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Abstract
Acute respiratory distress syndrome (ARDS) is a common and clinically 
devastating disease that causes respiratory failure. Morbidity and mortality of 
patients in intensive care units are stubbornly high, and various complications 
severely affect the quality of life of survivors. The pathophysiology of ARDS 
includes increased alveolar–capillary membrane permeability, an influx of 
protein-rich pulmonary edema fluid, and surfactant dysfunction leading to severe 
hypoxemia. At present, the main treatment for ARDS is mechanical treatment 
combined with diuretics to reduce pulmonary edema, which primarily improves 
symptoms, but the prognosis of patients with ARDS is still very poor. Mesen-
chymal stem cells (MSCs) are stromal cells that possess the capacity to self-renew 
and also exhibit multilineage differentiation. MSCs can be isolated from a variety 
of tissues, such as the umbilical cord, endometrial polyps, menstrual blood, bone 
marrow, and adipose tissues. Studies have confirmed the critical healing and 
immunomodulatory properties of MSCs in the treatment of a variety of diseases. 
Recently, the potential of stem cells in treating ARDS has been explored via basic 
research and clinical trials. The efficacy of MSCs has been shown in a variety of in 
vivo models of ARDS, reducing bacterial pneumonia and ischemia-reperfusion 

https://www.f6publishing.com
https://dx.doi.org/10.4252/wjsc.v15.i4.150
mailto:liujqaticu@163.com


Liang TY et al. MSCs therapy for ARDS

WJSC https://www.wjgnet.com 151 April 26, 2023 Volume 15 Issue 4

injury while promoting the repair of ventilator-induced lung injury. This article reviews the 
current basic research findings and clinical applications of MSCs in the treatment of ARDS in order 
to emphasize the clinical prospects of MSCs.

Key Words: Acute respiratory distress syndrome; Mesenchymal stem cells; Pulmonary edema; Inflammatory 
response; Tissue repair; Pulmonary fibrosis

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Acute respiratory disease syndrome (ARDS) is a common disease with high morbidity and 
mortality. ARDS is characterized by increased alveolar-capillary membrane permeability, influx of 
protein-rich pulmonary edema fluid, and surfactant dysfunction, resulting in severe hypoxemia. 
Mesenchymal stem cells (MSCs) have the self-renewal and multilineage differentiation properties, and 
their immunomodulatory abilities have been implicated in the treatment of disease. Herein, we discuss the 
pathophysiology of ARDS and recent research surrounding the clinical application of MSCs in the 
treatment of ARDS.
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clinical application of mesenchymal stem cells in acute respiratory distress syndrome. World J Stem Cells 2023; 
15(4): 150-164
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INTRODUCTION
Acute respiratory distress syndrome
Acute respiratory distress syndrome (ARDS) is a clinicopathological condition characterized by 
increased lung fluid, decreased lung compliance, and severe hypoxemia[1,2]. ARDS was defined in 1994 
by the American-European Consensus Conference[3]. After several decades of research and discussions, 
the current internationally recognized definition of ARDS is the Berlin definition which proposes three 
categories of ARDS based on the severity of hypoxemia: Mild [200 mmHg < arterial oxygen pressure 
(PaO2)/fraction of inspired oxygen (FiO2) < 300 mmHg], moderate (100 mmHg < PaO2/FiO2 < 200 
mmHg), and severe (PaO2/FiO2 < 100 mmHg), along with explicit criteria related to the timing of the 
syndrome’s onset, the origin of edema, and chest radiograph findings[4-6]. The pathogenesis of ARDS is 
characterized by an unregulated inflammatory cascade with increased pulmonary endothelial and 
epithelial permeability[7]. Endogenous chemicals and microbial products linked to cell injury are 
hypothesized to attach to receptors on epithelial cells and alveolar macrophages, triggering an immuno-
logical response. The unrestricted synthesis of reactive oxygen species, leukocyte proteases, chemokines, 
and inflammatory substances that results to gradual lung damage. The immune-mediated reaction is 
known as a "cytokine storm"[8,9]. The pathophysiological changes that occur during the development of 
ARDS are shown in Figure 1. Currently, the clinical treatment of ARDS is rather limited and is mainly 
based on organ function support, such as lung protective ventilation, liver and kidney function 
protection, gastrointestinal function protection, venous thrombosis prevention, and nutritional support
[10]. Despite the profound understanding of the molecular mechanism of ARDS, improvement of 
pulmonary ventilation strategies, and strengthening of supportive care for critically ill patients, the 
prognosis of patients with ARDS is still unsatisfactory. Currently, the global mortality rate of ARDS 
exceeds 40%, whilst 6%–10% of patients with respiratory failure may develop ARDS in the emergency 
room[11]. The long-term sequelae of ARDS include long-term cognitive impairment, psychological 
disease, neuromuscular weakness, pulmonary dysfunction, and decline in quality of life because of 
long-term medical expenses[12]. Therefore, new and safer therapies are urgently needed for ARDS 
treatment.

