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Abstract
Currently, colorectal cancer (CRC) represents the third most common malignancy 
and the second most deadly cancer worldwide, with a higher incidence in 
developed countries. Like other solid tumors, CRC is a heterogeneous genomic 
disease in which various alterations, such as point mutations, genomic rear-
rangements, gene fusions or chromosomal copy number alterations, can 
contribute to the disease development. However, because of its orderly natural 
history, easily accessible onset location and high lifetime incidence, CRC is ideally 
suited for preventive intervention, but the many screening efforts of the last 
decades have been compromised by performance limitations and low penetrance 
of the standard screening tools. The advent of next-generation sequencing (NGS) 
has both facilitated the identification of previously unrecognized CRC features 
such as its relationship with gut microbial pathogens and revolutionized the 
speed and throughput of cataloguing CRC-related genomic alterations. Hence, in 
this review, we summarized the several diagnostic tools used for CRC screening 
in the past and the present, focusing on recent NGS approaches and their revolu-
tionary role in the identification of novel genomic CRC characteristics, the 
advancement of understanding the CRC carcinogenesis and the screening of 
clinically actionable targets for personalized medicine.

https://www.f6publishing.com
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Core Tip: Due to the multitude of host and microbial genetic factors, the optimization of colorectal cancer 
(CRC) biomarkers remains difficult. The advent of next-generation sequencing (NGS) methods has 
facilitated the identification of previously unrecognized CRC-related genomic alterations and the CRC 
relationship with gut microbial composition. Hence, we have summarized the diagnostic tools used for 
CRC screening in the past and the present, focusing on the revolutionary role of NGS approaches in the 
identification of novel genomic CRC characteristics, the advancement of understanding the CRC carcino-
genesis and the screening of clinically actionable targets for personalized medicine.

Citation: Abbes S, Baldi S, Sellami H, Amedei A, Keskes L. Molecular methods for colorectal cancer screening: 
Progress with next-generation sequencing evolution. World J Gastrointest Oncol 2023; 15(3): 425-442
URL: https://www.wjgnet.com/1948-5204/full/v15/i3/425.htm
DOI: https://dx.doi.org/10.4251/wjgo.v15.i3.425

INTRODUCTION
Currently, colorectal cancer (CRC) represents the third leading cause of cancer-related deaths in men 
and women worldwide, and the American Cancer Society estimates that the number of new colon and 
rectum cancer cases in the United States in 2022 will be around 106180 and 44850, respectively[1]. 
Despite the great progress of modern medicine, such as the development of novel therapeutic methods 
and the advent of new high throughput sequencing technologies, the mortality of CRC patients remains 
relatively high due to the lack of specific biomarkers and therapies.

Nowadays, CRC incidence largely varies across the world, and it appears to be positively correlated 
with the Human Development Index. For instance, in 2020 Norway, the Netherlands and Denmark 
reported the highest age-standardized incidence rates (41.9, 41.0 and 40.9 cases per 100000 persons, 
respectively) while Guinea, Gambia and Burkina Faso showed the lowest age-standardized incidence 
rates (3.3, 3.7 and 3.8 cases per 100000 persons, respectively)[2]. Usually, these variations reflect 
differences in the availability of screening services and other factors such as geographic location, 
environmental factors (e.g., polluted surface water sources), economic status and dietary and lifestyle 
habits[3].

At present, considering the difficulties in implementing significant lifestyle changes or common 
primary prevention strategies, screening and early detection represent the most powerful public health 
tool to reduce CRC mortality[4]. In general, an acceptable screening marker can only be considered by 
the health community if it respects specific parameters such as simplicity, safety and accuracy and has a 
known and defined suitable cutoff level[5]. Colonoscopy is considered the gold standard test for 
detecting CRC and promoting effectiveness in reducing its incidence and mortality. However, its high 
cost, invasiveness and reduced availability of necessary equipment hinder the establishment of 
organized screening settings, especially in poor countries[6].

In recent years, massive efforts have focused on next-generation sequencing (NGS) approaches to 
identify genes and microorganisms that are significantly associated with the malignancy due to the 
emerging evidence that intestinal microbial dysbiosis constitutes a crucial environmental factor in CRC 
onset and development[7]. Moreover, metagenomics approaches, considered a real revolution in the 
screening and diagnosis of different cancers, are also useful for the identification of novel potential 
markers for CRC diagnosis[8]. Hence, in this review, we summarized the diagnostic tools used for CRC 
screening in the past and the present, focusing on recent NGS approaches.

FECAL OCCULT BLOOD TEST
Since the 1970s, stool-based CRC screening was considered a successful non-invasive method with 
proven effectiveness given by the detection of high-risk polyps and early-stage malignancies that 
dramatically reduced CRC incidence and death[9] (Figure 1). The fecal occult blood test (FOBT) 
currently represents the early analysis for CRC screening that is recommended by the National 
Screening Committee[10]. This method is based on the detection of occult blood by measuring the non-
protein portion of hemoglobin, the heme group, present in the stool. In particular, the heme present in a 
stool sample reacts with hydrogen peroxide-based developer to oxidize guaiac-infused paper, resulting 

https://www.wjgnet.com/1948-5204/full/v15/i3/425.htm
https://dx.doi.org/10.4251/wjgo.v15.i3.425
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Figure 1 Stool-based and visual colorectal cancer screening methods. FIT: Fecal immunochemical test; FOBT: Fecal occult blood test; FS: Flexible 
sigmoidoscopy; TC: Total colonoscopy.

in a blue color[4]. In general, FOBT has been shown to reduce both the incidence and the risk of CRC 
death with the advantages of ease of use and cheaper than other alternative screening approaches[11] 
(Table 1). Despite this, the FOBT method presents some limitations, such as the low sensitivity for 
colorectal adenomas that may not bleed or the specificity of the method that can be influenced by diet or 
drugs[12]; hence, Young et al[13] affirmed that FOBT is only suitable for limited colonoscopy resources 
with a need to constrain the test positivity rate[13].

