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Abstract
In healthy people, balance between glucose production 
and its utilization is precisely controlled. When circulat-
ing glucose reaches a critical threshold level, pancreatic 
β cells secrete insulin that has two major actions: to 
lower circulating glucose levels by facilitating its uptake 
mainly into skeletal muscle while inhibiting its produc-
tion by the liver. Interestingly, dietary triglycerides are 
the main source of fatty acids to fulfill energy needs of 
oxidative tissues. Normally, the unconsumed fraction 
of excess of fatty acids is stored in lipid droplets that 
are localized in adipocytes to provide energy during 
fasting periods. Thus, adipose tissue acts as a trap for 
fatty acid excess liberated from plasma triglycerides. 
When the buffering action of adipose tissue to store 
fatty acids is impaired, fatty acids that build up in other 

tissues are metabolized as sphingolipid derivatives such 
as ceramides. Several studies suggest that ceramides 
are among the most active lipid second messengers to 
inhibit the insulin signaling pathway and this review de-
scribes the major role played by ceramide accumulation 
in the development of insulin resistance of peripherals 
tissues through the targeting of specific proteins of the 
insulin signaling pathway.
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Core tip: Muscle and liver represent major sites for 
insulin-mediated glucose metabolism. The ability of 
insulin to promote its peripheral action is reduced sig-
nificantly by excess of saturated fat that stimulates in-
tracellular production of second-messenger lipids such 
as ceramide. Studies suggest that ceramide could be 
important contributors to lipotoxicity, as the inhibition 
of early steps its biosynthesis pathway has large ben-
eficial effects in rodent models of obesity and diabetes. 
In this review, we describe mechanisms by which ce-
ramide acts on insulin-sensitive tissues and we propose 
that targeting this lipid family could be an interesting 
approach to fight diabetes.
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DIABETES EPIDEMIC
Diabetes has become a serious public health problem in 
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both developed and developing countries. Indeed, there 
is a dramatic increasing incidence of  diabetes in most of  
these countries. In 2005, 217 million people worldwide 
had diabetes, and the World Health Organisation predicts 
that it will increase to 366 million in 2030[1]. In 2050, 
33% of  the population of  the United States will suffer 
from diabetes[2]. One consequence is that over the years, 
diabetes has become life-threatening, with increased risk 
of  cardiovascular diseases, retinopathy, kidney failure, 
and nerve and artery damages[3]. Diabetes is one of  the 
first causes of  haemodialysis, of  blindness and of  non-
traumatic amputation of  the legs. Another consequence 
is the increasing of  health spending due to diabetes. For 
example, in the United States, diabetes costing is actually 
evaluated to more than $174 billion per year and it’s ex-
pected to increase in subsequent years[2].

PATHOPHYSIOLOGY OF TYPE 2 
DIABETES
There are different types of  diabetes: (1) type 1 diabetes 
or maturity onset diabetes of  the young associated to im-
pairment of  insulin production; and (2) type 2 diabetes, 
corresponding to 85%-90% of  all diabetes, with both 
insulin secretion defects and peripheral insulin resistance. 
Type 2 diabetes is associated with obesity and although 
genetic factors play a role in the pathophysiology of  this 
disease, other environmental factors such as diet and 
physical activity both play large roles. Several mechanisms 
have been proposed to explain both insulin resistance and 
insulin secretion defects observed in type 2 diabetes. Li-
potoxicity, glucotoxicity, low grad systemic inflammation, 
oxidative stress and endoplasmic reticulum stress[4-6] cor-
respond to different mechanisms that converge on a com-
mon pathway to induce insulin resistance. In this review 
we will focus on cellular lipid toxicity, i.e., lipotoxicity.

LIPOTOXICITY
Systemic lipid imbalances are common in metabolic 
syndrome, in pre-diabetes and in type 2 diabetes and it 
is now clear that lipotoxicity can induce glucose dysregu-
lation and participate to the pathophysiology of  type 2 
diabetes[7-9]. For example, prospective epidemiological 
studies performed in population with low or high risk to 
develop type 2 diabetes have shown that high free fatty 
acid (FFA) concentrations in plasma are associated with 
the risk of  incident type 2 diabetes[10-12].

A major characteristic of  type 2 diabetes is the loss of  
the ability of  pancreatic β cells to increase insulin secre-
tion to maintain normoglycemia in the face of  insulin 
resistance[13]. Because of  genetic predisposition, β cells 
could be unable to compensate the insulin resistance in-
duced by FFA, but chronic exposition of  β cells to high 
levels of  FFA could equally explain defects in β cell func-
tion and decreased mass observed in type 2 diabetes. In-
deed, in vitro studies have shown that FFA are associated 
with a decrease of  insulin expression, synthesis and pro-

cessing[14-16]. Another mechanism that can explain insulin 
secretion dysfunction in type 2 diabetes is that high FFA 
levels in islets induce β cell death[17]. In this review, we 
will not deal with this topic but we will rather focus our 
message on lipid-induced peripheral insulin resistance. To 
more information on lipotoxicity in pancreatic beta cells, 
confer to the excellent review of  Boslem et al[18].