Mesenchymal stem cells
Mesenchymal stem cells (MSCs) were first described by Friedenstein et al[13], as an adherent, fibroblast-
like cell population in the bone marrow (BM) that could regenerate rudiments of bone in vivo[13,14]. 
After decades of research, it has been found that MSCs are present in a variety of tissues and organs and 
can also differentiate into a variety of cells to play related roles (Figure 2)[15,16]. However, the 
understanding of MSCs is still inadequate. MSCs were officially defined by the International Society of 
Cell Therapy in 2006 as follows: (1) MSCs must display plastic-adherent capacities; (2) A simultaneous 
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Figure 1 Following acute lung injury, pulmonary vascular macrophages produce chemokines to increase vascular permeability, resulting 
in neutrophil aggregation. Neutrophils reach the pulmonary interstitium and alveolar space and release proteases, cytokines, and other harmful substances to 
destroy the alveolar microstructure, leading to cell dysfunction and eventually causing exudates and lung fluid to enter the alveolar space, resulting in the 
development of pulmonary fibrosis. Additionally, the disorder of pulmonary vascular coagulation and fibrinolysis caused by inflammation leads to pulmonary vascular 
microthrombosis, which is also one of the causes of pulmonary edema.

expression of stromal markers, an absence of hematopoietic or endothelial markers and human 
leukocyte antigen-DR surface molecules; and (3) An in vitro differentiation potential for osteoblasts, 
adipocytes, and chondroblasts[17,18]. The method of obtaining and culturing MSCs is simpler than 
other stem cells, and MSCs have broad application prospects in a variety of inflammatory-related 
diseases because of their unique immunomodulatory properties[19].

MSCs are considered a new approach for the treatment of ADRS[20]. The mechanism of MSCs in the 
treatment of ARDS is multifaceted, and the immunomodulatory effect of MSCs is a crucial aspect of it 
(Figure 3). At present, the collective view of the immune regulation ability of MSCs is based on the 
secretion of cytokines, such as tumor growth factor (TGF)-β and tumor necrosis factor-stimulated gene-6
[21]. By releasing a variety of cytokines and extracellular vesicles (EVs), MSCs play anti-inflammatory 
and anti-cell death roles and promote the generation of microcirculation, thereby promoting the 
clearance of bacteria and alveolar fluid, alleviating organ damage, thus alleviating ARDS-related 
symptoms[22-24].

CURRENT BASIC RESEARCH FOR THE USE OF MSCS IN ARDS TREATMENT
Immunoregulation ability of MSCs in ARDS
The hallmark of ARDS is a series of inflammatory responses. Uncontrollable inflammatory responses 
are known to cause catastrophic damage to various organs[25]. MSCs are pluripotent stem cells with 
immune properties that can secrete a variety of cytokines, such as anti-inflammatory factors, antiap-
optotic factors, and antimicrobial peptides[26-28]. MSCs regulate immune activity via three different 
mechanisms: (1) Direct contact with tissue cells; (2) Production of a series of cytokines to regulate cell 
activities; and (3) Exerting immune effects by regulating the activity of T cells[29-31]. Currently, the 
MSC treatment of ARDS is mediated by controlling inflammatory responses. Therefore, the related 
mechanisms have become a hot research topic, and new research findings are constantly emerging, 
which introduce new views.
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Figure 2 Mesenchymal stem cells can be derived from a variety of cell types and can differentiate into different types of cells to play 
specific roles. In the pathological process of acute respiratory distress syndrome, mesenchymal stem cells can act on a variety of cells to play a protective role. 
MSC: Mesenchymal stem cell; DC: Dendritic cell.

