 
and intercellular substances are observed. Tumor cells can reshape the TME. The remodeled TME can 
affect the onset and progression of cancer. The interaction between tumor cells and TME promotes the 
proliferation, invasion, metastasis, angiogenesis, immune evasion of tumor cells[57,58]. Other nontumor 
components of the microenvironment also participate in HCC metastasis and recurrence. In recent 
years, the tumor immune microenvironment (TIME) has gradually been recognized as a decisive factor 
in HCC metastasis. Mounting evidence indicates that the gene expression profiles of nontumor cell 
components in peritumoral tissue can predict HCC metastasis and recurrence[59-61], and the HCC TME 
can regulate the TIME. Cytokine release and changes in angiogenesis and other pathways promote HCC 
cell growth, invasion and metastasis. These findings reveal that the microenvironment of HCC cell 
growth has an important influence on the potential for metastasis and recurrence. Therefore, research on 
the dynamic relationship between the TME and HCC metastasis and elucidation of the molecular 
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mechanisms of different factors in the microenvironment during metastasis are key to inhibiting HCC 
metastasis.

Tumor stromal cells
Stromal cells are the major cellular components in the HCC microenvironment. HCC stromal cells 
mainly include immune cells, hepatic stellate cells (HSCs), cancer-associated fibroblasts (CAFs), and 
vascular endothelial cells (VECs). Interactions occur between tumor cells and stromal cells in the TME. 
Various stromal cells can secrete a variety of cytokines and chemokines, which act on nearby cancer 
cells in a paracrine manner to enhance tumor invasion and metastasis. In turn, the behavior patterns of 
stromal cells are influenced and modified by tumor cells.

Immune cells
The immune cells in the TME constitute the TIME and are mainly divided into effector immune cells 
and inhibitory immune cells. The former include T lymphocytes, natural killer (NK) cells, and dendritic 
cells (DCs), while the latter encompass tumor-associated macrophages (TAMs), MDSCs, regulatory T 
cells (Tregs), and tumor-associated neutrophils (TANs). The existing evidence indicates that the TME is 
in an immunosuppressive state and that the infiltrated immune effector cells show varying degrees of 
low immune function or even severe defects. Tumor cells establish immunosuppressive networks in the 
TME[62]. Under the severe metabolic and nutritional stress of the TME, immune cells are often in a 
disordered state, which impairs the antitumor immune response and thereby accelerates cancer 
metastasis and recurrence. Currently, considerable evidence indicates that the TIME is key to promoting 
immune evasion, metastasis and recurrence in HCC[63]. In brief, in addition to existing treatments, 
TIME regulation to delay postoperative HCC metastasis and recurrence warrants further consideration.

T lymphocytes: T lymphocytes are the main components of immune cells, and the detection of cellular 
immune-related indicators has important clinical value for evaluating the development and prognosis 
of tumors[64]. CD3+, CD4+, and CD8+ T cells are the main subsets of T lymphocytes, and their levels most 
strongly reflect the immune status of the human body. CD3+ T-cell numbers represent overall cellular 
immunity. CD4+ T cells can mediate the immune tolerance of tumor cells[65] and can differentiate into 
cytotoxic T lymphocytes (CTLs), which are stimulated by inflammatory factors and thus mediate a 
killing effect on tumor cells[66,67]. Therefore, dysregulation of the CD3+ (Figure 1D), CD4+ and CD8+ T-
cell balance may participate in HCC cell growth and metastasis. The levels of T-cell infiltration decrease 
sequentially during the malignant progression of HCC, which suggests that decreased T-cell infiltration 
is associated with HCC occurrence and metastasis[68]. An increase in T-cell infiltration in HCC patients 
predicts a better prognosis, whereas a decrease implies a poorer prognosis[69]. Specifically, HCC 
patients with increased tumor-infiltrating CD3+ or CD4+ T cells are less likely to relapse[70,71]. A 
decreased number of CD8+ T cells in HCC tissues indicates a reduced killing effect, which contributes to 
HCC cell growth and metastasis[72]. Some studies have indicated that HCC patients with increased 
numbers of tumor-infiltrating CD8+ T cells are unlikely to relapse[71,73], suggesting that patients with 
elevated CD8+ T-cell numbers have a better prognosis[74,75]. However, other research has shown that 
HCC patients with increased CD8+ T-cell numbers are more likely to relapse[76,77]. Thus, the effects of 
CD8+ T cells on HCC metastasis and recurrence remain controversial, and the specific roles and 
mechanisms of these cells need to be further explored.

NK cells: NK cells are important innate immune cells that exert antiviral and antitumor effects in the 
body. Their cell surfaces contain activated receptors that stimulate NK cells to generate killing effects[78,
79], directly kill tumor cells, activate downstream immune cells, and exert antitumor effects through 
immune clearance and surveillance[80]. Tumor cells can weaken the immune surveillance and clearance 
functions of NK cells by restraining the activation of activating receptors and facilitating the activation 
of inhibitory receptors[81,82]. NK-cell dysfunction, which enables tumor cells to evade the immune 
surveillance of NK cells, has been noted in many cancer patients[83,84].

The activation level of NK cells is strongly related to HCC metastasis and recurrence. Peripheral 
blood and HCC tissues often show reduced counts or inhibited functions of NK cells[85-87], which 
prevents the cells from performing their normal immune surveillance functions, resulting in the escape 
of HCC cells from immune surveillance and ultimately promoting HCC metastasis and recurrence[85,
88-90]. Recent studies have found that the HCC microenvironment cannot recognize and kill tumor cells 
because of its functional inactivation by a variety of factors. For example, the upregulation of NK-cell 
immune checkpoint molecules, including programmed cell death protein 1 (PD-1), T lymphocyte 
immunoglobulin and mucin domain 3 (TIM-3), and cytotoxic T lymphocyte antigen 4, can restrain NK-
cell function in the HCC microenvironment[91,92]. In addition, cytokines produced by HCC cells 
promote NK-cell dysfunction and suppress the killing function of NK cells[93], and interleukin (IL)-35 
or IL-10 can inhibit NK-cell activity in the HCC microenvironment[94,95]. These factors negatively 
regulate NK-cell activity in HCC, which may be a significant mechanism through which NK cells 
participate in the immune evasion of HCC cells. Thus, blocking the regulation of NK cells mediated by 
these factors is an important strategy for improving NK-cell function.
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Interestingly, liver-resident NK (LRNK) cells have been found to exert powerful immune killing 
effects. In early HCC, LRNK cells can effectively eliminate cancerous liver cells through surface 
receptors, such as NKG2D, TRAIL and FASL, and maintain the homeostasis of the normal liver 
microenvironment[96]. However, with the progression of HCC, the gradually formed HCC microenvir-
onment affects the antitumor activity of LRNK cells. The expression of the immune checkpoint protein 
TIM-3 is significantly upregulated on the surface of tumor-infiltrating LRNK cells, decreasing cytokine 
secretion by LRNK cells and weakening cytotoxicity[97]. In addition to TIM-3, LRNK cells in HCC 
tissues also highly express PD-1, LAG-3, TIGIT and other immune checkpoint molecules, and HCC 
patients with higher proportions of immune checkpoint–expressing LRNK cells in tumors are more 
likely to develop tumor thrombi and to lack capsules[97,98], features that are closely related to HCC 
recurrence[99,100]. In summary, the immune function impairment caused by upregulated expression of 
immune checkpoint molecules on LRNK cells is conducive to HCC metastasis and recurrence. Thus, 
blocking the regulation of these immune checkpoint molecules, particularly inhibitory receptors, is an 
important strategy for improving the function of LRNK cells.

DCs: DCs typically function as antigen-presenting cells. After exposure to antigens in tumor patients, 
DCs present antigen information to T cells, stimulate T-cell proliferation and activation, and generate 
large amounts of tumor cell–killing cytotoxic T cells; these cells help completely remove some tiny 
cancer foci and thus delay and reduce tumor recurrence[101-103]. DCs that infiltrate tumor tissues are 
called tumor-infiltrating DCs (TIDCs). The immunosuppressive environment in the TME induces an 
abnormal state in TIDCs, including maturation disorder, functional abnormalities, and phenotypic 
changes. Thus, these cells cannot effectively present tumor antigens and activate T cells to kill tumor 
cells, resulting in tumor cell immune evasion[104,105]. Current evidence suggests that the expression of 
TIDCs is reduced in multiple malignancies[106,107], which indicates that cancer cells can achieve 
immune evasion by decreasing their TIDC levels.

In HCC patients, DCs are present in reduced numbers and exhibit abnormal differentiation and 
impaired maturation in the tumor regions and lymph nodes. These DCs fail to activate antigen-specific 
T-cell responses[108]. DC infiltration into tumors reflects the host’s immune defense mechanism. 
Greater levels of DC infiltration are associated with a lower tumor recurrence rate and a lower 
metastasis rate[109]. CD1a is typically considered a marker of immature DCs but is also expressed in 
mature DCs[110]. CD1a+ DC infiltration is closely associated with tumor metastasis and recurrence in a 
variety of malignancies, including HCC, and the degree of CD1a+ DC infiltration in tumors with distant 
metastasis is significantly lower than that in nonmetastatic tumors[110,111]. The potential mechanism 
involves DCs in tumors that ingest and present tumor antigens and subsequently induce the host’s 
antitumor immunity. This immune state is helpful for completely eliminating some residual tiny lesions, 
micrometastases and even early recurrent lesions after tumor resection, which ultimately delays and 
reduces tumor recurrence.

Plasmacytoid DCs (pDCs) are an interesting subgroup of DCs in human blood[112]. The infiltration 
of pDCs after HCC resection is a poor prognostic indicator. The infiltration of pDCs into tumors may 
induce the formation of an immune inflammatory TME via Tregs and IL-17. This condition may lead to 
a state of tolerance and promote tumor immune evasion[113,114], thereby promoting HCC invasion and 
metastasis.

TAMs: TAMs are the main infiltrating immune cells in the TME and exhibit phenotypes and functions 
that differ from those of other macrophages during inflammatory generation. Under the action of 
different stimulatory factors, TAMs may differentiate into M1-type TAMs with tumor-inhibitory activity 
or M2-type TAMs with tumor-promoting activity[115,116]. Most of the high-density TAMs located 
within or around tumors exhibit signatures of M2-type TAMs that promote tumor metastasis by 
regulating matrix remodeling, promoting neovascularization, and inhibiting local immunity[117-120].

Current evidence suggests that M2-type TAMs act on HCC cells through complex signaling 
pathways, promoting HCC cell proliferation, angiogenesis, and intrahepatic metastasis and thus 
resulting in poor prognosis in HCC patients[121,122]. M2-type TAMs promote HCC metastasis and 
recurrence through several mechanisms (Figure 2): (1) M2-type TAMs promote tumor angiogenesis. 
TAMs are significantly correlated with angiogenesis in HCC patients[123]. TAMs secrete large amounts 
of vascular endothelial growth factor (VEGF), tumor necrosis factor-alpha (TNF-α), platelet-derived 
growth factor (PDGF), and TGF-β under stimulation by hypoxia or a lack of nutrients in tumor cells, 
ultimately inducing VEC proliferation and promoting HCC angiogenesis[124,125]. In addition, 
proteolytic enzymes and MMPs secreted by TAMs can promote chemotaxis to induce the abovemen-
tioned proangiogenic cytokines to travel to tumor tissues, accelerate the process of angiogenesis, and 
subsequently promote HCC invasion and metastasis[126]; (2) M2-type TAMs induce ECM remodeling. 
The ECM acts as a scaffold and barrier for tumor cell migration, and its degradation is a focus in the 
field of tumor metastasis research. TAMs can secrete a variety of proteolytic enzymes in HCC, partic-
ularly MMP-2 and MMP-9, which act on the ECM, degrade the basement membrane (BM) and promote 
tumor cell invasion and metastasis[127]; (3) M2-type TAMs induce EMT, a key event in HCC metastasis. 
TAMs are critical cells in the HCC microenvironment and promote EMT progression in HCC cells 
through various pathways. For example, M2-TAMs induce EMT by activating the Toll-like receptor 4 
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Figure 2 Schematic diagram of molecular mechanisms by which M2-type tumor associated macrophages promote hepatocellular 
carcinoma metastasis and recurrence. HCC: Hepatocellular carcinoma; M2-TAMs: M2-type tumor associated macrophages; ECM: Extracellular matrix; EMT: 
Epithelial mesenchymal transition.