FECAL IMMUNOCHEMICAL TEST
Different immunoassay methods have been used to measure the development of antibody-globin 
complexes, including immunochromatography, immunoturbidimetry and enzyme-linked 
immunosorbent assay (Table 1)[14]. For instance, the fecal immunochemical test (FIT) is used for the 
detection of microscopic amounts of blood present in the stool during defecation via the utilization of 
antibodies targeted to globin molecules (Figure 1). The antibodies preferably target lower gastr-
ointestinal bleeding, making FIT easy to use, sensitive to low concentrations of globin and sufficiently 
flexible to adjust the cutoff concentration for positivity (the cutoff is usually selected with a risk 
threshold that would produce a specificity of 96.9% in the study group, matching the specificity of FIT 
at a cutoff of 20 μg Hb/g feces)[13,15]. Imperiale et al[16] tested individuals at average risk for CRC 
having an age comprised between 50 years and 84 years and documented that FIT detected 48 out of 65 
colon cancers, showing a sensitivity of 73.8% and specificity of 96.0%[16]. The same specificity was 
observed among participants with negative results on colonoscopy, suggesting that FIT had fewer false 
positive results compared to stool DNA testing[17]. On the other hand, weaknesses of FIT tests are the 
low clinical sensitivity for both cancers (73%, 80%, 82% and 79% for CRC stages I, II, III and IV, 
respectively) and advanced adenomas (16%-34%) when used at a low cutoff and the limited detection of 
upper gastrointestinal bleeds because the hemoglobin undergoes degradation by digestive enzymes 
with a consequent reduction of the binding to FIT antibodies[18].

FLEXIBLE SIGMOIDOSCOPY AND TOTAL COLONOSCOPY
Randomized controlled trials showed that the visual inspection of colic mucosa through flexible 
sigmoidoscopy (FS) decreased CRC mortality and incidence by 22%-31% and 18%-23%, respectively 
(Figure 1)[19]. Overall, FS represents a safe test, but its use is limited to the distal colon and a combined 
strategy using FS and FOBT/FIT only increases the endoscopic workload and reduces patient 
participation without solving the problem. Instead, total colonoscopy allows direct visualization and 
polyp removal over the whole colon (Figure 1), has a very high sensitivity and specificity for CRC and is 
usually used as confirmatory for all other screening strategies (Table 1)[20]. Although total colonoscopy 
can lead to a decrease in CRC incidence (66%-90%) and mortality (31%-65%), many features (e.g., 
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Table 1 Summary of the main diagnostic approaches for colorectal cancer screening

Technology Approach Sample types Targeted and 
colorectal marker

Sensitivity/specificity for 
CRC Advantages Disadvantages

FOBT Stool Heme of hemoglobin 4%-25%/95% (1) Non-invasive; (2) Reduction of mortality 
(asymptomatic patients); (3) Colorimetric 
indicator; (4) Rapid and easy-to-carry out (self-
testing); and (5) Commercially available test

(1) Low sensitivity for non-bleeding adenoma and 
advanced adenoma; (2) Specificity influenced by diet or 
drugs; (3) Must be done annually; (4) Risk of false 
positive results; (5) Three consecutive samples needed; 
(6) Only detects the blood present in the external layer 
of the stool; and (7) Confusing interpretation of the test 
results

Chemical and immuno-
chromatographic test

FIT Stool Globin molecules 62.0%-100%/94.9% (1) Easy to use; (2) Flexible cutoff concen-
tration; (3) Sensitive to low concentrations of 
globin; (4) Single sample needed; (5) 
Combined with FOBT inferred mortality; and 
(6) No dietary restriction

(1) Insensitive to digested hemoglobin; (2) Poor 
sensitivity for advanced adenoma; (3) Sensitivity based 
on threshold value of hemoglobin; and (4) Detect more 
distal neoplasms

FS Distal colonVisual inspection

TC Entire colon

Polyps 100%/100% (1) Reduce colorectal cancer mortality and 
incidence; and (2) High susceptibility to detect 
adenomas

(1) Invasive process; (2) Not suitable for diabetic or 
psychotropic patients; (3) Expensive; (4) Serious harms 
for colonoscopy that increase with age; (5) 
Sigmoidoscopy was not effective for female screening 
(high risk for proximal colorectal cancer); and (6) 
Moderate-to-severe pain was reported for patients 
(bleeding, anxiety, etc)

Single gene 
sequencing

Tissue; liquid 
biopsy

A specific gene in human 
tumor DNA cells

High sensitivity (input of 
DNA mutated quantity < 1%)

(1) Non-invasive (blood/liquid biopsy); (2) 
Some mutations were prominent in colorectal 
cancer; (3) Bioinformatic analysis not required; 
(4) Simple and less time consuming; and (5) 
No specialized instrument in laboratory

(1) Requires high-quality DNA; (2) Heterogenous 
mutations genes; (3) Risk of contamination with normal 
tissue; and (4) Low coverage sequencing

ddPCR Liquid biopsy. 
Tissue

Short amplicon sizes (< 
100 bp) of human DNA

Very high sensitivity (input of 
mutated DNA quantity < 
0.1% even with degraded 
DNA)

(1) Monitoring tumor burden in response to 
treatment and indicator of disease progression; 
(2) Precise measurement of copy number of 
mutated DNA and lower probability error 
(without standard samples); (3) Minimally 
invasive process; (4) Detects specific 
mutations; (5) Independent prognostic factor; 
and (6) Large target mutation