MSCs regulate the immune activity of the dendritic cells: Conventional dendritic cells (cDCs) are 
unique antigen-presenting cells that bridge antigen immunity and innate immunity and can be activated 
by MSCs as regulatory DCs[32,33]. An existing study has shown that after lung injury induced by 
lipopolysaccharide, a large number of DCs accumulate in the lungs, which in turn aggravates lung 
inflammation and lung injury[34]. The underlying mechanism may involve the polarization of the T-
helper cell (Th) 1 response and regulating neutrophil infiltration[35,36]. The aggregation of cDCs can 
lead to the activation of the Th1 pathway and aggravate the inflammatory response. At the same time, 
cDCs can also recruit neutrophils, prolong the life of neutrophils, upregulate innate immunity, and 
further intensify the inflammatory response[37,38]. MSCs also abolish the capacity of mDCs to migrate 
to chemokine (C–C motif) ligand 19, for DCs to display major histocompatibility complex class II 
peptide complexes recognized by specific antibodies, and for ovalbumin-pulsed DCs to support 
antigen-specific CD4+ T-cell proliferation[39].

Additionally, many studies have shown that MSC–EVs play key roles in the pathogenesis and 
progression of acute lung injury (ALI)/ARDS[40]. One of the underlying mechanisms may involve the 
potential impairment of antigen uptake, which may halt DC maturation[41]. MSC–EVs from the human 
BM may regulate the levels of maturation and activation markers (CD83, CD38, and CD80) and inflam-
matory cytokines [interleukin (IL)-6, IL-12p70, and TGF-β] in vitro via regulating the CCR7 gene by 
carrying miR-21-5p[42]. Additionally, the emerging role of MSC–EVs in facilitating pulmonary 
epithelium repair, rescuing mitochondrial dysfunction, and restoring pulmonary vascular leakage has 
been shown[43,44]. Therefore, regulating the maturation of DC cells in the early stage of lung injury can 
effectively alleviate secondary lung injury[45] (Table 1).

MSCs induce the activation of macrophages: Alveolar macrophages are guardians of the alveoli and 
airways, and interstitial macrophages are guardians of blood vessels and the lung interstitium[46]. After 
lung injury, tissue monocyte-derived macrophages accumulate and have increased viability in the 
lungs, and persist at the lesion for a long time after lung injury[47]. Macrophages respond in a variety of 
ways, including modulation of function (activation), the release of inflammatory chemical mediators 
that control immune cell recruitment, and the modulation of epithelial responses[48]. Macrophages can 
be divided into two phenotypes based on their functions, the M1 type in resting states and the M2 type 
in the activated state[49]. M1-type macrophages can secrete a variety of cytokines and participate in 
many processes including pro-inflammatory, pro-apoptosis, free radical formation, and matrix 
degradation pathways, while M2-type macrophages play a role in anti-inflammatory and anti-cell death 
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Table 1 Recent studies on the mechanism of mesenchymal stem cell action in acute respiratory distress syndrome

Ref. Time Animal/cell line Interference Pathway Conclusion/main effect

Zhang et al
[112] 

2022 C-mice Human dermal 
fibroblasts or MSCs 
were intravenously 

CAP MSC treatment significantly protects mice against 
bacterial pneumonia or LPS-induced lung injury via 
the CAP pathway. When the CAP was inhibited 
through vagotomy (VGX) and pharmacological and 
genetic ablation experiments, the anti-inflammatory 
effects of MSCs were markedly reduced in lung injury 
models

Kakabadze et al
[113]

2022 Wistar rats HPMSCs - HPMSCs have the ability to migrate and attach to 
damaged lung tissue, contributing to the resolution of 
pathology, restoration of function, and tissue repair in 
the alveolar space

Wang et al[114] 2022 C-mice Human placental MSCs Macrophage 
polarization pathway

Human PMSC treatment preferentially rescued 
resident M2 AMΦs over recruited M1 BMMΦs with 
overall M2 polarization to improve KP-related ARDS 
survival

Wang et al[115] 2022 SD rats LRMSC/HMSC-
C/HMSC-BM

- Three kinds of LRMSC, HMSC-C and HMSC-BM are 
protective against LPS-induced lung injury, HMSC-C 
was more effective than LRMSC and HMSC-BM to 
treat LPS-induced lung injury

Zhang et al
[116]