(TLR4)/STAT3 pathway and thus promote HCC metastasis[128]. In addition, TAMs secrete various 
factors, including IL-8, TNF-α and TGF-β1, that promote the activation of downstream signaling 
pathways and thereby induce EMT in HCC[129-131]. Furthermore, some proteases secreted by TAMs, 
such as MMPs, are also involved in the progression of EMT. For example, MMP17 secreted by TAMs 
induces EMT to facilitate HCC metastasis[132]; and (4) M2-type TAMs promote immune evasion. TAMs 
play a pivotal role in tumor-induced immunosuppression. TAMs in HCC can also express PD-1, an 
extremely important immune checkpoint target; these PD1+ TAMs show the characteristics of the M2 
phenotype. PD1+ TAMs directly interact with PDL1+ cells to produce large amounts of IL-10, which 
inhibits CD8+ T-cell proliferation, destroys the CD8+ T-cell antitumor immune effect, and promotes HCC 
invasion and metastasis[133-135]. In addition, TAMs induce the HCC microenvironment to become 
immunosuppressive. TAM-enriched sites show decreased numbers and functional defects of infiltrated 
CD8+ T cells and inhibited function of NK cells and DCs among killer immune cells. Moreover, TAMs 
activate Tregs[136-138]. These phenomena all play key roles in tumor immune evasion. Some cytokines 
secreted by TAMs, particularly TGF-β and IL-10, are also significant factors in the formation of the 
immunosuppressive HCC microenvironment[139].

In summary, the above findings suggest that reducing the density or effects of M2-type TAMs can 
inhibit HCC metastasis and recurrence. Thus, M2-type TAMs are expected to be potential targets for 
HCC therapy.

MDSCs: MDSCs, one of the fundamental cell types in malignancies, can be recruited into the TME to 
help establish an immunosuppressive TME and promote tumor immune evasion[140]. In addition to 
immunosuppressive activity, MDSCs exhibit tumor immune evasion–supporting and nonimmunosup-
pressive effects, promoting tumor metastasis and recurrence via multiple molecular mechanisms[141].

Emerging evidence indicates that MDSCs in the TME are strongly connected to HCC invasion, 
metastasis and recurrence[142-144]. MDSCs accelerate HCC metastasis and recurrence through several 
main molecular mechanisms: (1) MDSCs promote the formation of a premetastatic niche (PMN). 
Tumors can recruit MDSCs to target organs by secreting cytokines or chemokines[144]. In addition, 
MDSCs secrete related inflammatory factors to form an immunosuppressive PMN, which can further 
promote HCC metastasis[140,145]; (2) MDSCs promote immunosuppression. MDSCs restrain T-cell 
proliferation or facilitate Treg expansion by secreting arginase-1, inducible nitric oxide synthase, 
reactive oxygen species (ROS), and IL-6 to exert immunosuppressive effects[114,143]. In addition, 
MDSCs effectively suppress the proliferation and function of CD8+ CTLs in the HCC microenvironment
[146]. These changes allow tumor cells to escape immune surveillance and attack and ultimately 
promote HCC progression and metastasis; (3) MDSCs promote HCC angiogenesis. MDSCs can induce 
tumor angiogenesis and further modify the TME. For example, Bv8 produced by MDSCs has been 
shown to induce HCC angiogenesis[147] and thereby promote HCC growth and invasion; and (4) 
MDSCs induce ECM remodeling. MDSCs promote ECM degradation by secreting proteases, such as 
MMP9, this degradation enhances HCC cell invasion[148].

Taken together, these findings indicate that MDSCs are essential for the promotion of HCC metastasis 
and recurrence and may be potential targets for antitumor therapy. Notably, targeting MDSCs alone 
will be insufficient; a combination of different treatment strategies will be needed. However, combining 
therapies targeting MDSCs with existing treatments may be a new integrated strategy for HCC patients 
in the future.
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Tregs: Tregs are a class of T lymphocytes with powerful negative immunomodulatory functions. Tregs 
restrain the activity of effector T and B cells, which are key to the maintenance of immune balance and 
tolerance. Massive infiltration of Tregs in the TME not only inhibits the immune system response to 
cancer cells, leading to tumor cell immune evasion and inhibiting the function of antitumor immunity
[149], but also facilitates tumor cell proliferation, invasion and metastasis[150]. Treg infiltration in 
malignancies also predicts poor outcomes and is associated with postoperative local metastasis and 
recurrence[151].

The Treg density in the peripheral blood of HCC patients increases progressively during the 
malignant progression of HCC, which suggests that an increased density of Tregs is closely related to 
HCC invasiveness, metastasis and recurrence[152-154]. Tregs facilitate HCC invasion and metastasis 
through several molecular mechanisms: (1) An association exists between Treg infiltration and driver 
gene mutations. TP53 mutation is strongly associated with HCC metastasis and recurrence, and HCCs 
with TP53 mutations have higher Treg infiltration than those without TP53 mutations[155]; (2) Treg 
infiltration induces EMT. Tregs promote HCC invasion and migration by promoting TGF-β1 expression 
to induce EMT in HCC cells[156]; (3) Treg infiltration promotes immune evasion. Tregs promote HCC 
cell immune evasion through multiple pathways. (a) The recruitment of Tregs to the TME is related to 
tumor cell evasion of immune surveillance and clearance, and the powerful inhibitory function of Tregs 
promotes the immune tolerance of tumor cells and inhibits T-cell activity[157]; (b) Tregs upregulate the 
checkpoint inhibitors PD-L1 and PD-1 to suppress the production of T effector cells in the TME and 
thereby weaken the immune killing effect on HCC cells[158]; and (c) Tregs directly contact and/or 
secrete immunosuppressive factors, including IL-2, IL-10, TGF-β and IL-35. These immunosuppressive 
factors form an immunosuppressive microenvironment by inhibiting the activity of naïve T cells. The 
tumor cells then achieve immune evasion, resulting in HCC spread and even metastasis[159]; and (4) 
The increased numbers of Tregs may inhibit CD4+ and CD8+ T-cell activity, disrupting the immune 
balance in the TME and generating an immunosuppressive microenvironment; these effects enable HCC 
cells to escape attack by immune cells[160].

In summary, the Treg population is associated with HCC metastasis and recurrence. Thus, 
therapeutic strategies targeting Tregs or combined therapies can selectively inhibit Tregs on the premise 
of maintaining immune balance and can support antitumor immunity mediated by effector T cells to 
achieve effective treatment.

TANs: TANs are neutrophils that infiltrate the TME. As important inflammatory cells, TANs participate 
in the formation and maintenance of the tumor inflammatory microenvironment and regulate tumor 
progression[161]. Increasing amounts of evidence suggest that neutrophil plasticity and diversity 
underlie the dual potential of TANs in the TME. Depending on the different stimulating factors in the 
TME, TANs can be activated into the tumor-suppressive N1 type and the tumor-promoting N2 type. 
The N1 phenotype has cytotoxic and proinflammatory activities, whereas the N2 phenotype has strong 
immunosuppressive ability[161]. N2-TANs mainly promote tumor proliferation, invasion, angiogenesis 
and metastasis by releasing neutrophil extracellular traps (NETs), suppressing the immune response, 
and producing derivatives, such as cytokines and proteases[162-164].

Three types of granules (primary, secondary and tertiary granules) and secretory vesicles are present 
in neutrophils. These granules are composed of various proteases, including MMPs, cathepsins, and 
neutrophil elastase[165]. MMPs play various roles in tumor progression, not only mediating ECM 
degradation but also controlling tumor angiogenesis and affecting tumor cell growth. MMPs are 
principal regulators of tumor invasion and metastasis[166]. For example, MMPs induce HCC cells to 
break through the histological barrier composed of the BM and ECM, invade their neighboring tissues 
and metastasize to distant tissues by destroying the degradation balance of the matrix[167]. In addition, 
MMPs can induce and promote EMT in the HCC microenvironment, facilitating HCC metastasis[168]. 
Cathepsin is also closely related to HCC metastasis[169].