(1) No ability to detect benign lesions from plasma due 
to insufficient tumor burden; (2) Need an expensive 
instrument; (3) Limited prime-probe sets for each single 
nucleotide change; (4) No information in tumor-
associated protein profiling; (5) Possibility of contam-
ination with normal tissue; (6) Not strictly tumor 
specific; and (7) Necessity of cell search system

MT-sDNA Stool Specific genes in human 
tumor DNA cells

66%-94%/90%-96% (1) Non-invasive test; (2) Acceptable cost; (3) 
Potential credibility; (4) No dietary restrictions 
(including food and medications); and (5) 
Widespread accessibility and multiple 
commercialized prototypes

(1) Lack of standardization or optimization of fecal 
DNA panels for high sensitivity and specificity; (2) Risk 
of contamination by microbial DNA; (3) No defined 
optimal interval for screening individuals; (4) Poor 
sensitivity for advanced adenoma; and (5) Must be 
repeated every 3 years

(1) Fully automated; (2) Real-time based-PCR 
molecular diagnosis system; (3) Without pre-
analytical DNA extraction; (4) Lower cost and 
time requested for results; (5) Easily 

(1) No detection of complex genomic variants; (2) 
Unknown mutations were not detected; (3) Cannot 
detect rare and complex genomic variants not included 
in the reference range; and (4) Less suitable when new 

Sanger sequencing 
methodology

Idylla system Tissue; liquid 
biopsy

Specific genes in human 
tumor DNA cells

High sensitivity (input of 
DNA mutated quantity < 1%)
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implemented in routine laboratory workflow; 
(6) Wide range of CRC-related mutations; and 
(7) Very sensitive to detect the most common 
CRC mutation

gene mutations appear

Custom panel 
sequencing

Tissue; liquid 
biopsy

Specific genes in human 
tumor DNA cells

95%-100%/99%-100% (1) Decreased sequence cost; (2) Greater 
sequencing depth; (3) Simple and less time 
consuming; (4) Robust and tissue efficient; (5) 
Massive parallel multigene sequencing; and (6) 
Provide additional information (TMB 
levels/relevant mutated genes/heredity 
cancer genes)

(1) Low coverage sequencing; (2) There is no 
standardized procedure; and (3) Relatively long 
turnaround time of 3 d

WGS/WES Tissue; liquid 
biopsy

All exome and all 
genome in human tumor 
DNA cells

95%-100%/99%-100% (1) Detection of large-scale mutations; (2) High 
coverage sequencing; (3) Complete definition 
of the genomic landscape for WGS; and (4) 
Complete mutation analysis panel without the 
repeated testing cost and reuse of material

(1) Require bioinformatics specialists; (2) Expensive; (3) 
Require good quality DNA; and (4) Relatively long 
turnaround time of 3 d

Third 
generation 
sequencing

Tissue/stool/liquid 
biopsy

(1) Specific 
genes/WES/WGS in 
human tumor DNA cells; 
and (2) Microbes in stool

95%-100%/99%-100% (1) Identification of large-scale rearrangement; 
(2) Sequencing errors do not release 
rearrangement; (3) High coverage sequencing; 
and (4) Fast and real time molecular diagnosis 
system

(1) High percentage of somatic errors; (2) Require 
bioinformatic specialists for assembling and analysis in 
laboratory; (3) Need specialized equipment in 
laboratory; and (4) Cannot detect some somatic 
mutations

Next generation 
sequencing

Metagenomic 
analysis

Stool/tissue Microbial DNA in stool 
by Shotgun (all the DNA) 
or metabarcoding DNA 
(16S, ITS1, ITS2, 18S, etc)

(1) Microbial flora was more abundant than 
human cells in stool; (2) Benign lesions do not 
release human cells in stool; (3) Noninvasive 
diagnostic test; (4) Microbiota seems to play a 
role major in initiation and progression of 
CRC; (5) Test can be potentially used on all 
pathogen groups; and (6) Microbiota dysbiosis 
induces methylation of host genes

(1) Complex bioinformatics analysis; (2) Expensive; (3) 
Microbiota composition depends on sample 
preparation, conservation, extraction protocol and 
many other factors; (4) Need a healthy control group; 
(5) Many microorganisms (virus, bacteria, fungi) have 
not been identified and sequenced; (6) Metabarcoding 
analysis provides only taxonomic affiliation based in 
small region; and (7) Analysis results depends on 
reference database

CRC: Colorectal cancer; ddPCR: Droplet digital polymerase chain reaction; FIT: Fecal immunochemical test; FOBT: Fecal occult blood test; FS: Flexible sigmoidoscopy; MT-sDNA: Multi-target stool DNA; TC: Total colonoscopy; TMB: 
Tumor mutational burden; WES: Whole exome sequencing; WGS: Whole genome sequencing.

invasive, expensive and painful) dramatically reduce its acceptability as a first-line screening test; 
moreover, proper training programs for endoscopists as well as continuous quality assurance are 
necessary[21].

METHODS-BASED ON SANGER DNA SEQUENCING
It is currently well established that CRC development relies upon a stepwise acquisition of several 
chromosome mutations. The model of the adenoma-carcinoma progression, based on the accumulation 
of multiple mutations and epigenetic alterations, has been widely accepted[22]. Overall, there are two 
types of mutational events in sporadic CRC. The first concerns about 85% of all patients and consists of 
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frequent mutations in APC[23], TP53[24], KRAS[25], BRAF, TTN, PIK3CA[26], FBXW7[27] and SMAD4 
genes[28]; the second concerns 15% of CRC-sporadic patients and is characterized by a high level of 
hypermethylation of the MLH1 gene, responsible for DNA mismatch repair[29]. Additionally, a 
different complement of mutations in somatic genes has also been described[30].