2022 C-mice MSC derived 
microvesicles

KEGG pathway and 
GO function

MSV microvesicles treatment was involved in 
alleviated lung injury and promoting lung tissue 
repair by dysregulated miRNAs

Xu et al[60] 2022 BALB/c mice Umbilical cord-derived 
MSCs

- Transplantation of UC-MSCs transfected with SP-B 
could potentiate M2 macrophage polarization and 
further relieve LPS-stimulated lung injury

Xue et al[117] 2022 C-mice Bone marrow-derived 
MSC 

- TGF-β1 from MSCs restored skewed Treg/Th17 levels 
induced by hypoxic- and LPS-stimulated conditions 
and reduced inflammation 

He et al[118] 2022 Hnsclc cell line 
A549 (ATCC, 
CCL-185) 

MSCs CXCL12/CXCR4 
signal axis

In vivo transplantation of MSCs significantly 
attenuated lung injury in ARDS, inhibited serum pro-
inflammatory factors in mice, and down-regulated 
expression of apoptotic and focal factors in lung 
tissues

Zhang et al
[119]

2022 C-mice Mouse bone marrow-
derived MSCs 

Wnt/β-catenin 
transition signaling

MVs released from MSCs exerted protective effects on 
early fibrosis by suppressing EMT in LPS-induced 
ARDS

Meng et al[120] 2021 - MSCs derived from 
normal mouse bone 
marrow 

Akt/Mtor signaling MTORC2 like mTORC1 as an important signaling of 
regulation of MSC-secreted HGF protective against 
LPS-induced lung endothelial dysfunction

Ishii et al[121] 2021 Adult male 
Fischer 344 rats 

Adipose-derived MSCs - AD-MSCs enhanced the barrier function between 
lung epithelial cells, suggesting that both direct 
adhesion and indirect paracrine effects strengthened 
the barrier function of lung alveolar epithelium in 
vitro

Wang et al[122] 2021 C-mice Bone MSCs Vimentin-Rab7a 
pathway 

MSCs can reach the damaged lung tissue through 
migration, reduce inflammatory responses and 
alleviate lung injury

Liu et al[123] 2021 SD rats Bone marrow 
mesenchymal stem cell

Beclin-1 BMSC-derived exosomes were taken up by the 
alveolar macrophages and attenuated LPS-induced 
alveolar macrophage viability loss and apoptosis. 
Exosomes effectively improved the survival rate of 
ALI rats, which was associated with alleviating lung 
pathological changes pulmonary vascular 
permeability and attenuating inflammatory response

C-mice: C57BL/6 mice; CAP: Cholinergic anti-inflammatory pathway; HPMSCs: Human placental mesenchymal stem cells; PMSCs: Placental MSCs; 
AMΦs: Alveolar macrophage; BMMΦ: Bone marrow–recruited macrophage; Hnsclc: Human non-small cell lung cancer; KP: Klebsiella pneumonia; 
LRMSC: Lung resident MSC; HMSC-C: Human chorion-derived MSC; HMSC-BM: Human bone marrow derived MSC; KEGG: Kyoto encyclopedia of 
genes and genomes; GO: Gene ontology; SP-B: Surfactant protein B; AD-MSC: Adipose tissue-derived MSC; EMT: Epithelial–mesenchymal transition; SD: 
Sprague-Dawley; mTOR: Mammalian TOR; ARDS: Acute respiratory distress syndrome; ALI: Acute lung injury; TGF-β1: Tumor growth factor-β1.

processes during the inflammatory response, and promote angiogenesis and tissue repair[50-52]. The 
transformation of the M1/M2 phenotype helps subside the inflammatory response and alleviate tissue 
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Figure 3 The main mechanism of mesenchymal stem cell therapy for acute respiratory distress syndrome. Mesenchymal stem cell can treat 
acute respiratory distress syndrome by regulating inflammatory response, reducing pulmonary edema, alleviating pulmonary fibrosis, and promoting tissue repair. 
MSC: Mesenchymal stem cell.