HCC cells can further activate chemokine ligand (CCL) 2 and CCL17 by activating TANs. These 
chemokines induce the migratory activity of tumor cells by affecting TAMs and Tregs[170]. These 
recruited immune cells promote tumor progression, facilitating HCC cell invasion and metastasis by 
releasing cytokines[171]. Moreover, TANs can accelerate HCC invasion and metastasis by inducing and 
enhancing the stemness traits of HCC cells and thus inducing increased secretion of CXC chemokine 
ligand 5 (CXCL5) to induce TAN intratumoral infiltration and form a positive feedback pathway 
consisting of TANs, HCC cells, and stem cell-like HCC cells[172]. Recent studies have confirmed that 
TANs form NETs by releasing chromatin structures from cells, blocking contact with immune cells by 
covering tumor cells, and protecting tumor cells from cytotoxicity mediated by CD8+ T cells and NK cells
[173]. TANs also “wake up” and “trap” dormant cancer cells and serve as cancer cell adhesion 
substrates that promote tumor occurrence and metastasis[174]. The ability to form NETs is significantly 
enhanced in HCC patients, and NETs ultimately promote HCC metastasis by capturing CTCs and 
enhancing the migration and angiogenesis capabilities of CTCs[175]. In addition, NETs promote HCC 
metastasis by establishing a PMN[176]. In conclusion, numerous studies have demonstrated the 
potential mechanisms by which TANs promote HCC metastasis and recurrence. The phenotypic 
plasticity and functional diversity of TANs suggest that TANs are potential therapeutic targets for HCC.
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HSCs
HSCs are mainly distributed in the hepatic space of Disse[177] and have two phenotypes, quiescent and 
activated. Under physiological conditions, most HSCs are in a quiescent state and participate primarily 
in the dynamic balance of vitamin A metabolism. HSC activation is the central link in hepatic fibrosis 
caused by various etiologies, and activated HSCs play an important role in HCC metastasis and 
recurrence. Therefore, elucidating the molecular mechanisms of HSC activation is of great significance 
in preventing or reversing hepatic fibrosis and in preventing postoperative HCC recurrence and 
metastasis. The mechanisms of HSC activation are complicated. In addition to cytokines, transcription 
factors and oxidative stress can activate HSCs, and noncoding RNA (ncRNA) and exosomes have also 
been found to be involved in HSC activation in recent years. In brief, the mechanisms of HSC activation 
are as follows: (1) Cytokines participate in HSC activation. When the liver is injured, hepatocytes, 
Kupffer cells, sinusoidal endothelial cells, macrophages and platelets all secrete cytokines that play 
decisive roles in HSC activation, such as TGF-β and PDGF. The mechanisms of action by which 
cytokines activate HSCs are quite complex. Rather than acting in isolation, cytokines form a network 
through autocrine and paracrine interactions, thereby activating HSCs. TGF-β can activate HSCs by 
binding to specific receptors of HSCs and activating both small mother against decapentaplegic 
(SMAD)-dependent and non-SMAD pathways[178]. TGF-β can also activate HSCs through HAS2, 
TLR4he and Notch1[179]. PDGF is mainly produced by platelets, Kupffer cells and sinusoid endothelial 
cells in the liver. After PDGF binds to the receptor on the membrane of HSCs, it promotes HSC prolif-
eration and activation mainly through phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), 
Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3), and mitogen-activated 
protein kinase (MAPK)[180-182]; (2) Transcription factors participate in HSC activation. Transcription 
factors related to HSC activation mainly include nuclear factor-κB (NF-κB) and peroxisome proliferator-
activated receptor γ (PPAR-γ). NF-κB is an important intracellular mediator of the liver inflammatory 
response. NF-κB activation can promote HSC activation by promoting the generation of proinflam-
matory factors such as IL-8, IL-1β, TNF-α and IL-6[183,184]. PPAR-γ is a class of ligand-activated nuclear 
receptor transcription factors that are members of the nuclear hormone receptor superfamily. PPAR-γ 
exerts anti-inflammatory effects by inhibiting the transcription of inflammatory cytokines and has a 
regulatory effect on maintaining HSC quiescence and inhibiting HSC activation. It has been shown that 
PPAR-γ inhibits HSC activation mainly by inhibiting the activity of the TGF-β1/Smad pathway or by 
downregulating the expression of potent fibrogenic factors such as PDGF, connective tissue growth 
factor (GF), and TGF-β1[185,186]; (3) Oxidative stress is an important factor in HSC activation. When 
oxidative stress occurs, excessive production of ROS in vivo not only directly damages hepatocytes but 
also activates various signaling pathways, such as nuclear factor-related factor-2, TGF-β, NF-κB and 
other related cytokines, signaling molecules and their downstream signaling pathways, that further 
aggravate liver tissue injury and activate the production of various inflammatory factors. This process 
further stimulates the continuous activation of NF-kB and regulates apoptosis-related proteins, IL-1β, 
TNF-α and IL-6, which play important roles in promoting HSC activation and proliferation[187,188]; (4) 
NcRNAs are also involved in HSC activation. NcRNAs include microRNAs (miRNAs), long noncoding 
RNAs (lncRNAs) and circular RNAs (circRNAs), which can regulate HSC activation through a variety 
of mechanisms. Among them, oncogenic ncRNAs facilitate HSC activation. For example, miRNA-503 
overexpression can enhance HSC activation by activating the TGF-β/Smad pathway[189]; the upregu-
lation of lncRNA SNHG7 promotes HSC activation by sponging miR-29b, which enhances DNA 
methyltransferase (DNMT) 3A expression[190]; and the upregulation of circUbe2k facilitates HSC 
activation by sponging miR-149-5p, which enhances TGF-β2 expression[191]. In contrast, tumor 
suppressive ncRNAs inhibit HSC activation. For example, overexpression of miR-489-3p and miR-122-
5p suppresses HSC activation by restraining the uneven regulation of the jagged canonical Notch ligand 
1/notch homolog protein 3 (NOTCH3) signaling pathway[192]; upregulation of lncRNA Meg8 inhibits 
HSC activation by suppressing the Notch pathway[193]; and increased expression of hsa_circ_0070963 
suppresses HSC activation by enhancing LEM domain containing 3 expression by sponging miR-223-3p
[194]; and (5) Exosomes regulate HSC activation through various mechanisms. For example, high 
expression of exosomal miR-192 derived from hepatitis C virus (HCV)-infected hepatocytes can 
stimulate TGF-β1 expression and thus induce HSC activation[195]. In contrast, NK-cell-derived 
exosomes can inhibit TGF-β1-induced HSC activation[196].

Activated HSCs subsequently secrete soluble proteins that cause interstitial changes, providing 
structural support to the microenvironment for HCC invasion and metastasis. HSCs play important 
roles in promoting HCC invasion and metastasis via multiple mechanisms: (1) The direct effects of 
activated HSCs on HCC cells promote HCC metastasis. Activated HSCs secrete numerous related 
proteins, such as vimentin, ECM protein and α-smooth muscle actin (α-SMA)[197], which subsequently 
promote the secretion of a variety of inflammatory factors and cytokines, aggravate the formation of the 
inflammatory microenvironment, and participate in various processes that affect the progression of 
HCC[198,199]. In addition, TGF-β1 promotes α-SMA expression in activated HSCs, upregulates the 
expression of IL-1 and VEGF in HCC, and thereby promotes HCC invasion and metastasis[200]; (2) 
HSCs also promote HCC invasion and metastasis by participating in ECM remodeling. When HSCs are 
activated, the secreted TGF-β1 can facilitate the degradation of MMPs and upregulate tissue inhibitor of 
metalloproteinase (TIMP) expression, breaking the balance between the two and resulting in reduced 
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ECM degradation. The deposited ECM can promote HSC activation[201], forming an HSC–ECM–HSC 
positive feedback loop and promoting the occurrence and development of HCC. TGF-β1 can further 
encourage HSCs to synthesize large amounts of ECM and thus to promote HCC occurrence, 
development, invasion and metastasis[200]; (3) HSCs promote tumor angiogenesis by secreting 
cytokines and thus facilitating HCC metastasis. Activated HSCs can produce large amounts of 
proangiogenic factors, such as VEGF and angiopoietin, which promote tumor angiogenesis by binding 
with homologous receptors on the surfaces of endothelial cells[202] and facilitate HCC invasion and 
metastasis[203]; (4) Activated HSCs exert important immunosuppressive effects and thus promote HCC 
metastasis[203]; and (5) HSCs secrete hepatocyte GF to facilitate STMN1 expression in HCC cells, and 
the upregulation of this gene accelerates the activation of HSCs and results in the acquisition of the CAF 
phenotype[204].

In summary, HCC cells can induce the activation of HSCs, and activated HSCs can counteract HCC 
cells in the HCC microenvironment. The two-way interaction creates a cascade amplification effect that 
forms a microenvironment conducive to immune evasion and thus ultimately promotes tumor invasion 
and metastasis. Therefore, combining current HCC therapies with targeted therapies for HSCs in the 
tumor stroma is a promising strategy for the treatment of HCC.

CAFs
Fibroblasts are abundant and widely distributed in the stroma. CAFs do not exist in healthy individuals, 
but once tumors develop in vivo, tumor cells can induce fibroblasts to transform into CAFs. CAFs 
further promote tumor cell proliferation and thereby form a vicious cycle[205-207]. CAFs are regulators 
of tumor cell metastasis to distant sites, which can generate PMNs in distant organs and trigger 
subsequent metastatic events. Thus, these cells are also known as metastasis-associated fibroblasts[208]. 
Numerous types of pro-invasion molecules and inflammatory mediators act in a paracrine manner in 
CAFs through cell-to-cell interactions and participate in the remodeling of the ECM, induction of EMT, 
and promotion of tumor angiogenesis, which increases tumor invasion and metastasis[209-213].

CAFs play a significant role in promoting HCC invasion and metastasis by secreting cytokines. In 
patients with high expression of CAF-specific molecular markers, HCC is prone to metastasis and 
recurrence[214]. Current evidence shows that CAFs may facilitate HCC metastasis through several 
mechanisms: (1) CAFs promote tumor angiogenesis. In HCC, CAFs promote angiogenesis by releasing 
proangiogenic factors[215]. For example, placental growth factor (PlGF) is highly expressed in CAFs, 
and PlGF overexpression is highly correlated with tumor angiogenesis. CAFs secrete PlGF to promote 
HCC angiogenesis[216]. In addition, CAFs form a network of cytokines with HCC cells, secreting GFs 
and MMPs that can induce tumor cell invasion through autocrine or paracrine signaling and secreting 
proangiogenic factors to recruit endothelial cells to stimulate tumor angiogenesis[217]. These findings 
further demonstrate the role of CAFs in HCC angiogenesis; (2) CAFs induce EMT. CAFs can enhance 
HCC invasion and distant metastasis by inducing EMT in HCC cells[218,219]; (3) CAFs induce ECM 
remodeling. CAFs alter the ECM structure, reshape the stroma, and subsequently affect HCC cell 
growth, migration and invasion[220,221]; (4) CAFs promote HCC metastasis by facilitating the stemness 
acquisition of tumor cells and maintaining the stemness of CSCs. CSCs are the “seeds” of tumor 
metastasis and recurrence, and maintaining the stemness of CSCs requires the support of the TME in 
which they are located. CAFs play a significant role in the transformation of the stemness phenotype of 
cancer cells, in the maintenance of the stemness of CSCs, and in increasing the number of CSCs[222,
223]. CAFs enhance the stem cell-like characteristics of HCC cells by activating the IL-6/STAT3/Notch 
pathway[224]. Moreover, CAFs maintain and promote the stem-like biological characteristics of CD24+ 
HCC stem cells by secreting HGF and IL-6 to activate the STAT3 pathway[225]; (5) CAFs promote 
immune evasion. CAFs regulate peripheral immune cells by secreting chemokines and thus participate 
in tumor immune regulation. CAFs derived from HCC induce myeloid-derived immunosuppressive 
cells, such as TANs, to mediate immunosuppression and participate in HCC immune evasion[226]. 
CAFs in HCC recruit normal DCs and induce their transdifferentiation into regulatory DCs by 
activating the IL-6-mediated STAT3 pathway; these cells rarely present antigens and can also secrete 
inhibitory cytokines to form an immunosuppressive microenvironment[227]; (6) CAFs mediate HCC 
metastasis by secreting cytokines. Cytokines secreted by CAFs, such as CCL2, IL-6, and IL-8, promote 
HCC cell migration and metastasis[228,229]. CAFs also promote HCC metastasis via the chemokine-
activated Hedgehog and TGF-β pathways; specifically, CCL2, CCL5, and CCL7 secreted by CAFs 
promote HCC metastasis by coactivating the Hedgehog and TGF-β pathways[230]; and (7) CAF-
mediated HCC metastasis is partly related to the exosomes secreted by CAFs. CAFs produce numerous 
exosomes to regulate the microenvironment and biological characteristics of tumor cells and to facilitate 
tumor invasion and metastasis[231]. Dysregulated expression of exosomal miRNAs or lncRNAs 
secreted by CAFs is an important mechanism affecting tumor initiation, growth, invasion and 
metastasis; it is also an important feature of TME imbalance and an important cause of tumor metastasis 
and recurrence. Abnormal expression of exosomal miRNAs or lncRNAs secreted by CAFs may also 
occur in the HCC microenvironment. For example, miR-320a, miR-150-3p and miR-29b are miRNAs in 
CAF-secreted exosomes in HCC that act as tumor suppressors, and loss of their expression significantly 
facilitates HCC cell proliferation and metastasis and is an important risk factor for HCC recurrence[232-
234].
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In recent years, in-depth exploration of CAFs and their secreted cytokines has provided increasing 
amounts of evidence that CAFs should be new targets for anti-HCC therapy.

VECs
VECs control the entry of nutrients into tissues, maintain blood flow, and regulate leukocyte transport
[235]. VECs in the TME can lead to endothelial dysfunction due to factors such as hypoxia and chronic 
GF stimulation, resulting in irregular shapes and sizes, wrinkled edges, and other abnormal morpho-
logies in tumor endothelial cells (TECs)[236]. Various interactions exist between tumor cells and VECs. 
For example, tumor cells can induce endothelial cells to form neovascularization networks around 
tumor cells by secreting GFs[237]. Conversely, endothelial cells in the tumor neovasculature, as an 
important component of the TME, also synthesize and secrete certain cytokines to facilitate tumor cell 
migration and invasion and to promote tumor cell metastasis to distant tissues[238].