Single gene sequencing 
Considering their role in resistance to multiple treatment strategies, genotyping of gene mutations 
currently represents an important diagnostic and therapeutic tool (Figure 2). For instance, a mutation in 
APC, a tumor suppressor gene highly mutated in 57% of CRC cases and involved in DNA replication 
and repair processes, has been documented to strongly influence the chemotherapy response[31]. Also, 
SMAD4 gene mutations were observed in 2%-20% of CRC cases and were usually associated with poor 
response to cetuximab treatment[32]. In addition, several RAF mutations have been implicated in the 
induction of genomic instability, driving the proliferation of cancer cells[33], while heterogeneous KRAS 
mutations have been identified in almost 40% of CRC patients[34] (with a substitution in the G12C 
position as the most common detected), having a consequent association with anti-epidermal growth 
factor receptor treatment resistance[35].

To better represent the cancer heterogeneity using NGS technology, Ye et al[36] proposed a protocol 
for conducting rigorous systematic reviews and meta-analyses on the accuracy of KRAS mutation 
detection in CRC using non-invasive liquid biopsy samples[36]. Generally, liquid biopsies represent the 
collection of tumor-derived biomarkers in the blood or other body fluids, such as urine, saliva, stool or 
cerebrospinal fluid. Circulating tumor DNA (ctDNA), circulating tumor cells and exosomes are the most 
common tumor-related biomarkers assessed on liquid biopsy so far[37]. Moreover, the Food and Drug 
Administration recently approved a liquid biopsy test to analyze the frequency of KRAS, NRAS and 
BRAF hotspot mutations in ctDNA that could represent good CRC prognostic factors[38].

Multi-target stool DNA test 
The multi-target stool DNA (MT-sDNA) test allows the identification of specific gene mutations in 
human tumor DNA cells separately from the more abundant microbial DNA in the stool (Figure 2). 
During the last few years, several key technological advances have led to increasingly accurate 
approaches to stool DNA testing including: (1) The use of a DNA preservative swab for stool collection; 
(2) The improvement of the target capture and amplification methods; and (3) The identification of new 
informative marker panels[39]. Zou et al[40] produced a methyl-binding domain protein bound to a 
column of nickel-agarose resin to increase the assay sensitivity for detecting methylated DNA markers 
in stool[40]. Subsequently, multiple prototypes of MT-sDNA test were commercialized, but only two 
were approved in August 2014 by the Food and Drug Administration for screening people at average 
risk for CRC aged over 50 years[29]. To date, both the American Cancer Society and the United Services 
Preventive Services Task Force affirmed that the MT-sDNA test can be repeated every 3 years to 
provide a decrease in CRC incidence and mortality with an acceptable cost and have approved this test 
for screening people of ages 45 years to 49 years[41,42].

Moreover, Heigh et al[43] performed a targeted single assay test with aberrant methylation of BMP3 
alone and detected sessile serrated polyps with a sensitivity of 66% and a specificity of 91%[43]. 
Although additional biomarkers can be used by including multiple targets that reach the 21-target MT-
sDNA test, no increase in the sensitivity or specificity was observed[44]. In general, most studies agree 
that MT-sDNA is effective to detect CRC with only a few exceptions. In fact, Imperiale et al[16] detected 
60 out of 65 colon cancers by MT-sDNA test with an estimated sensitivity of 92.3% and a specificity of 
90%, confirming that the MT-sDNA test is more sensitive than FIT, especially for the detection of lesions 
with high-grade dysplasia or sessile serrated polyps (≥ 1 cm). Overall, the method sensitivity varied 
from 62% to 91% for cancer and from 27% to 82% for advanced adenomas, with a specificity of 93% to 
96% in people with normal findings on colonoscopy[45].

The advancement of the genetic knowledge in CRC and their related mutational events would 
improve the efficiency and the sensitivity of MT-sDNA tests by increasing the target DNA genes. 
Nowadays, MT-sDNA tests include quantitative molecular assays for KRAS mutations, NDRG4 and 
BMP3 methylation and β-actin and include eleven different DNA sequences commonly seen in colon 
polyps/cancers[46]. Therefore, as confirmed by a retrospective study conducted by Weiser et al[47] on 
368494 subjects, the MT-sDNA test represents the most recommended CRC screening tool because of its 
widespread accessibility and higher sensitivity compared with other previously described methods such 
as FIT and FOBT (Table 1)[47].

Droplet digital polymerase chain reaction
Droplet digital polymerase chain reaction (ddPCR) is recognized as an established and trustworthy 
approach for clinical cancer research due to its high sensitivity (almost 74% for CRC) in comparison to 
traditional standard procedures, even in degraded samples[48] (Figure 2). This method consists of an 
enrichment strategy that allows the detection of low-level mutations by amplification of single DNA 
molecules without the need for standard reference curves. It is considered much easier, faster and less 
error-prone than real-time quantitative PCR[49]. Nowadays, ddPCR is commonly used for detecting 
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Figure 2 Colorectal cancer screening based on Sanger DNA sequencing. ddPCR: Droplet digital polymerase chain reaction.

rare alleles as molecular markers in plasma samples of pre- and postoperative CRC patients not only 
because of its high sensitivity for detecting tumor DNA (even with a very small fraction or degraded 
DNA) but also to monitor disease progression and the emergence of drug resistance[50]. Through this 
method, Taly et al[51] documented seven common mutations in codons 12 and 13 of the KRAS oncogene 
from plasma samples of CRC patients, demonstrating the clinical utility of multiplex ddPCR to screen 
multiple mutations with a sensitivity sufficient to detect mutations in circulating DNA obtained by non-
invasive blood collection[51].