Since skeletal muscle constitutes 40% of  human body 
mass and is quantitatively the most important tissue in 
regard to insulin-stimulated glucose disposal, it is con-
sidered the main cellular target in the development of  
insulin resistance. Thus, most of  the studies investigating 
mechanisms of  lipotoxicity induced insulin resistance 
were mostly performed in muscle tissue.

In 1963, Randle et al[19] have postulated that a com-
petition between glucose and fatty acids for their oxida-
tion and uptake is responsible for the onset of  insulin 
resistance in muscle and adipose tissue. In vivo studies 
performed in both rodents and humans confirmed such 
insulin resistance obtained after lipid infusion but they 
also demonstrated that, in opposite to Randle’s hypothe-
sis, insulin resistance induced by lipids was not secondary 
to decreased glycolysis[20]. Indeed, lipids act directly on in-
sulin signaling, resulting in an inhibition of  the transloca-
tion of  the insulin sensitive glucose transporter GLUT4 
to the plasma membrane in response to the hormone, 
with subsequent reduced glucose uptake[21-25]. In human, 
data clearly show a strong correlation between lipid intra-
muscular content and insulin resistance[26-28] and a cross-
sectional analysis performed in young, normal weight and 
non-diabetic adults reveals that a better correlation exists 
between muscle insulin sensitivity, assessed by the hy-
perinsulinaemic-euglycaemic clamp technique, and intra-
myocellular lipid content rather than with circulating lipid 
levels, body mass index, fasting blood glucose and age[29].

Liver is another important organ implicated in insulin 
resistance and, like in muscle indirect data also suggest an 
inverse relationship between lipid liver content and insu-
lin sensibility. Indeed, ectopic lipid accumulation in the 
liver, termed nonalcoholic fatty liver disease (NAFLD), 
is associated with insulin resistance. Interestingly, in an 
animal model of  lipodystrophy with steatosis, but with-
out increased visceral fat, lipid liver content is associated 
with insulin resistance. Insulin resistance is reversed after 
reduction of  steatosis with liver transplantation or re-
combinant leptin treatment[30]. Such association between 
steatosis and insulin resistance has also been observed in 
patients with severe lipodystrophy with equally a good 
response to recombinant leptin therapy[31]. Similarly, he-
patic specific overexpression of  lipoprotein lipase leads 
specifically to hepatic steatosis and hepatic insulin resis-
tance[32,33]. During type 2 diabetes, reduction of  steatosis 
by caloric restriction, or gastric bypass, is associated with 
increased insulin sensibility independently of  visceral fat 
mass reduction[34,35].

Strong evidence exists between ectopic lipid accumu-
lation and insulin resistance. However, in some cases, like 
in the “athlete’s paradox”, there is a lack of  correlation 
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between ectopic lipid accumulation and peripheral insulin 
resistance. Indeed, athletes display high insulin sensitivity 
but also present increased levels of  intramuscular fatty 
acids[36]. Thus, it seems that ectopic accumulation of  fatty 
acids in non-adipose tissues can only be used as markers 
for the onset of  insulin resistance but cannot be consid-
ered as a direct cause. Even if  they do not seem to be di-
rectly involved, fatty acids contribute to insulin resistance 
as they lead to the synthesis of  many lipid derivative in-
termediates such as diacylglycerol (DAG) and ceramide.

Over the years, studies have provided conclusive 
proof  that ceramide plays a key role in the progression of  
insulin resistance in insulin sensitive tissues, targeting and 
inhibiting specific actors of  the insulin signaling pathway.

INSULIN SIGNALING PATHWAY AND 
METABOLIC FUNCTIONS
Insulin is a polypeptide hormone whose major physi-
ological role is to control glucose homeostasis by stimu-
lating glucose uptake into insulin sensitive tissues (skeletal 
muscle and adipose tissue) and by inhibiting glucose out-
put from the liver[37]. Insulin consists of  two polypeptide 
chains, a α chain of  21 amino acid residues linked by two 
disulfide bonds to a β chain of  30 amino acid residues. 
Insulin is produced in the β cells of  the Islets of  Lang-
erhans found in the pancreas. It is initially synthesized 
as an immature single polypeptide chain of  110 amino 
acids called pre-proinsulin. Pre-proinsulin contains an 
N-terminal domain of  24 amino acids that acts to direct 
the polypeptide to the endoplasmic reticulum during 
translation. This domain is later cleaved to yield proin-
sulin. Proinsulin is transported to the secretory vesicles 
of  the pancreatic β cells, where a proteolytic enzyme 
removes the central 35 residues of  the peptide (termed 
the C-peptide) that connect α and β chains to produce 
insulin. Insulin is then released into the blood stream by 
exocytosis. Secretion of  the hormone is regulated by the 
glucose abundance in the plasma.