Tumor VECs promote the entire process of HCC metastasis through various mechanisms: (1) VECs 
promote HCC metastasis through interaction with cancer cells[236]; (2) VECs promote HCC metastasis 
by forming cancer nests. Unique small, spherical cancer cell nests surrounded by endothelial cells have 
been found in some cases of HCC. These spherical cancer nests can enter the blood circulation through 
fusion with microvessels and metastasize[239]. Unlike single HCC cells, cancer nests metastasize in 
small groups with higher metastasis efficiency; and (3) VECs promote HCC metastasis via rapid neovas-
cularization. Neovascularization in tumors is an important channel for tumor cells to achieve metastasis. 
Secretory CXCL12 can rapidly induce neovascularization by regulating C-X-C chemokine receptor 4 
(CXCR4) in endothelial cells and promote HCC cell metastasis[240]. Based on the above findings, TECs 
can be directly and selectively inhibited or killed to suppress or prevent HCC metastasis and recurrence.

ECM
The ECM is a glycoprotein network that constitutes the main component of the BM and forms a natural 
barrier to tumor metastasis[241]. Collagen protein, proteoglycans (glycosaminoglycan, proteoglycans 
and hyaluronic acid) and glycoproteins (such as elastin, fibronectin and laminin) are the major 
components of the ECM. The ECM connects the inside and outside of the cell as a whole through 
membrane integrins and thereby determines the cell shape and controls cell differentiation and 
migration[242,243]. Whether cancer cells infiltrate and metastasize is related to the cancer cells 
themselves and to the ECM. A series of dynamic changes occur between cancer cells and the 
surrounding ECM during cancer invasion and metastasis. The remodeled ECM creates a loose microen-
vironment for cancer cell proliferation and differentiation, leading to cancer cell infiltration and 
metastasis. Moreover, cancer cells adhere to the ECM and induce the production of proteases to degrade 
the ECM, which allows cancer cells to break away from their primary site, enter blood vessels or 
lymphatic vessels, circulate, survive, and then escape the BM and ECM to form secondary metastases
[244-246].

Tumor cell–ECM adhesion enhancement in HCC metastasis
The first step of tumor metastasis involves changes in cell adhesion characteristics. These changes 
weaken adhesion between tumor cells and enhance adhesion between tumor cells and the ECM 
involving cell adhesion molecules (CAMs)[247], which are transmembrane glycoproteins that mediate 
cell–cell and cell–ECM adhesion. The CAMs discovered thus far can be roughly divided into five 
categories: Immunoglobulin superfamily (IgSF) members, cadherin family members, integrin family 
members, selectin family members and CD44V6[248]. Abnormal expression or functional changes in 
CAMs decrease (homogeneous) adhesion between tumor cells and enhance (heterogeneous) the 
adhesion of ECM to nontumor cells, which is the initial step of tumor invasion and metastasis[249].

IgSF: IgSF-like cell adhesion molecules are a class of molecules that contain specific immunoglobulin-
specific domains, which mediate both homogenous and heterogeneous adhesion. This superfamily 
mainly includes intercellular adhesion molecules (ICAMs; ICAM-1, 2, 3), vascular intercellular adhesion 
molecules-1 and nerve cell adhesion molecules[250]. Among the IgSF members, ICAM-1 is the most 
closely associated with HCC metastasis and recurrence. ICAM-1 is a glycoprotein expressed on the cell 
surface. High ICAM-1 expression reduces adhesion between tumor cells; thus, the tumor cells can 
detach, enter the blood and combine with lymphocytes to escape the killing effects of immune cells. The 
tumor cells easily become trapped and implant in capillaries or lymph sinuses, forming metastatic foci 
and completing tumor invasion and metastasis[251-253]. In addition to mediating adhesion, ICAM-1 
exists in serum in a soluble form called sICAM-1. sICAM-1 retains the extracellular structure of ICAM-1, 
binds to ligands (lymphocyte function-associated antigen-1, very late antigen-4) on the surfaces of 
immune cells, and thus prevents immune cells from effectively recognizing and killing the tumor cells, 
enabling immune evasion[254], which is conducive to tumor cell invasion and metastasis.

HCC patients with high levels of sICAM-1 have higher distant metastasis and recurrence rates than 
HCC patients with normal or low levels of sICAM-1[255]. These findings suggest that the level of 
sICAM-1 in serum or plasma can be used as an important auxiliary indicator to predict and monitor 
HCC metastasis and recurrence. When combined with clinical and imaging examinations, sICAM-1 
detection can improve the early diagnosis rate of HCC recurrence.
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Cadherin family: A cadherin is a type of CAM containing an immunoglobulin domain that is 
dependent on calcium ions and can mediate signaling through a signal transduction pathway. The 
cadherin family contains E-cadherin, N-cadherin, P-cadherin, and T-cadherin[256]; among these, E-
cadherin is most closely associated with tumor invasion and metastasis. E-cadherin is a tumor invasion 
suppressor that inhibits tumor metastasis in multiple malignancies[257,258], prevents the shedding of 
primary tumor cells and inhibits tumor metastasis. E-cadherin is a critical protein in the process of EMT, 
and its low expression or loss can lead to EMT. Tumor cell numbers significantly increase after the loss 
of contact inhibition features, resulting in local tumor cell detachment and eventually leading to tumor 
cell infiltration into the surrounding tissues and distant metastasis[259,260]. E-cadherin is the most 
important molecule in mediating homogeneous adhesion between cells of the same type and is the key 
negative regulatory adhesion factor for metastasis[261]. Abnormal expression of E-cadherin is 
associated with tumor metastasis and recurrence[262,263].

A reduction in or loss of E-cadherin expression is a significant factor leading to high aggression and 
metastatic ability of HCC cells. Loss of E-cadherin expression may lead to weakening or loss of adhesion 
between homologous cells, which allows cancer cells to spread and metastasize to other sites[264,265]. 
The loss of E-cadherin in HCC cells can induce EMT and thus facilitate HCC invasion and metastasis
[266]. In addition, E-cadherin can be regulated by the Wnt/β-catenin or PI3K/AKT/mamma- 
lian/mechanistic target of rapamycin pathway, leading to participation in HCC invasion and metastasis
[267,268]. In particular, HCC patients with metastasis have lower E-cadherin expression than patients 
without metastasis, which suggests that a decrease in or loss of E-cadherin expression is strongly 
associated with HCC metastasis and recurrence after radical resection[269]. Therefore, E-cadherin is 
expected to be a useful index for predicting HCC metastasis and recurrence.

Integrins: The integrins are a group of 24 heterodimers formed by the noncovalent combination of at 
least 18 α and 8 β subunits[270]. Integrins can preferentially recognize and bind to different ECM 
ligands, cell surface ligands and water-soluble ligands, and the Arg-Gly-Asp sequence in the ECM is a 
common binding motif of integrins[271]. The binding of integrins to the ECM generates bidirectional 
signals and triggers a variety of signal transduction pathways that mainly regulate cell adhesion, 
invasion, migration, proliferation, survival and apoptosis[272,273]. Integrins, which are highly 
expressed in numerous types of malignant cells, reduce the homogeneous adhesion between tumor cells 
and promote the shedding of tumor cells from the primary site into the blood circulation. Moreover, 
integrins can enhance the adhesion between tumor cells and heterogeneous cells or protein molecules 
and promote tumor invasion and metastasis[274,275]. Therefore, integrins play a major regulatory role 
in the TME, tumorigenesis, metastasis and recurrence.

Integrins also play a critical role in HCC cell proliferation, invasion and metastasis: They are target 
genes of miRNAs, and they regulate intracellular signaling pathways. For example, integrin-β1 (ITGB1), 
an oncogene of HCC, facilitates HCC cell growth, EMT and metastasis as the target gene of miR-3653 
and accelerates HCC cell invasion as the target gene of miR-1226-3p[276,277]. ITGB5, another oncogene 
of HCC, accelerates HCC cell invasion and metastasis as the target gene of miR-221-5p and miR-134[278,
279]. In addition, the HCC oncogenes ITGB1 and integrin alpha 7 (ITGA7) promote HCC cell migration, 
invasion, and stemness by regulating intracellular TGF-β/Smad and protein tyrosine kinase 2-PI3K-Akt 
signaling, respectively[280,281]. Conversely, the tumor-suppressive ITGA9 prevents HCC cell aggress-
iveness and metastasis via focal adhesion kinase/c-Src tyrosine kinase-Ras-related C3 botulinum toxin 
substrate 1/Ras homolog family member A signaling[282].

Selectins: Selectins are members of a class of Ca2+-dependent transmembrane glycoproteins with a 
lectin-like domain that are mainly expressed in bone marrow-derived and endothelial cells[283]. Under 
normal circumstances, selectins are in an inert state, and their main physiological function is to mediate 
the recruitment of leukocytes to inflammatory sites or lymphoid tissues[284]. Selectins facilitate the 
hematogenous metastasis of cancer cells, and cancer cells mimic the selectin-mediated exudation of 
leukocytes from VECs to aid cancer cell extravasation and even accelerate cancer cell metastasis via the 
formation of tumor thrombi through adhesion between cancer cells and platelets/leukocytes[285].

Selectins are mainly expressed on the surfaces of platelets and VECs. These proteins bind with 
ligands on the surfaces of tumor cells to modulate the adhesion of tumor cells to platelets and VECs and 
thus promote tumor metastasis[286,287]. Hematogenous metastasis is the main mode of HCC 
metastasis. P-selectin plays a major role in this process, and the most frequent sites of extrahepatic 
metastasis are the lungs. The expression of P-selectin in HCC and lung metastatic tissues is significantly 
higher than that in adjacent normal tissues, and the mechanism may involve the adhesion of CTCs to 
the surface of the vascular endothelium in a manner similar to that of inflammatory cells under the 
action of P-selectin. This regulatory mechanism of tumor cells is very conducive to HCC infiltration and 
metastasis[288]. This finding suggests that the clinical characteristics of HCC with easy infiltration and 
hematogenous metastasis may be tightly correlated with abundant P-selectin expression and that P-
selectin can be used as an index to predict HCC extrahepatic hematogenous metastasis.

CD44V6: The CD44 gene, located on chromosome 11P13, encodes a highly glycosylated cell surface 
transmembrane protein. As a matrix hyaluronic acid receptor, CD44 has many biological functions; for 
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example, it activates lymphocytes, participates in signal transduction and promotes specific cell-cell and 
cell-matrix adhesion. CD44 has a standard form (CD44s) and variant forms (CD44vs), and CD44V6 is 
one of the variant forms of CD44. CD44v6 overexpression has been implicated in the occurrence, 
development, invasion and metastasis of multiple malignancies[289,290]. CD44v6 can facilitate HCC 
progression by inducing the adhesion and infiltration of cancer cells and enhancing the ability of cancer 
cells to break through to BM tissue. High CD44V6 expression indicates highly invasive HCC. HCC 
patients with low differentiation exhibit higher levels of CD44V6 expression than patients with high 
differentiation[291]. In addition, CD44V6 expression is related to HCC invasion and metastasis[292]. 
These findings suggest that higher CD44V6 expression levels in HCC are associated with a higher 
degree of malignancy and with stronger HCC invasion and metastasis and that CD44V6 can be used as 
a marker for predicting HCC metastasis and recurrence.

ECM degradation and HCC metastasis
The degradation of the ECM and BM is a crucial step in the process of tumor invasion and metastasis. 
Tumor cells adhere to various components of the ECM through their surface receptors and then degrade 
the ECM and BM by themselves or by inducing host cells to produce a variety of proteolytic enzymes. 
These effects lead to the formation of a local lytic area, which constitutes the metastatic pathway of 
tumor cells. Cancer cells pass through the ECM and BM and enter the blood circulation to form 
metastatic foci. The enzymes that are currently known to be most closely related to tumor invasion and 
metastasis include ECM-degrading enzymes, mainly uPA and MMPs.

uPA acts primarily by binding to uPA receptors located on the cell surface. After binding, uPA can 
hydrolyze and shear inactive serine plasminogen to transform it into active plasmin, which can degrade 
ECM proteins. High expression of uPA and its corresponding regulatory molecules has been observed 
in HCC, and these proteins are tightly linked to HCC metastasis and recurrence[293,294].