In the same context, ddPCR platforms using OncoBEAM technology demonstrated high sensitivity 
for plasma detection of KRAS mutations[52], and overall ddPCR has been largely applied to the 
detection and quantification of mutated genes including KRAS[53], BAT26[54], ITGA6 and ITGA6A[55] 
and hypermethylated GRIA4, VIPR2[56] and VIM[57] from both ctDNA or fecal DNA of CRC patients. 
Recently, Garrigou et al[58] proposed the screening of modifications in methylated ctDNA as a 
biomarker to monitor tumor evolution of CRC patients at different stages and concluded that it could be 
a universal approach to follow tumor burden of CRC patients as compared with mutated ctDNA, which 
requires previous tumor mutation identification[58]. To summarize, although there are many 
advantages of ddPCR including the high sensitivity and the large range of target mutations, its major 
limitation is represented by the lower availability of primer/probe sets (Table 1)[59].

The Idylla approach
The Idylla system (Biocartis, Mechelen, Belgium) consists of a cartridge-based fully automated medical 
device able to perform an innovative technology that consists of a conventional TaqMan reporter system 
and novel chemistry known as PlexPCR (amplicons containing a small region with a sequence different 
from that of target DNA) simultaneously with a PlexZyme (specific amplicon sequence-matched 
reporter probe) that allows multiplexing of numerous gene targets in one assay[60] (Figure 2). Hence, 
due to its ability to easily detect a wide range of CRC-related mutations, the Idylla approach can be 
easily implemented in pathology laboratories to reduce turnaround time[61]. It currently represents a 
feasible and validated test for KRAS, NRAS and epidermal growth factor receptor mutations in 
formalin-fixed paraffin-embedded tissues[62] and for BRAF hotspot mutations in plasma samples[63].

In addition, the Idylla system can be used to confirm uncertain outcomes of doubtful NGS results 
and/or in case of scarce tissue material within a few hours. For instance, Zwaenepoel et al[64] evaluated 
the clinical performance of the Idylla method in 330 CRC samples and demonstrated that this 
technology was able to give results in less than 2.5 h with only two invalid results. Many authors tested 
the full panel of CRC gene targets (BRAF, KRAS and NRAS) and found that the concordance between 
Idylla and NGS was 100% for BRAF and KRAS mutations and 94% for NRAS[65]. Therefore, this 
methodology is highly accurate for detecting frequent mutations and minimizing the contamination 
risk, in addition to reducing cost per test when compared with NGS or some conventional PCR assays. 
However, rare and/or complex genomic variants, which are not included in the reference ranges, 
cannot be detected by the Idylla system, and continuous improvement of its biomarker panel is 
necessary to guarantee efficient diagnosis[66].
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METHODS BASED ON NGS TECHNOLOGIES
Since the 2000s, and in coincidence with the emergence and development of new high-throughput 
sequencing technologies, many analyses have been undertaken to examine genetic susceptibility to 
diseases through genome-wide association studies. Zanke et al[67], using a multistage genetic 
association approach comprising 7480 CRC patients and 7779 controls, recognized a wide association of 
markers in chromosomal region 8q24, the same site where the SMAD7 gene is located[67]. In addition, a 
genome-wide association study performed by Broderick et al[68], consisting of the genotyping of 550163 
tag single nucleotide polymorphisms in 940 individuals with familial CRC and 965 controls, identified 
three single nucleotide polymorphisms in the SMAD7 gene[68]. Subsequently, Tomlinson et al[69] 
confirmed these results and elucidated other markers in chromosomal regions of 8q23.3 and 10p14 at 
which common variants can influence the risk of CRC development[69].

NGS-based diagnostic assays are increasingly adopted especially with decreasing sequencing costs. 
In the early stage, sequencing technologies were used to target driver genes known to contribute to 
CRC, but recently larger chromosomal regions have been targeted exploiting the potential of these 
technologies in multigene sequencing by using a very low amount of biological material from liquid or 
tissue biopsy samples. In this step, many efforts have been made to standardize sequencing procedures 
and data analyses and to generate databases that store the sequencing information. Clinicians and 
research communities can use this information to provide better quality care[70].

Early in 2010, The Cancer Genome Atlas project conducted a genome-scale analysis of samples 
obtained from 276 CRC patients, analyzed exome sequences, DNA copy number, promoter methylation 
and messenger RNA and microRNA expression and concluded that 16% of CRC samples were found to 
be hypermutated, 77% of patients displayed one or both breakpoints leading to translocation in an 
intergenic region and 7% of patients reported a translocation involving the TTC28 gene (an inhibitor of 
tumor cell growth) located on chromosome 22[71]. Furthermore, the Pan-Cancer Analysis of Whole 
Genomes, the International Cancer Genome Consortium and The Cancer Genome Atlas projects 
recently described 2658 whole genomes of tumor samples and their matching normal tissues, not only of 
CRC but of 38 different cancer types, providing insights into the nature and timing of the many 
mutational processes that shape large and small-scale somatic variation in the cancer genome[65].

According to the improvement of NGS approaches, different sequencing platforms have been 
developed (Illumina, Ion Torrent, SOLiD, PacBio and Nanopore) that are classified in terms of 
maximum output, reads per run, accuracy, run time, amount of nucleic acids necessary for analysis and 
reads length. In particular, they can generate short (e.g., SOLiD, Ion Torrent, Illumina) or long reads (e.g.
, PacBio, Nanopore). While short reads sequencing does not exceed 300 base pairs and is more suitable 
for CRC diagnosis, long reads sequencing determines a better coverage of the genome and is more 
adaptable for large deletion/insertion determination or chromosomal rearrangement[72]. Considering 
that both short-read and long-read sequencing have their benefits and flaws depending on the experi-
mental aim, it is important to remark that when somatic alterations in oncogenes and tumor suppressor 
genes are stable throughout the tumor clonal evolution, chromosomal alterations and copy number 
variation (CNV) could be lost during cancer progression[73].