damage. In ARDS, this balance can effectively remove harmful substances and pro-inflammatory factors 
from the body and promote lung tissue repair. Conversely, the destruction of this balance aggravates 
the pathological development of ARDS. Studies have shown that MSCs can control the pathological 
development of ARDS by regulating the polarization of macrophages and effectively promoting the 
repair process in ARDS[53]. Basic studies have shown that MSC treatment reduces the expression of 
CD86 on macrophages in the ALI models, indicating that MSCs can inhibit the transformation of 
macrophages to the M1 phenotype[54]. Several mechanisms of MSCs have been described, such as: (1) 
MSCS can promote the phenotypic transformation of macrophages through paracrine secretion of 
soluble cytokines[55]; (2) MSCS promotes macrophage polarization through exosomes[51]; (3) Metabolic 
Reprogramming[56]; (4) MSCS regulate mitochondrial transfer[57]; and (5) Apoptotic and efferocytosis 
effects[58]. The involved signaling pathways are as follows: (1) The nuclear factor erythroid 2-related 
factor 2/heme oxygenase-1 signaling pathway[59]; (2) The Notch signaling pathway; (3) The Janus 
kinase-signal transducer and activator of transcription signaling pathway[60]; and (4) The nuclear 
factor-kappa B signaling pathway[61].

MSCs regulate the T-cell balance: Imbalances between regulatory T cells (Tregs) and IL-17-producing 
Th17 are a sign of the development of inflammatory response in ARDS[62,63]. The main function of 
Th17 cells is to promote inflammation, release inflammatory factors, and play an important role in 
autoimmune diseases. Fortunately, they are precisely regulated by regulatory cells[64]. However, Treg 
cells can release anti-inflammatory factors (IL-4 and IL-10), control the inflammatory reaction process, 
and induce tissue damage repair[65,66]. Previous studies have shown that Tregs transferred into ALI 
animals can reduce the level of alveolar pro-inflammatory cytokines and inhibit neutrophil apoptosis 
and fibroblast recruitment[67,68]. A recent study also showed that a proportion of Th17 cells and Tregs 
> 0.79 was an independent predictor of 28-d mortality in patients with ARDS[62]. Therefore, 
maintaining the balance of Tregs and Th17 cells is crucial for patients with ARDS.

Existing studies indicated that, in vitro, MSCs repress the Th17 molecular program through the 
programmed cell death protein 1 pathway, prevent the differentiation of naive CD4+ T cells into Th17 
cells, inhibit the production of inflammatory cytokines by Th17 cells, and induce Treg phenotype[69-
71]. A study has shown that TGF-β1, as the main paracrine cytokine of MSCs, can significantly regulate 
the transformation of T cells into Tregs, disturb the Th17/Treg balance, and significantly contribute to 
the control of inflammatory response in ARDS[72]. It is also reported that MSCs can prevent the initial 
differentiation of CD4+ T cells into Th17 cells, inhibit the generation of inflammation, and induce the 
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generation of Tregs in vitro[73]. Several experiments have proved that controlling the level of Th17/Treg 
is the key to MSC-mediated control of the inflammatory response in ARDS. Therefore, it is extremely 
critical to find a method to regulate this balance, which may be the basis for a revolutionary 
breakthrough in the treatment of ARDS.

MSCs promote tissue repair
Lung epithelial cell and endothelial cell damage and the exudation of highly concentrated protein fluid 
are the basic pathological changes in ARDS. Therefore, the treatment of ARDS requires a combination of 
a lung-protective ventilation strategy and fluid manipulation[74]. The immediate effect of these 
strategies is that MSCs can directly participate in the reconstruction of lung injury by migrating to the 
site of lung injury, but this aspect has less impact on ARDS injury repair[75]. Evidence shows that MSCs 
can be directly transformed into type II alveolar epithelial cells to support the role of injured cells[74]. 
Meanwhile, cell-to-cell contact also provides a prerequisite for the control of inflammatory responses
[76]. The formation and tissue damage of pulmonary edema is also related to the dysfunction of the 
pulmonary vascular system. The increased permeability of pulmonary capillaries leads to a series of 
serious consequences, such as the exudation of a variety of cells and cytokines and the formation of 
intravascular microthrombosis. Studies have shown that MSCs can also enhance the barrier system of 
the pulmonary vascular system, which is beneficial for promoting the repair of lung tissue[77]. 
Hepatocyte growth factor, angiopoietin-1, and keratinocyte growth factor secreted by MSCs can 
improve vascular endothelial barrier function[78-82]. Genetic engineering in situ has shown that MSCs 
could promote the potential of pulmonary angiogenesis[83]. Therefore, various results have shown that 
MSCs could inhibit pulmonary edema and also provide the basis for the regeneration of lung tissue.