MMPs are a superfamily of Zn2+- and Ca2+-dependent endopeptidases that can specifically degrade 
the ECM and vascular BM and thereby enhance vascular permeability and promote tumor invasion and 
metastasis. In the MMP family, MMP-2 and MMP-9 exhibit the closest relationships with tumor 
invasion and metastasis. MMP-2 is a type IV collagenase in MMPs that can degrade structural proteins 
and the BM in the ECM as well as type IV collagen in the BM, which promotes the breakthrough of 
exfoliated HCC cells into the ECM and through the BM barrier to form metastases[295-297]. MMP-9 can 
degrade the ECM, promote cancer cell penetration of the BM, and participate in multiple sequential 
steps of HCC invasion and metastasis[298].

Cytokines
After deadhesion between tumor cells, adhesion between tumor cells and the ECM, and ECM 
degradation, tumor cells need to be activated by cytokines and move deeply into the site of metastasis. 
The cytokine family is mainly composed of a large class of soluble small-molecule peptides or proteins. 
This family of proteins participates in the development of diseases because of the leading roles of these 
proteins in cellular immunity. The major cytokines consist of interferons (IFNs), ILs, TNF, chemokines, 
and GFs. After the removal of lesions in HCC patients, the patients’ immune function is suppressed 
because cytokines accumulate in the TME, and malignancies interfere with the normal expression of 
various cytokines to inhibit normal immune function. Thus, the immune system cannot identify and kill 
tumor cells during hematogenous metastasis. Hence, immune evasion is achieved, and tumor growth 
and metastasis are promoted[299]. In addition, prolonged exposure to inflammatory cytokines may also 
induce angiogenesis, DNA damage and other conditions favorable for tumor occurrence and invasion
[300].

IFN-γ: The IFN family of cytokines has antitumor effects that regulate immune function. Thus far, three 
types of cytokines have been found, among which IFN-γ exhibits the strongest immunostimulatory 
activity. In HCC, IFN-γ inhibits tumor occurrence and development by inhibiting tumor cell prolif-
eration, inhibiting tumor neovascularization, affecting the TME and promoting tumor cell apoptosis
[301]. The reduced serum IFN-γ levels in HCC patients are related to metastasis and recurrence[302]. 
One probable reason for this link is that a low level of IFN-γ facilitates HCC cell proliferation and 
inhibits HCC cell apoptosis, thus promoting HCC occurrence and development[303,304]. Another 
reason is that T helper (Th) cells are vital immunomodulatory cells. Th1 and Th2 cells are the main 
subsets of Th cells. Th1 cells are the main immune regulators of tumors and primarily mediate the 
cellular immune response by secreting cytokines such as TNF-γ and they play a role in tumor immune 
defense[305]. Th2 cells primarily mediate humoral immunity, which can inhibit the Th1-cellular 
immune response. It has been demonstrated that a Thl/Th2 imbalance (increase in Th2 cells and 
decrease in Thl cells) occurs in the HCC microenvironment. Thus, the HCC microenvironment is in an 
immunosuppressive state[306], which enables immune evasion by tumor cells, leading to HCC 
metastasis and recurrence.

ILs: ILs are a class of cytokines. Numerous types of ILs with extensive regulatory functions have been 
discovered, and among these, IL-6, IL-8, and IL-1β play important roles in HCC metastasis and 
recurrence.
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IL-6 is a multipotent cytokine that is closely associated with the occurrence, progression, invasion and 
metastasis of various malignancies[307-310]. Mechanistically, IL-6 exerts its biological effects mainly by 
activating the IL-6/STAT3 and IL-6/JAK2/STAT3 signaling pathways[311]. In HCC, members of the 
abnormally activated IL-6/STAT3 and IL-6/JAK2/STAT3 pathways, namely, p-JAK2 and p-STAT3, can 
cause abnormally high expression of downstream related genes and thereby promote HCC 
angiogenesis, invasion and metastasis[312-315]. In addition, abnormal activation of IL-6/STAT3 
signaling enhances immune evasion or establishes immune tolerance through various mechanisms, and 
the inflammatory microenvironment further promotes HCC angiogenesis, growth, invasion and 
metastasis[316,317]. High serum IL-6 levels in HCC patients are related to early postoperative 
recurrence[317,318]. We conclude that IL-6 acts as an activator of proinflammatory cytokines in the HCC 
microenvironment. With the progression of HCC, IL-6 is continuously activated, and the persistently 
high level of serum IL-6 may reflect the severe local inflammatory response of the tumor. Tumor inflam-
matory infiltration may cause tumor cells to break through and eventually spread to the outside of the 
liver capsule. The tumor is then in the expansion stage, which is closely associated with rapid 
progression, heightened metastasis and an increased risk of recurrence of HCC[319,320].

IL-8 is a chemotactic inflammatory cytokine that belongs to the CXC (C is cysteine; X is any amino 
acid) chemokine family. The binding of IL-8 to its two corresponding receptors, CXCR1 and CXCR2, 
causes biological effects through the G protein signal transduction chain and induces neutrophils and 
lymphocytes to aggregate at the injured site, which promotes tumor cell proliferation, differentiation, 
metastasis and angiogenesis[321,322]. High expression of IL-8 in the tissues and plasma of HCC patients 
is associated with HCC cell proliferation, migration, invasion and metastasis[323,324]. Moreover, the IL8 
levels in nonmetastatic HCC are markedly lower than those in metastatic cancer[325]. This finding may 
be due to the “squeezing” of normal hepatocytes by invasively growing HCC cells, which results in 
liver injury, necrosis, and a strong inflammatory reaction in the liver and directly stimulates immune 
cells to secrete large amounts of IL-8. Another explanation is that most HCC cells synthesize and secrete 
IL-8, which may affect the biological behavior and metastasis of HCC through autocrine and paracrine 
signaling[326]. In addition, IL-8 plays major roles in the regulation of tissue cell homeostasis and 
immune regulation as well as in the stimulation of angiogenesis, which is closely related to HCC 
intrahepatic metastasis[327]. As an inflammatory factor, IL-8 activates a variety of signaling pathways to 
initiate or accelerate the occurrence of EMT and ultimately promote HCC invasion and metastasis[129]. 
In addition, IL-8 upregulates the expression of integrin to facilitate HCC invasion and metastasis[328].

IL-1β is generated by activated mononuclear macrophages, and its cleavage by IL-1β convertase 
yields a mature biologically active molecule that binds to the corresponding receptors and exerts 
biological effects. IL-1β not only promotes the inflammatory response but also participates in biological 
behaviors such as migration and invasion in a variety of cells[329]. IL-1β participates in tumorigenesis, 
angiogenesis, invasion and metastasis by mediating multiple pathways[330,331]. IL-1β expression is 
increased in HCC and is related to HCC metastasis[200,332]. IL-1β participates in HCC metastasis 
through a variety of mechanisms. For example, IL-1β promotes HCC metastasis by upregulating 
homeobox C10 expression in HCC cells[333]. In addition, IL-1β, as an inflammatory cytokine, can induce 
the aggregation of MDSCs and TAMs, which accounts for the finding that most IL-1β is located in the 
TME. Thus, IL-1β plays a significant role in inducing HCC cell angiogenesis, immune regulation and 
metastasis[334].

TNF-α: TNF-α is a polypeptide cytokine with multiple biological activities that is produced by activated 
mononuclear phagocytes and is tightly associated with the immune response of the body. TNF-α, as a 
proinflammatory cytokine, acts as an inflammatory mediator and immune regulator and is clearly 
expressed in multiple malignancies. TNF-α expression is closely correlated with tumor occurrence, 
development, invasion and metastasis[335,336].

TNF-α facilitates HCC invasion and metastasis through several main mechanisms: (1) TNF-α is 
related to tumor immunity. In HCC patients, the continuous stress response can cause immune 
disorders. These disorders lead to continuously increased TNF-α levels and thereby affect T lymphocyte 
differentiation[337]; (2) TNF-α promotes the production of multiple inflammatory cytokines and 
chemokines, directly participates in tumor angiogenesis, creates favorable conditions for tumor growth, 
and promotes HCC invasion and metastasis[338]; (3) TNF-α induces EMT and maintains the stemness of 
HCC stem cells. TNF-α, which is clearly expressed in M2 macrophages infiltrating HCC tissues, can 
induce EMT and cancer stemness of HCC cells and thus promote HCC invasion and metastasis[130,
339]; and (4) In some cases, TNF-α promotes HCC metastasis by activating endothelial CAMs or 
transcription factors. For example, the expression of endothelial CAMs induced by TNF-α can promote 
adhesion between tumor cells and the vascular wall and infiltration into tissues at the early stage of 
HCC metastasis[340]. In addition, the proinflammatory effect of TNF-α occurs mainly through the 
activation of NF-κB to facilitate HCC metastasis and recurrence[315]. However, some studies have 
shown that high concentrations of TNF-α inhibit HCC metastasis and recurrence, whereas low concen-
trations of TNF-α promote HCC metastasis and recurrence[341]. Thus, the effects of TNF-α on HCC cells 
should be further studied.

In general, TNF-α, as an important inflammatory factor, maintains the inflammatory microenvir-
onment by acting as the main triggering factor and master switch for the transformation from inflam-
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mation to cancer and thereby facilitates tumor invasion and metastasis. Exploring the mechanisms of 
HCC metastasis mediated by TNF-α will help to identify therapeutic and preventive targets.

Chemokines and their receptors: Chemokines are a series of protein signaling cytokines secreted by 
cells, so named due to their ability to induce reactive cells to move directionally via chemotaxis. 
Chemokines can be divided into four categories, CXC, CC, C, and CX3C, depending on the location of 
the N-terminal conserved cysteine residues. Chemokine receptors are G protein-coupled transmem-
brane receptors that are divided into CXCR, CCR, CR4 and CX3CR proteins based on their ligands. The 
interaction between chemokines and their receptors is a key link in the TME and promotes tumor cell 
proliferation, immune cell recruitment and remodeling of the ECM[342,343]. Tumor cells, stromal cells 
and chemotactic inflammatory cells in the TME release a variety of chemokines, which affect tumor cell 
proliferation, differentiation, migration, and invasion through autocrine and paracrine pathways and 
induce angiogenesis in the TME[344].

CCL2/CCR2 axis: CCL2 mainly binds to its receptor CCR2 and chemotactic CCR2-positive monocytes, 
macrophages and tumor cells through the CCR2-CCL2 axis. Numerous studies have shown that the 
CCR2-CCL2 axis facilitates tumor cell growth, survival, angiogenesis, invasion and metastasis[345,346]. 
CCL2/CCR2 promotes HCC metastasis through multiple main mechanisms: (1) CCL2/CCR2 promotes 
HCC metastasis directly or by recruiting TAMs. The chemokines CCL2 and CCR2 play significant roles 
in recruiting TAMs to participate in tumor invasion and metastasis[346]. High expression of the 
CCL2/CCR2 axis can promote HCC angiogenesis and metastasis, and the mechanism of action is 
related to the recruitment of TAMs by this axis[347,348]; and (2) EMT is induced by the activation of 
signaling pathways. EMT may be a key step in the promotion of tumor invasion and metastasis by the 
CCL2-CCR2 axis. The CCL2-CCR2 axis induces EMT by activating the Hedgehog pathway and 
promotes HCC metastasis[349].