In addition, CRC represents one of the most interesting fields of NGS application because of its great 
quantity of activating mutations; in fact, next-gen techniques enable the identification of novel 
mutations/altered genes or genomic rearrangements allowing the discovery of new possible treatments
[74]. In general, there are three more common NGS-based methods used for CRC studies: Custom panel; 
whole genome sequencing (WGS); or whole exome (WES) sequencing and third-generation sequencing 
approaches. In general, large-scale mutations were identified by WGS of tumor DNA, while point 
mutations were identified by targeted sequencing (Table 1).

Custom panel sequencing 
During the last decade, several pipelines based on NGS approaches have been developed, and 
additional somatic mutations and chromosomal aberrations were detected in CRC samples (Figure 3). 
To simplify routine adoption of NGS tools, Zheng et al[75] considered a custom-designed panel of genes 
of only 2.2 Mb (exons and partial introns of cancer driver of more than 600 genes) and deduced a 9-loci 
model for detecting microsatellite instability (MSI) with 100% sensitivity and specificity compared with 
MSI and 84.3% overall concordance with immunohistochemistry staining[75]. Many authors have 
undertaken the simultaneous sequencing of many driver genes including low allele frequencies using 
NGS technologies and have emphasized the importance of the fine classification of mutational status as 
some cancers were associated with poor prognosis treatment[76]. In this regard, the comprehension of 
the wide heterogeneity of CRC lesions seems to be an extremely important point for tracing the 
therapeutic approach of the patient and developing effective strategies for early CRC detection and 
prevention.

Liquid biopsy samples have been investigated more than tumor tissue samples because of their non-
invasiveness and their better representation of cancer heterogeneity[77]. In this context, Myint et al[78] 
developed a multiregional NGS approach from circulating cell-free DNA using a customized targeted 
CRC panel consisting of all coding exons of 116 genes, 22 genes recurrently amplified/deleted, 51 copy 
number regions, 121 MSI regions and 2 gene fusions (RSPO2 and RSPO3) and confirmed the 
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Figure 3 Next-generation sequencing-based colorectal cancer screening. WES: Whole exome sequencing; WGS: Whole genome sequencing.

widespread genetic heterogeneity in six adenoma samples, which affected the driver genes MMR, APC, 
PIK3CA, TP53 and SMAD4[78]. Additionally, based on an NGS analysis of a panel of 324 CRC-
associated genes, Stahler et al[79] documented frequent single nucleotide variations in the TP53, APC, 
KRAS, PIK3CA, BRAF, SMAD4 and FBXW7 genes, and copy number alterations in the MYC and FLT3 
genes[79].

Furthermore, Leary et al[80] developed a “personalized analysis of rearranged ends” approach, which 
can identify translocations and copy number alterations in CRC and other solid tumors. In addition, 
personalized analysis of rearranged ends can detect 57 regions containing putative somatic 
rearrangements, with an average of 14 rearrangements per sample[80]. Moreover, targeted sequencing 
strategies based on short reads and CNV determination could represent a good strategy for CRC 
studies. In fact, Gould et al[81] confirmed that an NGS approach using short fragments presented a 
sensitivity > 96% and a specificity > 99% for detecting samples with CNVs in the terminal five exons of 
PMS2[81].

Additionally, Corti et al[82] developed multiple DNA NGS approaches coupled with the computa-
tional and bioinformatics algorithm “IDEA” to target a WES of about 30 Mb, a custom panel of genes of 
about 603 Kb (frequently mutated genes) and another of 918 Kb (intron-exon junction to precisely 
identify the genomic breakpoint)[82]. Currently, IDEA represents a flexible and comprehensive pipeline 
for the management of CRC patients and is suitable for identifying several genetic alterations from a 
non-invasive sample (ctDNA) such as single nucleotide variants, insertions and deletions, gene copy-
number alterations and chromosomal rearrangements in the KRAS, BRAF, PIK3CA and ERBB2 genes 
(usually involved in drug resistance). In general, sequencing of smaller target regions provides greater 
sequencing depth which allows for better recognition of low gene frequency variation. Hence a 
customized gene approach is more suitable for clinical oncology laboratories for many advantages such 
as the simplicity, low cost and fast of the method and the non-need for bioinformatics specialists in the 
laboratories (Table 1).

WES and WGS
The contribution of MSI to the tumor mutational burden (TMB) due to a defective mismatch repair 
system is considered important in about 15% of CRC patients. According to the phenotype, MSI tumors 
can be divided into two distinct MSI phenotypes: MSI-high and MSI-low[83]. Recently, considering that 
the defective mismatch repair phenotype is crucial to define the efficacy of immune checkpoint inhibitor 
treatment, Xiao et al[84] used WES to evaluate the immune microenvironment and 2539 microsatellite 
loci in a group of 98 CRC patients. They concluded that the microenvironment of TMB-high was 
significantly more immune-responsive than TMB-low[84]. On the other hand, Gurjao et al[85] 
demonstrated the presence of a novel alkylating mutational signature, identified through the WES of 
900 CRC patients and predicted that KRAS p.G12D, KRAS p.G13D and PIK3CA p.E545K driver 
mutations were mainly targeted by the alkylating signature in non-hypermutated patients[85].