In skeletal muscle, insulin promotes the uptake of  
glucose and its conversion into glycogen. This tissue is an 
important target of  the hormone, representing the major 
site of  glucose disposal in vivo[37] and is reported to medi-
ate 70%-80% of  whole body insulin-stimulated glucose 
transport[38]. In the liver, insulin stimulates the synthesis 
of  glycogen while inhibiting gluconeogenesis and glyco-
genolysis, halting hepatic glucose output. In adipocytes, 
insulin promotes the uptake of  glucose and its conver-
sion into a glycerophosphate of  which can be esterified 
by 3 fatty acids, allowing to form triglycerides for long 
term storage, whereas simultaneously inhibiting the lipo-
lytic pathway[39]. In addition to glucose metabolism, insu-
lin also regulates many other cellular processes including 
amino acid transport, lipogenesis, protein synthesis and 
mitogenesis.

The first step in the activation of  the insulin signaling 
pathway is the binding of  insulin with its membrane re-
ceptor, the insulin receptor (IR). IR is a heterotetrameric 

complex of  two subunits: α-subunit, and β-subunit that 
possess a transmembrane domain and an intracellular 
part. Binding of  insulin to α subunits of  IR induces a 
rapid conformational change in the receptor. This in 
turn stimulates the intrinsic tyrosine kinase activity of  
the β subunit resulting in trans-autophosphorylation of  
tyrosine residues in the intracellular region of  the β sub-
units[40]. As a result of  this autophosphorylation, the IR 
becomes catalytically active and promotes the tyrosine 
phosphorylation of  a number of  cellular proteins includ-
ing the IR Substrate (IRS) proteins.

IRS proteins are major physiological targets of  the ac-
tivated insulin receptor kinase. Six different IRS isoforms 
have been identified so far[41]. In skeletal muscle and adi-
pose tissue, IRS1 is the isoform that mediate insulin sig-
naling. In the liver, however, IRS2 is the one that drives 
insulin metabolic functions. In the pancreas, IRS2 is an 
important regulator of  cell growth and regeneration[41]. 
Studies have also shown that both IRS3 and IRS4 can be 
activated in response to insulin and insulin-like growth 
factor 1 (IGF1)[42] and that IRS3 can mediate insulin sig-
naling in adipocytes[42]. Mice lacking either IRS3 or IRS4, 
however, display no major phenotype, suggesting that 
neither isoform plays a direct role in controlling glucose 
metabolism[43,44] but may rather act as negative regulators 
of  the IGF1 signaling pathway by suppressing the func-
tion of  other IRS isoforms[45].

One key molecule that is activated by the IRSs in 
response to insulin is phosphoinositide-3-kinase (PI3K). 
PI3K is a lipid kinase, which phosphorylates the D3 po-
sition of  the inositol ring within inositol lipids resulting 
in the generation of  3-phosphoinositides (e.g., PI-3P, PI-
3,4P2, and PI-3,4,5P3). Eight mammalian isoforms of  
PI3K exist and they are grouped into three classes on the 
basis of  their substrate specificity and structure: class Ⅰ, 
class Ⅱ, and class Ⅲ. Only class Ⅰ can phosphorylate 
phosphatidylinositol, 4, 5-bisphosphate (PIP2)[46]. Follow-
ing PI3K activation, PIP3 is generated from the substrate 
PIP2. PIP3 binds a protein displaying a PH domain and 
called the 3-phosphoinositide-dependent protein Kinase 
1 (PDK1). Activated-PDK1 triggers downstream targets 
such as protein kinase B (PKB/Akt)[47].

PKB/Akt also called Akt is the third central node 
activated by insulin. It plays a crucial role in mediating 
signaling effects on metabolism, cell growth and cell 
cycle[48,49]. PKB/Akt has three isoforms: PKBα/Akt1, 
ubiquitously expressed, PKBβ/Akt2 mostly present in in-
sulin responsive tissues (liver, adipose tissue and muscle), 
and PKBγ/Akt3 predominant in the brain. PKBβ/Akt2 
is the isoform implicated in the regulation of  glucose 
metabolism since neither PKBα Akt1 nor PKBγ/Akt3 
ablation affects glucose metabolism[50].