CXCL12-CXCR4 axis: CXCR4, a specific G protein-coupled receptor (GPCR), has high affinity for its 
ligands. CXCL12 is the natural ligand of CXCR4. The CXCL12/CXCR4 axis can initiate a variety of 
signaling pathways, leading to gene transcription and mediating cell chemotaxis, cell survival and 
proliferation. The CXCL12-CXCR4 axis is related to the directional metastatic ability of malignancies
[350-352] and is associated with neovascularization and distant metastasis in HCC[240,353]. High MMP-
9 and MMP-2 expression levels are often used as indices to detect the invasion and metastasis of 
malignancies[354]. The interaction between CXCR4 and CXCL12 can mediate the secretion of MMP-9 
and MMP-2, accelerate the degradation of the ECM, and promote HCC metastasis[355]. In addition, a 
synergistic effect has been noted between CXCR4 and MMP-9, and a positive correlation between the 
expression of these two proteins has been observed in HCC. High expression of both CXCR4 and MMP-
9 indicates that HCC exhibits metastatic activity[356]. The combined detection of these molecules can be 
used as an important index for assessing the lymph node and distant metastasis of HCC.

The above findings indicate that the CCL2-CCR2 and CXCL12-CXCR4 axes are closely associated 
with HCC metastasis and recurrence and suggest that targeting these axes may be a new strategy for 
restraining HCC metastasis.

GFs: The HCC microenvironment contains many types of GFs; among these, VEGF and TGF-β are 
closely associated with HCC metastasis and recurrence.

Neovascularization promotes tumor growth, infiltration and metastasis and causes tumor recurrence
[357]. VEGF can increase vascular permeability and facilitate VEC proliferation and angiogenesis[358]. 
The increased expression of VEGF in malignancies can result in degradation of the matrix of VECs, 
weakening of the vascular barrier, vascular infiltration of cancer cells, and spread of cancer cells through 
the bloodstream, which results in the induction of tumor metastasis[359,360]. The proliferation, invasion 
and metastasis of HCC cells depend on massive neovascularization within the tumor. VEGF has been 
confirmed to be related to postoperative HCC metastasis and recurrence[361,362]. VEGF, as a crucial 
regulatory factor in angiogenesis, plays a regulatory role in the proliferation, migration and vascular 
construction of HCC VECs. In addition to promoting angiogenesis, VEGF can increase the permeability 
of the vascular endothelium, making it easier for tumor cells to invade and penetrate blood vessels and 
consequently facilitating tumor invasion and metastasis. Therefore, the increased expression of VEGF in 
HCC tissues is an important reason for the high vascular invasion and the high incidence of 
postoperative recurrence and metastasis of HCC[363-365]. Of note, VEGF not only acts as an important 
proangiogenic GF but also affects the functions of various immunosuppressive cells and participates in 
tumor immune evasion. VEGF is involved in mediating the immunosuppressive HCC microenvir-
onment[366,367]. Mechanistically, the concentration of VEGF in the serum of HCC is proportional to the 
number of MDSCs[368]. VEGF secreted by HCC cells can act as a chemokine, guiding MDSCs to 
accumulate and infiltrate locally into the tumor. Moreover, VEGF can affect the antigen presentation of 
DCs by inhibiting DC differentiation and maturation and subsequently influencing the activation and 
expansion of CTLs and the sensitivity of tumor cells to CTL-mediated killing[369,370]. HCC cell 
immune evasion is an important factor promoting metastasis[371]. Therefore, the above findings 
indicate that VEGF-mediated immune evasion can promote HCC metastasis.
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TGF-β: TGF-β is a polypeptide cytokine with extensive biological effects. TGF-β plays two different roles 
in tumor occurrence and development. Specifically, TGF-β exhibits tumor-inhibitory or tumor-
promotive activity that modulates the expression of oncogenes and tumor suppressor genes[372]. TGF-β 
can exert its antitumor role at the early stage of HCC by promoting hepatocyte cell cycle arrest and 
apoptosis. In the late stage of HCC, TGF-β induces changes in the microenvironment through various 
mechanisms, e.g., by acting as an autocrine or paracrine GF, and facilitates HCC metastasis and 
recurrence by promoting immune evasion, angiogenesis, and the acquisition of tumor stem cell-like 
characteristics by HCC cells and by inducing EMT. TGF-β can stimulate fibroblasts to transform into 
CAFs and can promote or induce HCC immune evasion by upregulating the expression of Tregs[373,
374], providing a good internal environment for HCC metastasis and growth and thus promoting and 
accelerating HCC growth and metastasis. The TGF-β pathway is closely associated with tumor 
angiogenesis; specifically, the TGF-β/VEGF-related pathway is an important pathway of tumor 
angiogenesis. In addition, TGF-β can significantly increase VEGF/VEGF-R expression, promote 
capillary formation and the migration of endothelial cells, and lead to tumor cell angiogenesis, thereby 
promoting HCC invasion and metastasis[375]. TGF-β can lead to HCC metastasis by inducing tumor 
cells to undergo EMT[376,377]. TGF-β enhances the ability of HCC cells to acquire hepatic stem cell-like 
characteristics and thus promotes HCC growth and invasion[378]. In summary, TGF-β is closely related 
to HCC invasion and metastasis and may be a target for controlling metastasis in HCC.

Exosomes
Exosomes are membranous vesicles containing all types of bioactive substances, such as proteins, lipids, 
and nucleic acids, and they closely participate in the exchange of information and substances between 
cells[379,380]. Tumor-derived exosomes are important carriers for bidirectional communication between 
the TME and tumor cells and participate in TME remodeling processes, particularly in tumor 
angiogenesis and metastasis[381,382]. In addition, tumor-derived exosomes can induce metastatic target 
organs to form PMNs and promote tumor metastasis by stimulating neovascularization after the 
colonization of CTCs[383,384].

HCC-derived exosomes facilitate HCC metastasis and recurrence through the following mechanisms 
(Figure 3): (1) HCC-derived exosomes promote HCC angiogenesis. Tumor-derived exosomes participate 
in TME remodeling and release bioactive components such as cytokines, thereby inducing angiogenesis 
and facilitating tumor metastasis[385]. For example, HCC-derived exosome transfer lysyl oxidase-like 4 
can accelerate HCC angiogenesis[386]. Vasculogenic mimicry (VM) is a newly discovered tumor 
microcirculation pattern that does not involve endothelial cells. Tumor cells interact with the ECM 
through their own morphological changes to form a pipeline system that can transport blood and 
connect with host blood vessels to remodel the tumor microcirculation[387,388]. VM occurs widely in 
multiple human malignancies and is closely related to tumor progression, invasion, metastasis and 
recurrence[389,390]. HCC-derived exosomes can promote HCC angiogenesis and VM and thus facilitate 
HCC metastasis[391]; (2) HCC-derived exosomes inhibit the host immune response to promote immune 
evasion. The 14-3-3ζ protein leads to T-cell exhaustion via HCC-derived exosomes[392]. In addition, 
endoplasmic reticulum stress can induce HCC cells to release exosomes that are rich in miRNA-23a-3p 
and enhance PD-L1 expression in macrophages by inhibiting the phosphatase and tensin homolog 
(PTEN) pathway and activating the AKT pathway, which results in the inhibition of T cells and 
mediation of immune evasion[393]; (3) HCC-derived exosomes promote EMT. Tumor-derived exosomes 
act as transporters of EMT initiation signals and transmit metastatic signals to metastatic tumor cells, 
resulting in EMT and metastasis[394]. For example, the expression of exosomal circ-0004277 secreted by 
HCC cells is upregulated, which induces EMT through cellular communication and promotes HCC 
intrahepatic metastasis[395]. HCC-derived exosomal miR-1307-5p also promotes HCC metastasis by 
inducing EMT[396]. Furthermore, the tumor metastasis induced by a hypoxic microenvironment is 
closely related to exosomes because exosomes produced by tumor cells under hypoxic conditions are 
enriched with EMT signaling molecules. For example, HCC-derived exosomes produced in a hypoxic 
environment are rich in miR-1273f, which can activate the Wnt/β-catenin pathway and induce EMT
[397]. The mechanisms through which metastasis is promoted are relatively clear. However, whether all 
HCC-derived exosomes can promote EMT remains to be further explored; (4) HCC-derived exosomes 
promote ECM remodeling. The most important feature of ECM remodeling is the change in the 
molecular composition of the ECM. The remodeled ECM creates a permissive microenvironment for 
tumor cell proliferation and differentiation, which leads to tumor cell growth, infiltration, and 
metastasis[241,398]. In addition, CAFs are important cells in ECM remodeling and participate in the 
homeostatic maintenance of tissue ECM synthesis and degradation through cell–cell communication
[399]. Exosomes produced by HCC cells participate in ECM remodeling by activating CAFs. For 
example, HCC cell-derived exosomal miR-1247-3p promotes fibroblast activation by directly acting on 
its target B4GALT3, and activated CAFs facilitate the lung metastasis of HCC by secreting proinflam-
matory cytokines, such as IL-6 and IL-8[229]. In addition, HCC-derived exosomal miRNA-21 directly 
targets PTEN, resulting in the activation of the inositol 3-phosphate dependent PDK1/serine threonine 
kinase (Akt) signaling pathway in normal HSCs, which can be transformed into CAFs. Activated CAFs 
can increase the density of blood vessels, remodel the ECM, and subsequently promote tumor 
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Figure 3 Schematic diagram of molecular mechanisms by which exosomes promote hepatocellular carcinoma metastasis and 
recurrence. HCC: Hepatocellular carcinoma; ECM: Extracellular matrix; EMT: Epithelial mesenchymal transition; PMNs: Pre-metastatic niches.

metastasis[215]; and (5) HCC-derived exosomes promote the formation of PMNs before metastasis. The 
PMN is a microenvironment that is ready for tumor colonization and spread in distant organs. Studies 
have shown that the construction of specific microenvironments in potential metastatic target organs is 
an important reason why tumor metastasis occurs in specific organs[400]. Currently, distal cell–cell 
communication mediated by primary tumor cells through their exosomes is generally believed to be 
fundamental to the formation of PMNs in potential metastatic target organs[401]. Recent evidence has 
revealed that exosomes can also promote the establishment of PMNs in HCC[402,403]. For example, 
miR-103, an HCC cell-derived exosomal miRNA, enhances vascular permeability by targeting various 
endothelial connexins in endothelial cells, and changes in vascular changes promote the establishment 
of PMNs and thereby facilitate HCC metastasis[404].

Numerous clinical studies have confirmed the potential utility of exosomes as indicators for 
predicting HCC metastasis and recurrence. HCC patients with increased serum levels of exosomal miR-
638 exhibit increased metastatic potential and an increased risk of recurrence[403]. Exosome-derived 
miR-1307-5p is highly expressed in preoperative plasma and can be indicative of HCC metastasis and 
recurrence[396]. In addition, exosome-derived differentiation-antagonizing nonprotein-coding RNAs 
are linked to postoperative HCC recurrence[405].

The specific mechanisms of exosomes in HCC invasion and metastasis have not been clearly defined 
to date. Future research should focus on the mechanisms of exosome generation and the specific signal 
transmission process of exosomes in HCC to obtain new findings regarding the roles of exosomes in 
HCC metastasis and recurrence. Exosome treatment may be an effective HCC treatment strategy in the 
future.

EMT
EMT is a process through which cells change from an epithelial state to a mesenchymal state, leading to 
migration and invasive behavior. As the initial step mediating tumor invasion and metastasis, EMT is 
often accompanied by changes in various marker proteins and transcription factors. Functional loss of 
E-cadherin and cytokeratins and upregulated expression of N-cadherin and vimentin are frequently 
observed in tumor cells undergoing EMT[406]. Cells undergoing EMT exhibit alterations in morphology 
and function, loss of epithelial–basal polarity and reductions in cell–cell connections, and these cells can 
penetrate the BM and interstitial tissue as well as the circulatory system to travel to distant tissues[407]. 
Therefore, EMT is an important cellular event during tumor invasion and metastasis. Increasing 
evidence indicates that EMT is strongly associated with tumor migration, invasion, metastasis and 
recurrence and that tumor cells can acquire the ability to invade and metastasize through EMT[408-411].