Moreover, Chang et al[86] performed the WES of DNA obtained from tumor tissues of 32 surgical 
CRC patients and identified the well-known recurrent mutations in the APC, TP53, KRAS and FBXW7 
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genes and unreported mutations in additional 14 genes[86]. Furthermore, many authors confirmed that 
WGS largely contributed to determining the significant role of non-coding regions such as enhancers, 
transcription factor binding sites, promoters and 3’untranslated regions in CRC carcinogenesis[87]. In 
addition, WGS was used to demonstrate that metastatic lesions were enriched in gene mutations 
affecting PI3K-AKt signaling, cell adhesion and extracellular matrix processes[88]. Finally, Dashti et al
[89] conceived a new technique based on a novel concept called ‘gene-motif,’ which identified seven 
CRC subtypes that can be effectively used to develop a personalized treatment[89].

In comparison to WES, the WGS approach has the advantage of increasing the overall variant 
accuracy and poor coverage but is more expensive and requires fresh-frozen tumor material to perform 
analysis of the highest quality (Figure 3 and Table 1).

Third-generation sequencing
Third-generation sequencing of long reads has been developed and represents the most suitable 
approach for the identification of deletion/duplication breakpoints and complex structural variants and 
CNV-neutral rearrangements such as inversions and large intronic insertions[90] (Figure 3). Indeed, 
many studies affirmed that long-read sequencing technologies have potential advantages over existing 
alternatives especially when pathogenic variants are in complex genomic regions, such as the recurrent 
PMS2 insertion-deletion variant. Using a locus-specific amplicon template, Watson et al[91] undertook 
Nanopore long-read sequencing to assess the CRC diagnostic accuracy of this platform. Pairwise 
comparison between sequencing results derived from short-read NGS and unidirectional Sanger 
sequencing and the consensus Nanopore dataset revealed 100% sequence identity[91]. Furthermore, 
reads produced by Nanopore oxford technology were able to identify both the 5’ and 3’ junctions and 
revealed detailed insertion sequence information[92].

METAGENOMICS ANALYSIS OF GUT DYSBIOSIS IN CRC PATIENTS
Genetic factors that concern somatic mutations in KRAS, APC, p53, mismatch repair genes and other 
chromosomal aberrations explain less than 35% of all diagnosed CRCs, and many environmental 
exposures seem to modulate the cancer risk[93]. For instance, metagenomics studies based on 16S rRNA 
sequencing that has been recently conducted have documented the presence of more than a thousand 
microbial species in the human gastrointestinal tract carrying more than 100 times as many genes as the 
human genome[94] (Figure 3).

Therefore, considering the high microbial diversity in humans and their contribution to host health 
and pathological or malignant conditions, it was suggested that about 20% of the global cancer burden 
can be linked to microbial agents[95]. However, in addition to the several factors that can considerably 
modify the gut microbiota (GM) composition (e.g., age, sex, nationality, dietary and lifestyle habits, 
drugs or alcohol abuse)[96], multiple experimental challenges can influence the results of GM studies 
such as sampling methods and consistency[97], storage sample conditions[98], DNA extraction methods
[99], type of primers used and pipelines adopted for data analyses[100]. For all these reasons, it is very 
hard to define a baseline microbial community for healthy people, especially due to the impossibility of 
obtaining biopsy samples from healthy controls. Therefore, tumor-adjacent tissue has been regarded as 
the healthy control, but many efforts have recently been expended to standardize the experimental and 
analytical methods[101]. The two most common metagenomics approaches for GM characterization are 
shotgun sequencing and metabarcoding.

These NGS-based approaches both contain three basic steps: Library preparation; sequencing; and 
data analysis. Sequencing libraries are typically created by fragmenting DNA and adding specialized 
adapters to both ends to allow the DNA fragments to bind to the sequencer flow cell. Due to unique 
barcodes added to each library that are used to distinguish between the libraries during data analysis, 
multiple libraries can be pooled together and sequenced in the same run (a process known as 
multiplexing). During the next sequencing step of the NGS workflow, the sequencer amplifies the DNA 
fragments, resulting in millions of copies of single-stranded DNA. In detail, chemically modified 
nucleotides bind to the DNA template strand through natural complementarity, and each nucleotide 
contains a fluorescent tag and a reversible terminator that blocks the incorporation of the next base. The 
fluorescent signal indicates which nucleotide has been added, and the terminator is cleaved so the next 
base can bind. After reading the forward DNA strand, the reads are washed away, and the process 
repeats for the reverse strand. After sequencing, the instrument software identifies nucleotides (a 
process called base calling) and the predicted accuracy of those base calls. Finally, data analysis can be 
performed with standard tools or with customized techniques[102].

While shotgun sequencing results in a very complicated data output (i.e. a huge amount of 
information that can be up to 1.5 terabases per run) because it simultaneously provides functional and 
taxonomic information about bacteria, fungi, viruses and a variety of other microorganisms, metabar-
coding has a less complex data output and provides only taxonomic information about the bacterial (16S 
region sequencing) or fungal (ITS sequencing) composition of the sample (Table 1)[103]. Thus, 
metagenome-wide association studies have identified a correlation between many microbial species/
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gene markers and CRC, promoting the development of an affordable diagnostic test using both stool 
and tissue samples[104,105].

CRC-associated bacteria
Much evidence has documented GM involvement in different diseases, including CRC. In particular, 
recent reports have demonstrated a bacterial driver-passenger model for CRC initiation and progression 
and showed that the first epithelial transformations can be supported by certain intestinal bacteria[106]. 
In 2012, Tjalsma et al[107] proposed a bacterial driver-passenger model for CRC in which pathogenic 
driver bacteria interact transiently with host cells to initiate CRC development and are then replaced by 
other passenger bacteria species that were unable to colonize healthy colon tissue but benefitted from 
altered metabolism of tumors cells[107]. To date, Wang et al[108] have identified Bacillus spp., 
Bradyrhizobium spp., Methylobacterium spp. and Streptomyces spp. as potential driver bacteria and Fusobac-
terium spp. and Campylobacter spp. as certain and abundant passenger bacteria[108].