PKB/Akt is activated through PI3K-produced PIP3 
which binds its PH domain. Then, PKB/Akt is recruited 
to the plasma membrane where it is activated by phos-
phorylation on two critical sites: threonine 308 (T308) in 
the activation loop and serine 473 (S473) in the hydropho-
bic motif[51]. PDK1 phosphorylates PKB/Akt on T308. 
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disease[70,71]. Elevated DAG content and activation of  
protein kinase C (PKC)ε has been associated with hepatic 
insulin resistance and the involvement of  this “lipid-
activated pathway” has been validated through the use of  
antisense oligonucleotide against PKCε in rats. Knocking 
down PKCε expression in liver protected rats from lipid-
induced hepatic insulin resistance, despite increase in he-
patic lipid content[72].

Several studies have decrypted the mechanism by 
which DAG-activated PKCs inhibit insulin signaling in 
liver. They show that IRS proteins are likely to be PKC’s 
preferential targets. DAG-activated PKCs inhibit IRSs ac-
tivity through their phosphorylation on several serine res-
idues, preventing consequently insulin activation of  IRSs 
through their phosphorylation on tyrosine residues[73-75].

In muscle, however, data are contradictory. Itani et 
al[76] were the first to point out the positive association 
between DAG content and muscle insulin resistance by 
comparing a group of  subject receiving a lipid infusion 
to a control group. Lipid infusion resulted in a 3-fold 
increase in total DAG content in muscle, and reduced 
insulin sensitivity. Straczkowski et al[77] observed that total 
muscle DAG concentrations were higher in obese com-
pared to lean controls and lean offspring type 2 diabetics, 
and this increased DAG content was inversely related to 
insulin sensitivity. Other studies have also confirmed this 
correlation[78,79].

However, the association between DAG and muscle 
insulin resistance is still questioned. Indeed, Vistisen et 
al[80] performed muscle biopsies during glucose clamps 
and they observed a reduction in insulin sensitivity af-
ter lipid infusion, without any changes in muscle DAG 
content. These results were confirmed by Anastasiou et 
al[81] that compared obese type 2 diabetic patients to non-
diabetics subjects and found no difference in muscle 
DAG content between the groups. Similarly, Perreault et 
al[82] compared insulin resistant obese patients to glucose 
tolerant obese patients and again found no difference in 
DAG content between the groups. Even more intriguing, 
Amati el al[83] observed a two-fold increase in DAG con-
tent in insulin sensitive human muscle biopsies compared 
to insulin resistant human muscle biopsies. More recently, 
the same group showed no difference in muscle DAG 
content between lean subjects compared to obese insulin 
resistance patients[84].

Altogether, and in opposite to liver, it seems that 
DAG does not appear to be a crucial player in the onset 
of  insulin resistance in muscle, and maybe more investi-
gations are needed to really be able to conclude.

CERAMIDE AND INSULIN RESISTANCE
Ceramide biosynthesis
One of  the main sphingolipid that has been demonstrat-
ed to play a crucial role in insulin resistance is ceramide. 
During obesity, ceramide is mainly generated from long 
chain fatty acyl-CoAs[85,86], and has been shown to be tox-
ic lipid when it accumulates in tissues during obesity[87-89].

The kinase that phosphorylates the S473 site is the com-
plex mammalian target of  rapamycin complex 2, a regula-
tor of  cell growth and proliferation[52].

PKB/Akt is highly activated within minutes following 
cell exposure to insulin to mediate the metabolic effects 
of  the hormone[49,53].

Indeed, principle roles of  PKB/Akt in insulin sensi-
tive tissues are to: (1) Stimulate glucose uptake in muscle 
and adipose tissue; (2) Trigger glucose storage as glyco-
gen in muscle and in the liver; (3) Stimulate the conver-
sion of  glucose excess into lipids in the liver; (4) Induce 
protein synthesis in muscle; (5) Inhibit glycogen break-
down in both muscle and liver; (6) Suppress liberation 
of  free fatty acids from adipose tissue; (7) Inhibit de novo 
production of  glucose in the liver; and (8) Impede pro-
tein breakdown in muscle (Figure 1).

Considering the crucial role PKB/Akt plays in medi-
ating insulin metabolic actions in cells, impairing PKB/
Akt activity represents the best way to compromise the 
whole system.

LIPID SECOND MESSENGER AND LOSS 
OF INSULIN SENSITIVITY
In pathological situations such as obesity and type 2 
diabetes that are characterized by insulin resistance, ec-
topic fatty acid accumulation is increased due to reduced 
mitochondrial fatty acid oxidation and to enhanced fatty 
acid uptake[54-57]. This increased fat content inversely cor-
relates with insulin sensitivity in skeletal muscle, liver and 
adipocytes[58-61].