Alleviation of pulmonary fibrosis
The cellular basis of the lung is composed of alveoli, various types of parenchymal cells, and BM-
derived cells[84]. The interaction between various cells is crucial for maintaining the basic functions of 
the lungs[85]. Although lung protective ventilation strategies have been applied in clinical practice, 
ARDS survivors still have related health problems, and some patients develop fibroproliferative 
responses characterized by fibroblast accumulation and deposition of collagen and other extracellular 
matrix components in the lungs[86]. After ALI, vascular permeability increases, plasma exudates, and 
protein fluid aggregates, leading to pulmonary edema. Inflammatory factors from the coagulation/
anticoagulation system and inflammatory system enter the lungs and damage the alveolar–capillary 
membrane barrier[87]. In the early inflammatory phase of ARDS, various immune cells continuously 
release a variety of harmful substances, including reactive oxygen species and nitrogen, as well as 
proteolytic enzymes such as elastase and matrix metalloproteinases, leading to lung endothelial and 
epithelial cell damage[86,88]. Persistent damage and failure to quickly repair this damage are the main 
factors that induce a pathological fibroproliferative response[89]. Late in the inflammatory response, 
massive and persistent accumulation of macrophages, fibroblasts, fibroblasts, and myofibroblasts in the 
alveolar space results in excessive deposition of fibronectin, collagen types I and III, and other 
components of the extracellular matrix[90,91]. The pro-fibrotic/anti-fibrotic balance is disrupted, and 
the fibrogenic effect increases dramatically, leading to irreversible pulmonary fibrosis. MSCs have 
shown gratifying advantages in anti-fibrotic effects. In preclinical models of lung fibrosis produced by 
bleomycin, silica, paraquat, and radiation, MSCs obviously show the ability to prolong life time[92-95]. 
However, MSC control of pulmonary fibrosis is also a double-edged sword. Studies have shown that 
MSCS can differentiate into ATII cells in vitro, inhibit the production of degradation enzymes, and 
thereby inhibit the secretion of pro-fibrotic factors by various immune cells[96]. There is also evidence 
that abnormally activated Wnt/β-catenin and TGF-β signaling pathways can induce the differentiation 
of pulmonary intrinsic MSCs into myofibroblasts and promote the development of pulmonary fibrosis
[97].

CLINICAL EXPERIENCE USING MSCS FOR ARDS
To date, experience with the application of MSCs in patients is limited. The data of the available clinical 
evidence is summarized in Table 2. Wilson and his colleagues reported the results of the phase I stem 
cell research for ARDS treatment (START) in 2015[98]. Patients with moderate to severe ARDS received 
a single intravenous dose of low [1 × 106 MSCs/kg predicted body weight (PBW)], medium (5 × 106 
MSCs/kg PBW), or high (1 × 107 MSCs/kg PBW) (n = 3/dose). All patients tolerated MSC infusion 
without prespecified infusion-related adverse events. High-dose MSCs improved daily SOFA scores 
compared with low-dose MSCs. Based on these promising results, the knowledge of the safety of 
administering MSCs to critically ill patients with ARDS is improving. A phase 2a clinical trial to 
evaluate the safety of BM-MSCs administered to patients with moderate to severe ARDS has also been 
conducted[99]. The primary outcome was safety, and secondary outcomes included respiratory, 
systemic, and serum biomarker endpoints. The study included 60 patients with ARDS, and intravenous 
Adipose-MSCs, 1 × 106/kg predicted body weight, vs the placebo was administered; however, there was 
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Table 2 Clinical study characteristics

Ref. Cell 
type

Patient 
number Outcome Study design/evidence level Publish 

time

Wilson et al
[98]

MSC 9 No serious adverse events Phase 1 clinical trial: A 
multicenter, open-label phase

2015

Matthay et al
[99]

BM-
MSCs

60 (1) No patients had any adverse events; (2) Mortality at 28 
and 60 d was not significantly increased; and (3) ↑
Oxygenation index 

Phase 2a safety trial: 
Prospective, double-blind, 
multicenter, randomized trial

2019

Yip et al[100] UC-
MSCs

9 (1) In-hospital mortality was 33.3% (3/9); (2) No serious 
prespecified cell infusion-associated or treatment-related 
adverse events; (3) ↓Circulating inflammatory biomarkers; 
(4) ↓Mesenchymal stem cell markers; and (5) ↑Immune cell 
markers