EMT plays a leading role in HCC metastasis and recurrence. Loss of E-cadherin expression and 
increases in N-cadherin and vimentin expression are closely related to HCC metastasis[412-414]. E-
cadherin and vimentin form a complex between epithelial cells that can prevent tumor cell metastasis 
and invasion. In contrast, EMT occurs in malignant tumor cells, allowing the cells to separate from each 
other and thereby improving the migration ability of the cells[415,416]. A lack of E-cadherin expression 
and an increase in vimentin expression are the two most important markers of EMT that can predict the 
recurrence of HCV-associated HCC[417]. EMT is also an important mechanism through which many 
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oncogenes promote HCC invasion, metastasis and recurrence. For example, the oncogenes vasodilator-
stimulated phosphoprotein, thrombospondin 4, GPCR-kinase interacting protein-1, and lysyl oxidase 
promote HCC invasion, metastasis and recurrence by inducing EMT[418-420]. Studies have found that 
HCC cells with EMT are more likely to acquire stem cell characteristics and have stronger self-renewal 
and invasion capabilities than ordinary HCC cells and that these cells are closely associated with early 
HCC recurrence[421-423]. In addition, EMT can induce the release of CTCs from HCC cells, and CTCs 
are important indicators predicting HCC recurrence and poor prognosis[424,425].

In conclusion, EMT is a dynamic evolutionary process and an important initial stage of HCC 
metastasis. Elucidating the molecular mechanisms of EMT in HCC cells will be conducive to finding 
new targeted drugs to reverse EMT, which will provide new insights into the clinical targeted 
regulation of HCC.

LCSCs
CSCs are subsets of tumor cells with self-renewal ability and stem cell characteristics. CSCs have the 
ability to generate heterogeneous tumors, are highly invasive, and easily metastasize and develop 
multiple resistance properties, and they can accordingly drive tumor growth, metastasis and recurrence
[426]. Increasing evidence indicates that LCSCs exist in HCC and drive HCC initiation, metastasis, drug 
resistance and recurrence. Currently, the molecules used to as LCSC markers include CD133, CD90, 
EpCAM, CD13, CD44, and acetaldehyde dehydrogenase[427]. Among them, CD133, EpCAM and CD90 
are closely associated with HCC metastasis and recurrence. The expression of these markers indicates 
HCC with strong aggressiveness and metastasis[428].

CD133
CD133 is a transmembrane protein composed of five transmembrane regions and two large glycosylated 
cell outer rings located on the cell surface. CD133 is expressed on the surfaces of stem cells and various 
tumor stem cells[429,430]. CD133+ tumor cells are closely associated with tumor occurrence, invasion, 
metastasis, and recurrence[431,432]. Currently, CD133 is widely regarded as a specific surface marker of 
LCSCs. CD133+ LCSCs are strongly associated with HCC metastasis and early recurrence[55,363].

EpCAM
EpCAM, a transmembrane glycoprotein involved in cell adhesion, has the properties of an oncogene 
messenger and thus facilitates cell proliferation and tumor formation[433]. The expression level of 
EpCAM protein in HCC tissues, particularly in HCC metastases, is higher than that in normal liver 
tissues[434,435]. These findings suggest that EpCAM+ cells have strong characteristics of tumor stem 
cells, participate in HCC cell metastasis and invasion, and can be used as stem cell markers for the 
acquisition of metastatic ability by HCC cells. In addition, the positive expression rate of EpCAM 
protein in HCC patients with recurrence after surgery is significantly higher than that in patients 
without recurrence[436], and HCC patients with high EpCAM expression are more prone to relapse 
than those with low EpCAM expression[437]. These findings suggest that EpCAM is a predictor of 
postoperative HCC recurrence.

CD90
CD90, a surface marker of oval cells, is a glycosylphosphatidylinositol-anchored glycoprotein with a 
molecular weight of 25-37 kDa that is expressed in T cells, thymocytes, neurons, endothelial cells, 
fibroblasts and other cell types. In recent years, CD90 has been used as a marker of LCSCs. CD90 is 
associated with the high metastatic potential of HCC[438-440], and HCC patients with high CD90 
expression have exacerbated pathological differentiation and an increased chance of postoperative 
recurrence[363,441], which suggests that CD90 may play a significant role in HCC metastasis and 
recurrence.

In summary, although studies have found that many LCSC-related markers are strongly associated 
with HCC metastasis and recurrence, the specificity remains low. In addition, although therapeutic 
methods targeting CSCs have great potential, specific markers are currently lacking. Therefore, 
improving the sorting and identification of LCSCs and continuing to identify and screen specific LCSCs 
represent future research directions in the field of LCSCs. In addition, given the complex and variable 
heterogeneity and plasticity of CSCs[442,443], obtaining a further understanding of the heterogeneity 
and plasticity of CSCs and the mechanisms through which they drive tumor metastasis and recurrence 
will greatly promote the development of new safe and effective therapeutic strategies, regimens and 
drugs targeting CSCs.
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CTCs
CTCs are tumor cells that are shed from primary or metastatic foci and enter the bloodstream to reach 
distant organs, where they may trigger metastasis. The number, morphology and phenotype of CTCs 
are closely and fundamentally related to tumor metastasis and recurrence[444,445]. The formation of 
metastatic tumors is a process of “natural selection”: Only a small proportion of potential cancer cells 
passively or actively detach from the primary tumor, enter the lymphatic or blood circulation to form 
CTCs, evade immune surveillance, and then reach target organs to form metastatic tumors. This process 
is complex, and although the mechanisms are not completely clear, the basic process has been outlined. 
First, an association between EMT and the TME exists. After cancer cells undergo EMT, upregulation of 
the expression of MMPs accelerates ECM degradation, resulting in the detachment of cancer cells from 
the lesion and the transformation of these cells into CTCs[446]. Then, CTCs typically penetrate the 
vascular system in the capillary bed and colonize the premetastatic microenvironment after they arrive 
at the target organ via the circulatory system. This process is also called metastatic dissemination, and 
the cells that colonize the premetastatic microenvironment are called disseminated tumor cells (DTCs)
[447]. Under unfavorable conditions (such as when immune function remains intact), DTCs can be 
transferred and remain in a dormant state for a long time under the combined actions of many internal 
and external factors[448,449]. Dormant DTCs often exhibit CSC-like phenotypes and directly bind to 
other cells, such as CAFs and neutrophils. These cells then attach to the inner walls of blood vessels and 
not only resist mechanical damage or immune attack but also facilitate cancer cell dissemination 
through the vascular system and colonization of distal metastatic target organs at an appropriate time
[450,451]. Under certain circumstances, dormant DTCs can be awakened and can rapidly and clonally 
grow to form metastatic tumors[452,453].

CTCs exhibit obvious phenotypic heterogeneity. Among the many phenotypes of CTCs, only a few 
have “seed” characteristics, that is, resistance to anoxic apoptosis, exudation, transformation into 
disseminated cells, high adaptability to PMNs, and the ability to induce angiogenesis and matrix 
formation during metastasis[454,455]. During the process of metastasis, CTCs undergo various 
phenotypic changes, among which EMT is the most important, to escape immune clearance or acquire 
the ability to resist anoxic apoptosis and adapt to the new living environment[456]. EMT is an important 
mechanism through which CTCs survive and acquire aggressive and metastatic abilities[457]. The EMT 
process can alter the tight connections and adhesion between tumor foci cells, and CTCs with invasive 
and metastatic potential often exhibit EMT characteristics[448]. CTCs with an EMT phenotype are 
closely related to HCC metastasis or recurrence[458,459]. Given the occurrence of EMT during HCC 
progression, EMT may be a crucial factor influencing the survival and metastatic ability of CTCs. 
Alternatively, CTCs, as cells with high activity and high metastatic potential that are present in the 
circulatory system, may possess CSC characteristics. CSCs persist in tumor tissues and are considered 
specific cell types that promote tumor metastasis and recurrence. The small fraction of tumor metastasis-
initiating cells among CTCs that eventually lead to metastasis are a class of tumor stem cells or at least 
tumor cells with multiple stem cell characteristics[460]. Because CTCs exhibit EMT and CSC character-
istics, interstitial CTCs are generally considered more capable of forming metastatic foci than other cell 
types. CTCs with CSC characteristics are closely related to HCC vascular invasion, metastasis and 
recurrence[461]. Given that CTCs have CSC characteristics during HCC progression, the CSC phenotype 
may be an important feature by which CTCs persist in the blood circulation for a long time and 
maintain high invasion and metastasis abilities. Hematogenous metastasis is a common form of HCC 
metastasis. The CTC levels in the blood of HCC patients are directly related to prognosis, and patients 
with large numbers of CTCs have a poor prognosis[462]. A total of 30.5%-93.3% of HCC patients have 
CTCs in the peripheral circulatory system that cause distant metastasis, which is the key event 
responsible for metastasis and recurrence[424,463,464]. Therefore, high levels of CTCs can be used to 
predict and evaluate the risk of HCC metastasis and recurrence.

The majority of previous studies on CTCs have concentrated on the characteristics of CTCs and 
ignored the overall relationships between CTCs and the primary tumor and between CTCs and the TME 
and internal environment. The regulation of the biological behavior of CTCs by an imbalance in the 
tumor environment may represent an important mechanism of HCC metastasis and recurrence. CTCs 
can survive in the blood circulation and eventually proliferate to form metastatic foci. This process is 
inseparable from the maintenance and regulation of GFs and corresponding signaling pathways, and 
research in this field may become key to further elucidating the mechanisms of HCC metastasis and 
recurrence.

EPIGENETIC MODIFICATIONS
Epigenetic modifications are heritable phenotypic changes unrelated to DNA mutations and are some of 
the key drivers of HCC metastasis and recurrence[465]. The main epigenetic regulatory mechanisms 
include DNA methylation, histone modification, genomic imprinting, chromatin remodeling, and 
ncRNA activity. Among these, DNA methylation and ncRNA-mediated modifications are the most 
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studied epigenetic modifications associated with postoperative HCC metastasis and recurrence. These 
factors provide clues supporting an in-depth understanding of the biological functions of epigenetic 
events implicated in HCC metastasis and supporting the development of novel approaches and 
strategies for the treatment of HCC.

DNA methylation
DNA methylation selectively adds methyl groups to cytosine residues in certain regions (CpG islands). 
Specifically, the cytosine 5' carbon position of the genomic CpG dinucleotide is covalently bonded to a 
one-carbon-unit methyl group provided by S-adenosylmethionine under catalysis by DNMTs[466,467]. 
An altered DNA methylation status characterized by a decrease in the overall methylation level and an 
increase in the local methylation level is prevalent in tumors. In tumor cells, oncogenes are activated in 
the state of hypomethylation, whereas tumor suppressor genes are inhibited in the state of 
hypermethylation[468]. In addition to point mutations and gene deletions, some tumor suppressor 
genes exhibit hypermethylation in the promoter region. This inhibits the transcription of tumor 
suppressor genes, resulting in inactivation of these genes and an inability to exert tumor-suppressive 
effects. Thus, hypermethylation has been implicated in tumor occurrence, invasion and metastasis[469,
470]. The hypomethylation of specific genes can induce the activation of oncogenes and facilitate tumor 
growth and metastasis[471]. DNA hypermethylation and hypomethylation are strongly correlated with 
tumor development, invasion and metastasis.