Interestingly and depending on the degree of  satura-
tion, free fatty acid may exert different effects on insulin 
signaling. Studies have demonstrated that saturated fatty 
acids such as palmitate (16:0) and stearate (18:0) impair 
insulin sensitivity in muscle[62,63], whereas mono-unsatu-
rated fatty acids or poly-unsaturated fatty acids have no 
effect or even enhance insulin action[64-66]. Although the 
exact reasons behind these differences are unclear, stud-
ies have suggested that unsaturated fatty acids may be 
preferentially targeted for triglyceride synthesis and stor-
age, whilst saturated fatty acids may be used for synthesis 
of  critical lipid intermediates such as DAG and ceramide. 
These two lipid second messengers have been demon-
strated to mediate deleterious actions of  saturated fatty 
acids on insulin signaling.

DAG AND INSULIN RESISTANCE
DAG is a glyceride consisting of  two fatty acid chains 
covalently bonded to a glycerol molecule. DAG, interme-
diate of  both triglyceride and phospholipid metabolism, 
is an important second messenger involved in intracellular 
signaling[67].

DAG has been shown to accumulate in insulin resis-
tant liver[68,69] and studies have shown that intra-hepatic 
DAG is an important mediator of  hepatic insulin re-
sistance in obese people with nonalcoholic fatty liver 
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Ceramide is a bioactive sphingolipid that has been 
implicated in mediating or regulating many cellular pro-
cesses, including cell cycle arrest, proliferation, apoptosis, 
senescence, and stress responses. Ceramide plays also an 
important role in cell membrane structure[90].

Formation of  ceramide can be induced by different 
stimuli such as tumor necrosis factor-α, heat stress, oxida-
tive stress, ionizing radiation, and chemotherapeutics[91].

Multiple metabolic pathways converge to ceramide 
(figure 2): (1) The de novo synthesis pathway from satu-
rated fatty acids that takes place in the endoplasmic 
reticulum; (2) The sphingomyelinase pathway that uses 
sphingomyelinase to break down sphingomyelin in the 
cell membrane to release ceramide; and (3) The salvage 
pathway in lysosomes that occurs through breakdown of  
complex sphingolipids to give sphingosine, which is then 
rescued by reacylation to form ceramide.

In time of  fatty acid plethora, the de novo ceramide bio-
synthesis pathway is the pathway that is likely to be most 
harnessed to synthesize ceramide. It occurs in the leaflet 
membrane of  the endoplasmic reticulum where ceramide 
is synthesized through a series of  reactions[92,93]. De novo 
synthesis of  ceramide begins with the condensation of  
palmitate and serine to form 3-keto-dihydrosphingosine 
(figure 2). This reaction is catalyzed by serine palmitoyl 
transferase (SPT) and is the rate-limiting step of  the 
pathway. In turn, 3-keto-dihydrosphingosine is reduced 
to dihydrosphingosine, which is then followed by acyla-
tion by ceramide synthases (CerS) to produce dihydrocer-
amide. In mammals, six CerS isoforms are expressed and 
are called CerS 1 to 6. They carry out the same chemical 
reaction, but display distinct specificities for the acyl-CoA 
chain length they use for N-acylation[94]. Thus, CerS iso-
forms are responsible for the fatty acid composition of  
ceramide. Interestingly, several studies have shown distinct 
cellular functions for ceramides with different N-acyl 
chain length[95,96]. The final reaction to produce ceramide 
is catalysed by dihydroceramide desaturase.

Inverse relationship between ceramide content and 
insulin sensitivity
Studies in animal and models: One of  the early stud-
ies that analyzed ceramide content in obese Zucker fa/fa 
rats (rats homozygous for truncated, non-functional 
leptin receptor) was Turinsky et al[97] in 1990. The authors 
found that these rats present an increase in ceramide 
content in both muscle and liver. Increased ceramide 
content was also detected in insulin resistant models of  
rodents, as in ob/ob mice, mice fed on high fat diet, and 
in intra-lipid infused mice[85,98,99]. Altogether these reports 
illustrate the inverse relationship between ceramide and 
insulin sensitivity in rodent muscle. This association was 
also confirmed in vitro in cultured C2C12 and L6 myo-
tubes, as well as in adipocytes[99-101]. Exposing cultured 
muscle cells to saturated fatty acids (like palmitate) at-
tenuates insulin activation of  glycogen synthesis and 
glucose transport concomitantly with increasing intracel-
lular ceramide amounts[63,99]. Additionally, incubation of  
muscle cells and adipocytes with analogues of  ceramide 
mimics the inhibitory effects of  FFAs on insulin signal-
ing and suppresses insulin-stimulated glycogen synthesis 
and glucose transport[100,101].