Phase I clinical trial: Prospective 2020

Lanzoni et al
[107]

UC-
MSCs

24 (1) No serious adverse events; (2) ↑Survival; and (3) ↓Inflam-
matory cytokines at day 6

Phase 1/2a clinical trial: A 
double-blind, randomized 
controlled trial

2021

Dilogo et al
[108]

UC-
MSCs

20 (1) ↑Survival; and (2) ↓Interleukin 6 Clinical trial: A multicentered, 
double-blind, randomized 
clinical trial

2021

Monsel et al
[109]

UC-
MSCs

45 (1) PaO2/FiO2 changes between D0 and D7 did not differ 
significantly; and (2) Clinical improvement

Clinical trial: A multicentered, 
double-blind, randomized 
clinical trial

2022

Grégoire et al
[110]

BM-
MSCs

8 (1) ↑Survival; (2) Clinical improvement; and (3) ↓Day-7 D-
dimer value

A phase I/II Clinical Trial 2022

Kaffash 
Farkhad et al
[111]

UC-
MSCs

10 (1) ↑PaO2/FiO2; (2) ↓Serum CRP; (3) ↓IL-6, IFN-γ, TNF-α 
and IL-17 A; and (4) ↑TGF-β, IL-1B and IL-10

Phase 1 clinical trial: A single-
center, open-label

2022

UC-MSC: Umbilical cord-derived mesenchymal stem cells; CDC: Cardiosphere-derived cells; BM-MCs: Bone marrow-derived mesenchymal stem cells; 
PaO2/FiO2: Arterial oxygen partial pressure/fractional inspired oxygen; CRP: C-reactive protein; CT: Computed tomography; ICU: Intensive care unit; 
ARDS: Acute respiratory distress syndrome; COVID-19: Coronavirus disease 2019; TNF-α: Tumor necrosis factor-alpha; IFN-γ: Interferon-gamma; TGF-β: 
Tumor growth factor-β; IL: Interleukin.

no difference in the outcome in patients treated with Adipose-MSCs vs the placebo. In another phase I 
study, nine consecutive patients were enrolled, between December 2017 and August 2019, the first three 
patients got low-dose human umbilical cord-derived MSCs, the following three patients received an 
intermediate dosage, and the last three patients received a high dose[100]. The results of the first phase 
of clinical trials demonstrated that a single dose of human umbilical cord-derived MSCs was safe and 
showed good results in all nine patients with ARDS. Swedish researchers tested the systemic adminis-
tration of allogeneic BM-derived MSCs (2 × 106 cells/kg) in two patients with severe refractory ARDS, 
both of whom recovered from multiple organ failure and showed reduced markers of systemic and 
pulmonary inflammation[101]. In summary, clinical studies report that MSC administration is safe for 
patients with ARDS, with few adverse reactions. However, due to the relatively small number of 
patients in these studies, further research is needed to test the curative effect.

MSCS FOR CORONAVIRUS DISEASE 2019-INDUCED ARDS
Coronavirus disease 2019 (COVID-19) is an infectious disease responsible for the COVID-19 pandemic, 
caused by a novel coronavirus called severe acute respiratory syndrome-coronavirus 2[102,103]. 
COVID-19 has various respiratory and non-respiratory clinical manifestations, including mild or severe 
influenza-like syndrome, pneumonia, or respiratory failure, which may eventually lead to sepsis with 
multiple organ failure. The most common reason for being admitted to intensive care units is a 
respiratory failure caused by ARDS[104,105]. In a case series, Hashemian et al[106] found that multiple 
infusions of high-dose allogeneic prenatal MSCs are safe and can relieve the respiratory distress of 
severe patients with COVID-19 and inhibit the inflammatory response[106]. 24 participants were 
randomly assigned to either the umbilical cord-derived mesenchymal stem cell (UC-MSC) therapy or 
the control group in a double-blind, phase ½a randomized controlled trial. The UC-MSC treatment 
group got two intravenous infusions of 100 ± 20 × 106 UC-MSCs, while the control group received two 
infusions of vehicle solution[107]. The primary endpoint was safety (adverse events) after 6 h; cardiac 
arrest or death within 24 h post-infusion) and secondary endpoints included patient survival at 31 d 
after the first infusion and time to recovery. Serious adverse events related to UC-MSC infusion were 