During DNA methylation, DNMTs are needed to maintain the methylation state and function as key 
enzymes. DNMT expression is typically increased in malignancies; thus, DNMTs are important causes 
of the hypermethylation of a series of tumor suppressor genes[472,473]. The epigenetic alterations 
mediated by DNMTs regulate HCC invasion and metastasis[474,475]. Emerging evidence confirms that 
abnormal methylation of many genes is closely correlated with HCC metastasis and recurrence after 
surgery. For example, hypermethylation of the tumor suppressor genes SPG20, TERT and CCND2 is 
tightly associated with HCC metastasis and recurrence[476-478]. In contrast, hypomethylation of the 
oncogenes GTPBP4 and CTCFL is closely related to HCC metastasis and recurrence[479,480].

Collectively, the evidence from studies on the methylation of HCC-related genes will provide new 
insights to help predict HCC metastasis and recurrence and to develop targeted therapies.

NcRNAs
LncRNAs: LncRNAs are a class of RNA molecules without protein-coding functions. LncRNAs can 
promote or inhibit tumor invasion and metastasis through multiple molecular mechanisms[481,482]. 
Tumor metastasis may alter lncRNA expression[482]. Therefore, lncRNAs that are dysregulated during 
tumor metastasis are potential molecular markers of tumor metastasis.

Mounting evidence suggests that lncRNAs are widely involved in HCC invasion and metastasis. 
LncRNAs can participate in regulating gene expression levels at various levels, such as epigenetic 
modification, transcription, posttranscription, and translation, and thereby affect HCC cell invasion and 
metastasis. LncRNAs play two different roles in HCC invasion and metastasis. Oncogenic lncRNAs 
promote invasion and metastasis[405], while tumor suppressor lncRNAs inhibit invasion and metastasis
[483]. LncRNAs participate in HCC invasion and metastasis through multiple mechanisms (Figure 4): 
(1) LncRNAs regulate tumor angiogenesis, which is of great importance to tumor invasion and 
metastasis. For example, the oncogenic lncRNA OIP5-AS1 and the lncRNA noncoding RNA activated 
by DNA damage affect VEGF-A expression by competitively binding miR-3163 and miR-211-5p, 
respectively, ultimately inducing HCC angiogenesis and promoting HCC invasion and metastasis[484,
485]. In contrast, the tumor suppressor lncRNA miR503HG suppresses angiogenesis and thereby 
inhibits HCC invasion and metastasis[486]; (2) LncRNAs regulate CSCs. Specific lncRNAs are 
abnormally expressed in LCSCs, and the stemness characteristics of these lncRNAs are regulated at 
different molecular levels. For example, the oncogenic lncRNA metastasis-associated lung adenocar-
cinoma transcript 1 (MALAT1) can bind to miR-124 via a competing endogenous RNA (ceRNA) 
mechanism, which means that ncRNA with a miRNA response element can relieve the miRNA-based 
inhibition of the target mRNA by competitively combining with the miRNA, and thereby regulate the 
characteristics of HCC stem cells induced by HBx through the PI3K/Akt pathway[487]. Moreover, the 
lncRNA MALAT1 is clearly expressed in LCSCs and facilitates the display of CSC characteristics by 
HCC cells by sponging miR-375 to enhance Yes-associated protein 1 expression[488]. Furthermore, the 
oncogenic lncRNA H19 facilitates the transformation of HCC stem cells by sponging miR-193b to 
enhance MAPK1 expression and thereby promotes HCC metastasis[489]; (3) LncRNAs regulate EMT, a 
vital step in initiating tumor metastasis. After undergoing EMT, HCC cells are primed to break through 
the BM and invade blood vessels or lymphatic vessels to achieve invasion and metastasis. LncRNAs are 
key regulators of EMT in HCC. The regulation of EMT by lncRNAs is mainly realized by ceRNAs, 
which are key elements among EMT-related miRNAs, or via regulation of the activity of EMT-related 
transcription factors. For example, the expression of the oncogenic lncRNA SNHG3 can induce EMT 
through miR-128/CD151 activation and thus promote HCC invasion and metastasis[490]. Conversely, 
the expression of the tumor suppressor lnc-Ma301 is reduced in HCC cells, which reduces the 
probability of HCC lung metastasis by participating in the suppression of EMT progression and even 
reversing EMT progression in HCC cells[491]; (4) LncRNAs participate in ECM remodeling. For 
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Figure 4 Schematic diagram of molecular mechanisms by which long non-coding RNAs regulate hepatocellular carcinoma metastasis 
and recurrence. HCC: Hepatocellular carcinoma; LncRNAs: Long non-coding RNAs; CSCs: Cancer stem cells; ECM: Extracellular matrix; EMT: Epithelial 
mesenchymal transition.

example, the oncogenic lncRNA LINC01615 and the lncRNA SNHG16 promote HCC invasion and 
metastasis by participating in ECM remodeling[492,493]; and (5) LncRNAs participate in HCC cell 
immune evasion. Mounting evidence suggests that lncRNAs participate in TIME formation and thus 
affect tumorigenesis and metastasis[494,495]. For example, the oncogenic lncRNA lnc-epidermal growth 
factor receptor facilitates Treg differentiation, inhibits CTL activity, and thus promotes HCC cell 
immune escape and tumor metastasis[496].

Research on lncRNAs remains in its infancy, and a large number of lncRNAs associated with HCC 
metastasis have not yet been identified. In addition, although existing evidence reveals the important 
roles and some mechanisms of lncRNAs in HCC invasion and metastasis, research on the mechanisms 
of such lncRNAs remains relatively limited. Most studies have tended to investigate the effect of a single 
pathway on HCC invasion and metastasis, but these processes are complex and involve interactions 
among multiple factors. The next step should be to systematically study the involvement of lncRNAs in 
multiple pathways to jointly regulate HCC invasion and metastasis. This information will promote the 
use of lncRNAs as promising markers for the early prediction of HCC metastasis and recurrence. In 
addition, lncRNAs offer multiple effective therapeutic targets for HCC; thus, lncRNA research can 
provide a new direction and new treatments to prevent HCC metastasis and recurrence.

CircRNAs: CircRNAs are closed circular covalent RNA structures whose 5' and 3' ends are connected 
by nonclassical splicing. CircRNAs are highly conserved and exhibit tissue specificity that is not affected 
by RNA exonuclease. Recent studies have shown that circRNAs promote or inhibit tumor metastasis 
through multiple mechanisms[497,498].

In HCC, circRNAs facilitate or inhibit invasion and metastasis through several main mechanisms: (1) 
CircRNAs affect the stemness transition. The oncogenic circRNA circIPO11 facilitates the self-renewal of 
LCSCs through activation of the Hedgehog pathway and thus accelerates HCC invasion and metastasis
[499]; (2) CircRNAs affect EMT. The oncogenic circRNA hsa_circ_0000092 binds miR-338-3p to 
upregulate downstream HN1 expression by reducing miR-338-3p expression and thus accelerating the 
EMT process of HCC and promoting HCC migration, invasion and metastasis[500]. The expression of 
the tumor-suppressive circRNA circSETD2 is reduced in HCC tissues, and overexpression of this 
circRNA restrains EMT occurrence in HCC cells and thereby inhibits HCC cell invasion and metastasis
[501]; (3) CircRNAs affect ECM degradation. The tumor suppressor cSMARCA5 (hsa_circ_0001445) 
inhibits ECM degradation by affecting TIMP3 expression and thereby inhibits HCC cell invasion and 
ultimately tumor metastasis[502]; (4) CircRNAs affect tumor angiogenesis. For example, exosomal circ-
100338 enhances the angiogenic capacity and permeability of HCC cells and promotes HCC metastasis
[391]. In contrast, the tumor suppressor circ_0004018 inhibits HCC angiogenesis and thus HCC 
metastasis[503]; and (5) CircRNAs regulate tumor immune evasion. Oncogenic circRNAs can help 
tumor cells evade immune surveillance through multiple pathways. Hsa-circ-0003288, which is highly 
expressed in HCC cells, induces tumor immune evasion and promotes HCC metastasis by upregulating 
PD-L1 expression[504]. Hsa_circ_0048674 may lead to immunosuppression by inhibiting the cytotoxicity 
of NK cells toward HCC cells and thereby promote HCC metastasis[505].

In summary, research on circRNAs in the field of HCC metastasis remains in its infancy. Although 
the existing evidence indicates that circRNAs are associated with HCC metastasis, clinical research 
results remain lacking. Further in-depth investigation of the mechanisms of circRNAs in HCC 
metastasis will provide new strategies to combat HCC metastasis.
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MiRNAs: MiRNAs are a group of endogenous ncRNAs with a length of 18 to 24 nucleotides. MiRNAs 
play significant regulatory roles in the expression of numerous protein-coding genes and participate in 
cancer cell proliferation, differentiation, angiogenesis and metastasis[506,507].

Emerging evidence suggests that miRNAs play significant roles in HCC metastasis and recurrence. 
MiRNAs mainly affect HCC metastasis via several mechanisms: (1) MiRNAs regulate EMT occurrence 
in HCC cells: miRNAs can either inhibit or promote EMT-mediated HCC invasion and metastasis by 
regulating signaling pathways and transcription factors. For example, the tumor suppressor miR-3194-
3p inhibits the occurrence of EMT by inactivating Wnt/β-catenin signaling and thereby inhibits HCC 
metastasis and recurrence[508]. The tumor suppressor miR-509-3p prevents EMT by decreasing the 
expression of the transcription factor JDP2 to inhibit HCC invasion and metastasis[509]; (2) MiRNAs 
affect tumor angiogenesis. The oncogenic miRNA miR-1290 facilitates HCC angiogenesis and thus 
promotes HCC invasion and metastasis[510]. In contrast, the tumor suppressor miR-325-3p restrains 
HCC angiogenesis and thereby inhibits HCC invasion and metastasis[511]; and (3) MiRNAs modulate 
ECM degradation. The tumor suppressor miR-324-5p inhibits ECM degradation by reducing MMP2 and 
MMP9 activity, inhibiting invasion and metastasis in HCC[512].

Although miRNAs have been confirmed to participate in HCC metastasis and recurrence, the specific 
mechanisms of these functions need to be further studied. MiRNAs are expected to become new targets 
for the prediction and treatment of HCC metastasis and recurrence.

CONCLUSION
Problems and perspectives
Postoperative HCC metastasis and recurrence are complicated processes involving multiple steps, links, 
factors, and molecules as well as interactions among the body, tumor tissues and the TME. Clinical 
studies have found that tumor size, number, vascular invasion, and disseminated foci are important 
prognostic factors of HCC, but clinical practice suggests that common clinicopathological features, such 
as the size and number of HCC tumors, cannot individually accurately predict the potential of tumor 
metastasis and recurrence. Rather, the biological characteristics of tumors may be the real key factors in 
metastasis and recurrence. Previous studies have reported numerous molecular markers associated with 
HCC metastasis and recurrence, but the current studies primarily involve single-factor and single-
molecule research models and focus on the expression of a few genes and proteins. In addition, the 
sample sizes of these studies are limited, and accurately reflecting the molecular characteristics 
underlying HCC metastasis and recurrence is difficult. Thus far, there are no indicators that can be used 
to clinically predict HCC metastasis and recurrence. Therefore, additional experiments and clinical 
verification are needed to clarify the specific molecular mechanisms of HCC metastasis and recurrence. 
In the process of HCC treatment, some unavoidable objective factors, internal factors of the HCC tissue 
itself, and immunosuppression are encountered. These factors work together to make HCC metastasis 
and recurrence a bottleneck that severely restricts the efficacy of surgical resection. Detailed elucidation 
of the molecular mechanisms underlying HCC metastasis and recurrence will strengthen our 
understanding of HCC and help us to more accurately grasp the mechanisms of HCC metastasis and 
recurrence. Such knowledge will be crucial for the identification of new therapeutic targets.
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