Studies in human subjects: In accordance with data 
obtained in rodents, studies in human subjects also sup-
port the inverse relationship between ceramide accumula-
tion and insulin sensitivity. It has been shown that under 
basal conditions, total amount of  ceramide in skeletal 
muscle is increased in obese subjects compared to lean 
ones[83,84,87]. Another study performed in human skeletal 
muscle of  lean normoglycemic subjects revealed again an 
inverse relationship between muscle ceramide accumula-
tion and insulin sensitivity[102]. The same authors show 
in another study a ceramide accumulation in muscle of  
type 2 diabetic patient offsprings compared to muscle of  
control subjects[77]. Furthermore, the group of  Goodpas-
ter demonstrated that physical exercise reduces ceramide 
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content in obese and insulin resistant subjects, and this 
was correlated with improved insulin sensitivity[83,103]. Like 
in muscle, accumulation of  ceramide content in human 
adipocytes has also been demonstrated to be related to 
insulin resistance[104,105].

Altogether, these studies prove a solid association 
between insulin resistance and an increase in ceramide 
content in both muscle and adipocytes.

Unlike in muscle and adipose cells, a role of  ceramide 
in the onset of  hepatic insulin resistance is more debated. 
Indeed, some studies see no ceramide accumulation in 
fatty liver[68,70,71], making improbable these lipids as me-
diators hepatic insulin resistance. This is in contradic-
tion with another study showing increases in hamster 
hepatic ceramide levels in response to lipopolysaccharide 
administration[106]. In addition, Longato et al[107] saw a dys-
regulated ceramide metabolism in high fat diet-induced 
hepatic steatosis.

Interestingly, and in opposite to muscle and adipose 
tissue, ceramide cannot accumulate in the liver. Indeed, 
very recently, Watt et al[108] have shown that lipid infusion 
in healthy subjects resulted in a rapid hepatic secretion 
of  ceramide in the circulation, primarily within very low-
density lipoprotein[109,110], thereby protecting the liver from 
the deleterious effects of  their intracellular accumulation. 
It would be interesting, however, to assess whether lipid-
induced ceramide secretion is affected in fatty liver (ste-
atosis).

Altogether, if  ceramide does not seem to accumulate 

in liver during lipotoxic conditions, its secretion into the 
circulation could be deleterious for other peripheral tis-
sues such as pancreatic β cells and muscle cells.

Implication of ceramide in the progression of insulin 
resistance
Two methods were used to validate the implication of  
ceramide in impaired insulin sensibility: the first one 
was to inhibit ceramide production, and the second was 
to enhance ceramide metabolism towards less harmful 
sphingolipid species.

Inhibition of  ceramide production improves insulin 
sensitivity: One method used to demonstrate the role 
of  ceramide in the onset of  insulin resistance was to 
inhibit ceramide biosynthesis. The most commonly stud-
ied molecular target involved in suppressing ceramide 
production is the enzyme SPT, enzyme that catalyzes 
the initial rate-limiting step in de novo ceramide synthesis 
(figure 3)[90]. Several potent inhibitors of  SPT have been 
documented, although the most widely used is myriocin, 
a naturally occurring fungal metabolite isolated from 
Myriococcum albomyces[111]. In studies carried out in 
vivo, administration of  myriocin was found to attenuate 
PKB/Akt inhibition in response to lipid infusion or high-
fat feeding, as well as improving glucose tolerance and 
peripheral insulin sensitivity in obese ob/ob mice and 
Zucker Diabetic Fatty rats[112-114]. As expected, these ben-
eficial effects of  myriocin were associated with reduced 
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levels of  ceramide and were reproduced when alternative 
inhibitors of  de novo ceramide synthesis such as L-cyclo-
serine (which also inhibits SPT) and Fenretinide (dihydro-
ceramide synthase inhibitor) were used[63,115].

Studies performed in vitro in myotubes confirmed 
what was observed in vivo. They demonstrated that acute 
inhibition of  SPT using myriocin ameliorates the loss in 
insulin-stimulated PKB/Akt activation in cultured L6 or 
C2C12 myotubes caused by palmitate-driven ceramide 
synthesis[62,63].

Interestingly, a very recent study shows that inhibi-
tion of  the de novo synthesis of  ceramide using myriocin 
reduces hepatic lipid accumulation in liver of  rats with 
NAFLD[116]. This inhibition of  ceramide biosynthesis is 
accompanied with decreased in both DAG and triglycer-
ide contents, resulting in amelioration of  hepatic insulin 
resistance and improvement of  glucose homeostasis[116].