Moreover, Luan et al[109] characterized the mucosa-adherent fungal microbiota of paired biopsy 
samples of adenomas and adjacent healthy tissue from 27 subjects using barcoded high-throughput 
sequencing that targeted the ITS region and reported a different fungal composition in patients with 
different adenoma stages and identified the phylum Glomeromycota as a possible powerful CRC 
marker[109]. Consistently, recent findings obtained through the WGS approach demonstrated that the 
Ascomycota/Basidiomycota ratio could represent a potential novel marker for early CRC detection
[110]. Furthermore, Coker et al[111] used a shotgun metagenomics approach to evaluate the role of the 
archeome in colorectal carcinogenesis and found distinct archaea clusters in fecal samples from CRC 
patients, patients with adenomas and healthy subjects, with the CRC patients showing significant 
enrichment of halophilic archaea and depletion of methanogenic archaea[111].

Several metagenomic analyses of CRC patients have documented an over-representation of Fusobac-
terium nucleatum (F. nucleatum) in both tissue or stool samples in comparison to healthy controls[112]. 
Interestingly, in a large cohort of 616 participants, Yachida et al[113] demonstrated that the shift in the 
GM composition between CRC patients and healthy controls occurred in the very early stages of CRC 
development. In particular, the relative abundance of F. nucleatum was significantly elevated 
continuously from intramucosal carcinoma to more advanced stages, while Atopobium parvulum and 
Actinomyces odontolyticus were significantly increased only in multiple polypoid adenomas and/or 
intramucosal carcinomas[113]. Recently, in addition to F. nucleatum, several bacteria, such as Bacteroides 
fragilis, Escherichia coli, Streptococcus bovis, Enterococcus faecalis, Peptostreptococcus anaerobius and Lachno-
clostridium spp., have been reported to be enriched in stool or tissue samples of CRC patients compared 
to healthy ones[114-118].

Moreover, an association between specific bacterial species and antitumor responses have been 
reported; for instance, a positive correlation between the abundance of Bifidobacterium longum or 
Ruminococcaceae members and the efficiency of CRC immunotherapy has been documented[119]. 
Eubacterium limosum, Ruthenibacterium lactatiformans, Fusobacterium ulcerans, Bacteroides uniformis, 
Paraprevotella xylaniphila and Alistipes senegalensis improved the effectiveness of immune checkpoint 
inhibitors[120].

Because the GM composition can be modified by probiotic and prebiotic supplementation, which can 
help maintain intestinal microbial homeostasis and mitigate dysbiosis, many reports have evaluated 
their effect on colorectal carcinogenesis. Overall, recent systematic reviews suggested that prebiotics 
may have a protective effect on the progress of CRC, while the administration of certain probiotics in 
patients with CRC reduced the side effects of chemotherapy, improved the outcomes of surgery, 
shortened hospital stays and decreased the risk of death[121,122]. However, the findings are still 
conflicting, and none determined changes in bacterial richness and diversity that are usually reduced in 
CRC patients. Thus, further studies are needed to better understand the prebiotic and probiotic effects 
in CRC patients.

CRC-associated bacterial metabolites
Accumulating evidence has suggested that GM modulates the CRC progression, and its metabolites can 
play a crucial role in this scenario. The rapid development of technologies such as mass spectrometry 
and nuclear magnetic resonance have documented different profiles of microbial metabolites between 
CRC patients and healthy subjects. For instance, lower bile acid hydrolase and β-galactosidase 
abundances and higher levels of leucine, tyrosine, valine, choline, colibactin, gallocin, formyl methionyl 
leucyl phenylalanine, Bacteroides fragilis toxin and trimethylamine-N-oxide have been associated with 
CRC development[123-125]. Furthermore, the total amount of short chain fatty acids, the main 
metabolites produced by the bacterial anerobic fermentation of indigestible polysaccharides that exert 
various and fundamental functions for the host, was significantly lower in fecal and plasma samples of 
CRC patients compared to both patients with adenomatous polyps and healthy controls. Therefore, 
these metabolites could represent novel potential non-invasive diagnostic biomarkers for CRC[126,127]. 
In addition, recent investigations have reported that the GM plays a critical role in the effectiveness of 
anti-CRC treatments, including chemotherapy as well as immunosuppressive agents. For instance, it has 
been reported that the effectiveness of CRC treatment with 5-fluorouracil is enhanced by certain 
microbial metabolites[128]. The supplementation with probiotics or prebiotics could increase chances of 
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therapeutic success[129].

CONCLUSION
Since the advent of NGS approaches, many molecular techniques for the diagnosis of CRC from 
invasive or non-invasive sampling have emerged and have significantly increased the number of known 
genes and mutations linked to CRC. However, due to the multitude of host and microbial genetic 
factors and the complexity of the tumor environment, the optimization of a CRC biomarker remains 
difficult, especially in stool samples, in which the complexity of the lesion environment seems to play a 
key role[50]. Thus, the development of a biological method to find stable, sensitive and specific markers 
in non-invasive samples such as feces or plasma remains an arduous challenge to be carried out. 
Furthermore, despite the great progress in metagenomics methods and bioinformatics tools, WES and 
WGS are still feasible only in expert centers. Only limited pieces of genomic information are currently 
clinically relevant for the care of CRC patients, and the list of predictive actionable genomic biomarkers 
is quite short[86]. Apart from the identification of novel microbial biomarkers, new CRC-associated 
molecules are under evaluation for CRC screening, such as circular RNA and Piwi-interacting RNA. 
These advances in the identification of microbial markers and the improvement of non-invasive 
diagnostic capabilities and their applications in guiding precision cancer therapies are poised to change 
the diagnosis of CRC and select and monitor the treatments in the near future due to the increasingly 
adopted precision medicine for the care of CRC patients.
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