Liang TY et al. MSCs therapy for ARDS

WJSC https://www.wjgnet.com 158 April 26, 2023 Volume 15 Issue 4

not observed. Thus, UC-MSC is safe to inject into patients with COVID-19-induced ARDS. In subjects 
who received UC-MSC treatment, inflammatory cytokines decreased significantly on the sixth day. In a 
recent clinical research, 40 COVID-19 patients who were critically unwell got either saline or 
intravenous UC-MSCs[108]. The findings revealed that the survival rate of patients in the UC-MSCs 
group was 2.5 times greater than that of the control group. Among patients with complications, the UC-
MSCs group had a fourfold greater survival rate than the control group. A multicenter, double-blind, 
randomized, placebo-controlled trial (STROMA–CoV-2) in France, with 45 enrolled patients, has also 
been conducted[109]. Patients were randomly assigned to receive three intravenous infusions of 1 × 106 
UC-MSCs/kg or placebo (0.9% NaCl) over 5 d after recruitment. PaO2/FiO2 changes between D0 and D7 
did not differ significantly between the UC-MSCs and placebo groups. Six (28.6%) of the 21 UC-MSCs 
patients and six (25%) of the 24 (25%) placebo patients had serious adverse events not related to UC-
MSCs treatment. A phase I/II clinical study was also done in patients with severe COVID-19 to assess 
the safety and effectiveness of three intravenous infusions of BM-derived MSCs at 3-d intervals[110]. 
Eight intensive care unit patients requiring supplemental oxygen were treated with BM-MSCs. Survival 
was significantly higher in the MSC group at 28 and 60 d, but there was no significant difference in the 
number of invasive ventilation-free days, high flow nasal oxygenation-free days, oxygen support-free 
days, or intensive care unit-free days. MSC infusion was well tolerated, and no adverse effects 
associated with MSC infusion were reported. Furthermore, a single-center, open-label, phase 1 clinical 
trial enrolled 20 confirmed COVID-19 patients with mild-to-moderate degree ARDS, who were divided 
into two groups: The control and the intervention group (UC-MSCs)[111]. The patients received three 
intravenous infusions of UC-MSCs (1 × 106 cells/kg BW per injection) every other day. There were no 
adverse effects to cell infusion throughout the clinical study, oxygenation was greatly enhanced, anti-
inflammatory factor levels were significantly increased, and pro-inflammatory factor levels were 
dramatically lowered. This intervention may reduce cytokine storms and restore respiratory function.

To summarize, MSCs from different tissues, such as BM, adipose, UC, and placental tissues, have 
entered the clinical trial stage. Some studies have used MSCs to treat COVID-19-induced ARDS.

PROSPECT
With the progress of scientific research, our understanding of the physiological and pathological 
processes of ARDS has gradually deepened, and the relevant treatment methods are also improving 
year by year. However, the final prognosis of patients has not improved much; therefore, it is partic-
ularly important to find a method to treat ARDS. MSCs have a variety of characteristics that are striking. 
At present, as a potential therapeutic method, MSCs have gradually entered the international arena of 
research and have been unanimously recognized by scientists worldwide. Their application has 
achieved some effect in improving the survival rate of patients with ARDS. However, because of 
various reasons, only a few clinical trials are conducted. Although the achievements of basic research 
are emerging endlessly, there is a theoretical basis for MSC use to enter clinical treatment, and the side 
effects of MSCs are not clear. Moreover, their clinical application involves ethical issues. As a cell 
therapy, its safety needs a lot of control experiments to be proven. This has hindered the successful 
application of MSCs. Fortunately, the basic experimental research on their mechanism of action is 
becoming more and more in-depth, and the application value of MSC therapy is also much clearer. 
Their successful application for the treatment of ARDS is expected to improve the quality of life of 
patients.

CONCLUSION
Due to the impasse that has been reached in the treatment of ARDS, MSC therapy has gained increasing 
attention. MSCs are known for their anti-inflammatory, differentiation, paracrine, and microvesicle 
transport abilities, which could perfectly target the pathological mechanisms of ARDS, providing a 
theoretical basis for treatment and precision treatment. Despite the current evaluation of MSC treatment 
of ARDS, further research is needed to observe the specific response to MSC treatment in the long term.
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