Stimulation of  ceramide conversion into less harm-
ful sphingolipids improves insulin sensibility: The 
degradation of  ceramide is initiated by the action of  
ceramidase that produces sphingosine, which is then 
phosphorylated to sphingosine-1-phosphate (S1P) by 
sphingosine kinase[117]. S1P is the final metabolic prod-
uct of  sphingolipid degradation and can function as an 

intracellular second messenger or in an autocrine and/or 
paracrine manner to activate and signal through S1P re-
ceptors[118]. Interestingly, S1P itself  opposes the effects of  
ceramide on intracellular signaling. S1P has been shown 
to ameliorate insulin-stimulated glucose uptake, possibly 
through the activation of  PKB/Akt[118-121]. Therefore, 
studies have aimed at finding ways to enhance ceramide 
metabolism into S1P in muscle in order to restore their 
insulin sensitivity. Bruce et al[122] used transgenic mice 
overexpressing sphingosine kinase. They show that high 
fat fed transgenic mice display improved insulin sensitiv-
ity compared to control mice. In addition, they used a 
drug called FTY720 which inhibits ceramide synthase 
activity and decrease ceramide accumulation in skeletal 
muscle[123]. As expected, they saw an improvement of  
insulin sensitivity. FTY720 prevented muscle ceramide 
accumulation in high fat fed mice and subsequently im-
proved glucose homeostasis[124]. Other studies show that 
overexpression of  ceramidase (converting ceramide to 
sphingosine) protects from lipid-induced muscle insulin 
resistance in C2C12 myotubes[125].

Altogether, these results demonstrate that preventing 
the aberrant accumulation of  ceramide by promoting its 
metabolism into sphingosine and sphingosine-derivatives 
might restore normal insulin sensitivity and glucose me-
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tabolism in models of  insulin resistance.

Ceramide inhibitory effect on the insulin signaling 
pathway
Several studies have reported that ceramide may attenuate 
insulin-stimulated glucose transport and glycogen synthe-
sis by antagonizing early events in insulin signaling such 
as activation of  IRS-1[126] and possibly PI3K[127]. How-
ever, these results are controversial, as several groups 
reported no defects in the activation of  these molecules 
upon challenging cells with ceramide[100,101]. In contrast, a 
number of  groups suggested that PKB/Akt is the target 
of  ceramide, and that inhibition of  this kinase may ac-
count for reduced glucose transport and apoptosis ob-
served in ceramide treated cells[99-101,128]. Consistent with 
this, defects in PKB/Akt activation have been noted in a 
variety of  ceramide-treated cell types, including 3T3-L1 
adipocytes[101], foetal brown adipocytes[129], L6 rat and 
C2C12 mouse skeletal muscle[99,100], A75R5 smooth muscle 
cells[130], and MCF7 breast cancer cells[131].

Furthermore, the inhibition of  PKB/Akt by ceramide 
is not limited to experiments using exogenously sup-
plied lipids. The hormonal activation of  PKB/Akt is also 
blunted in muscle cells treated with free fatty acids in a 
manner which is dependent on the intracellular conver-
sion of  palmitate to ceramide[62,63,99]. Taken together these 
results suggest that ability of  ceramide to impair PKB/
Akt activity may be an important determinant of  insulin 
sensitivity.

A key issue is the mechanism by which ceramide 
inhibits PKB/Akt activity. Depending on the cell enrich-
ment in caveolin-enriched domain[132], ceramide inhib-
its the insulin-stimulated PKB/Akt either through the 
protein phosphatase 2A (PP2A), or via the atypical PKC 
(aPKC) pathway (Figure 3).

PP2A depended inhibition of  insulin-induced acti-
vation of  PKB/Akt: PP2A is a cytoplasmic serine/thre-
onine phosphatase ubiquitously expressed that plays an 
important role in the regulation of  diverse cellular pro-
cesses, including metabolic enzymes, hormone receptors, 
kinase cascades, and cell growth[133]. It has been shown 
that insulin inhibits PP2A in physiologic conditions[134]. In 
contrast, several groups demonstrated that ceramide acti-
vates PP2A to promote the de-phosphorylation of  PKB/
Akt[62,135,136]. Two different inhibitors of  PP2A activity, 
okadaic acid or SV40 small T antigen that binds with 
PP2A[137] were used to demonstrate the role of  ceramide-
induced PP2A inactivation of  PKB/Akt. The presence 
of  either inhibitor in cells treated with palmitate or short 
chain ceramide analogue (C2-ceramide), alleviated inhibi-
tion on PKB/Akt and re-established a normal, insulin 
signaling[62,128]. Therefore, one way for ceramide to inhibit 
PKB/Akt activity is by promoting its dephosphorylation 
at Thr308 and Ser473 through activation of  PP2A.

Atypical PKCs another ceramide-stimulated protein 
altering PKB/Akt activation: The second mechanism 

of  inactivation of  PKB/Akt by ceramide requires the 
activation of  aPKCs (PKCζ/λ). There is mounting evi-
dence in the literature suggesting that aPKC may regulate 
PKB/Akt signaling and that the relationship between the 
two kinases may be subject to modulation by ceramide. 
It is 20 years since investigators first demonstrated that 
PKCζ/λ could associate with PKB/Akt in COS-7 fibro-
blasts[138]. It has also been demonstrated that PKCζ inter-
acts directly with PKB/Akt in other cells types such as 
Chinese hamster ovary cells and COS-1 cells[139], as well 
as the BT-549 human breast cancer cell line[140].

In pathological conditions, ceramide-activated aPKCs 
impair insulin signaling. aPKCs phosphorylate PKB/Akt 
on its Thr34/Ser34 residue (Thr34 in PKBα and PKBβ, 
Ser34 in PKBγ), thus preventing PIP3 to bind the kinase 
on its PH domain, and to translocate to the plasma mem-
brane and its subsequent activation in response to insu-
lin[132,141,142]. Based on these observations, it was proposed 
that an increase in intracellular ceramide leading to the 
activation of  aPKCs promotes the stabilization of  the 
aPKC-PKB/Akt complex and attenuates the recruitment 
of  PKB/Akt to the plasma membrane as a result of  dis-
rupted PIP3 binding (Figure 3).

CERAMIDE, A THERAPEUTIC TARGET?
Mechanisms by which saturated fatty acids act on insulin 
signaling are now getting clearer. They involve several lip-
id and protein intermediates that play an essential role to 
mediate the deleterious effects of  accumulated saturated 
lipids in insulin sensitive tissues. Thus, two main options 
exist to counteract the action of  these fatty acids on insu-
lin signaling: (1) acting on ceramide downstream signaling 
targets (aPKCs or PP2A); or (2) modulating directly ce-
ramide content[143]. Considering the large involvement of  
both aPKCs and PP2A in numerous paths[144,145], it would 
be more logical to try to directly inhibit the accumulation 
of  ceramides in tissues. Several problems would arise 
with a complete inhibition of  ceramide biosynthesis since 
these bioactive sphingolipids are in the center of  sphin-
golipid metabolism. Indeed, ceramide signaling has been 
directly or indirectly involved in the diverse functions 
such as regulation of  cell growth, differentiation, senes-
cence, necrosis, proliferation, and apoptosis[90]. Therefore, 
inhibiting completely ceramide biosynthesis would be 
likely to be very harmful to the cells. Targeting specific 
ceramides species would be more appropriate since it has 
been shown that specific ceramide species could be asso-
ciated with different functions, depending upon the cell 
type[94].

Concretely, it will be important to determine which 
ceramide species accumulate under lipotoxic conditions 
and then to evaluate whether these identified ceramide 
species enhance or reduce the deleterious effects of  lipo-
toxicity in insulin sensitive tissues.

Interestingly, data existing already suggest that ce-
ramide with distinct acyl chain-length are associated with 
different cell dysfunction in lipotoxic conditions. The 
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enzyme responsible of  generating different ceramide acyl 
chain-length is the CerS. Six mammalian CerS have been 
described, with each utilizing fatty acyl CoAs of  relatively 
defined chain lengths for ceramide synthesis[94]. In pan-
creatic β-cells, C18:0, C22:0 and C24:1 ceramides induce 
apoptosis, and inhibition of  the CerS (CerS4) respon-
sible for their synthesis blocks this phenomenon[146]. In 
the liver, CerS1 and CerS6, producing mainly C16:0 and 
C18:0 ceramides are associated with insulin resistance[147], 
whereas C22:0 and C24:0 ceramides produced through 
CerS2 are rather protective[148].

In muscle cells, however, no definitive and conclusive 
investigation has been carried out to date. The expression 
of  C16:0, C18:0 and C24:0 ceramide species are increased 
in myotubes of  type 2 diabetic patients compared to lean 
donors[149]. However, one recent paper shows that over-
expression of  each CerS isoform in L6 muscle cells does 
not point out any ceramide species in the generation of  
insulin resistance[150]. Since the implication of  ceramide 
in the onset of  insulin resistance in muscle has been con-
vincingly demonstrated both in vivo and in vitro (see previ-
ous chapters), more investigations are needed before to 
make any conclusion in this tissue.

In summary, deciphering the mechanisms by which 
ceramides act negatively on insulin signaling has already 
been a step forward. However, the identification of  the 
putative ceramide species that mediates lipotoxicity in 
cells or pushing ceramides to be converted into less toxic 
lipids remains the priority in order to find a way to coun-
teract ceramide negative actions.
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