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Abstract
The world is experiencing reflections of the intersection of two pandemics: 
Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 
1975 worldwide, representing substantial public health costs due to its comor-
bidities. The adipose tissue is the initial site of obesity impairments. During 
excessive energy intake, it undergoes hyperplasia and hypertrophy until overt 
inflammation and insulin resistance turn adipocytes into dysfunctional cells that 
send lipotoxic signals to other organs. The pancreas is one of the organs most 
affected by obesity. Once lipotoxicity becomes chronic, there is an increase in 
insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus 
(T2DM). These alterations threaten the survival of the pancreatic islets, which 
tend to become dysfunctional, reaching exhaustion in the long term. As for the 
liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in 
hepatic steatosis. This silent disease affects around 30% of the worldwide 
population and can evolve into end-stage liver disease. Although therapy for 
hepatic steatosis remains to be defined, peroxisome proliferator-activated 
receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs 
are transcription factors found at the intersection of several metabolic pathways, 
leading to insulin resistance relief, improved thermogenesis, and expressive 
hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This 
review aimed to update the potential of PPAR agonists as targets to treat meta-
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bolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.
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Core Tip: The world faces a pandemic of obesity and metabolic diseases. Peroxisome proliferator-activated receptors’ 
(PPARs’) target genes regulate several metabolic pathways, alleviating obesity and its metabolic impairments. PPARα exerts 
relevant anti-inflammatory, anti-steatotic, and pro-thermogenic effects, collaborating with weight loss and insulin resistance 
alleviation. PPARγ is useful for glycemic management, albeit with caution due to side effects after its total activation. PPAR
β/δ is not clinically used owing to a pro-tumorigenic profile. However, Pan-PPAR or dual-PPAR agonists can retain PPARβ
/δ or partial PPARγ activation benefits and configure promising approaches to treat metabolic diseases alone or in 
combination with other drug classes.
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INTRODUCTION
The unprecedented obesity rates have become an immense public health problem due to increased costs to treat 
comorbidities like diabetes, cancer, osteoarticular diseases, and cardiovascular events[1]. Most obesity cases stem from a 
chronic positive energy balance, where surplus energy intake surpasses the energy expenditure (EE), sending excessive 
energy to the adipose tissue[2,3].

The white adipose tissue (WAT) is a buffer against excess energy from the diet and first undergoes hyperplasia and 
hypertrophy and preserves its different types of cell composition[4,5]. As this process continues, preadipocytes become 
rare, and hypertrophy predominates until the adipocyte reaches its maximal capacity to enlarge, parallel to a rarefaction 
of vascularization and the high amount of proinflammatory immune cells within the stromal vascular fraction of the 
WAT[6,7]. At this stage, inflammation and insulin resistance activates lipolysis to allow the storage of the continuing 
excessive energy from the diet at the expense of diverting the non-esterified fatty acids (NEFAs) from lipolysis to organs 
not specialized to store lipids like the liver and the pancreas (lipotoxicity), triggering steatosis[8,9].

Hepatic and pancreatic steatosis compromises the physiology of these organs, collaborating with the progression to 
end-stage liver diseases and diabetes[10-12]. Thus, the scientific community seeks for strategies to mitigate the deleterious 
effects of obesity and its comorbidities, which affects the worldwide population regardless of economic income or age. 
The peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors linked to the cellular 
metabolism of lipids, carbohydrates, proteins, and cell proliferation, existing in three isoforms: PPARα, PPARβ/δ, and 
PPARγ and emerged in recent decades as a strategy to treat obesity and its complications[13].

PPARs are binding-dependent transcription factors that regulate gene expression by specifically binding to PPAR-
responsive elements (PPREs). Each receptor heterodimerizes with the retinoid X receptor (RXR, where X can be α, β/δ, or 
γ) and binds to its respective PPRE, forming a structure that will recognize specific DNA sequences (AGGTCA) for the 
transcription of their target genes. This PPAR mechanism of action is known as trans-activation. Moreover, PPARs can 
regulate gene expression independently of binding to PPREs, through the mechanism of trans-repression. There is a 
crosstalk between PPARs and other transcription factors that regulate their gene expression, and most of the anti-inflam-
matory effects of PPARs stem from this mechanism[14,15]. Figure 1 summarizes PPARs mechanisms of action.

PPARs regulate countless metabolic pathways after activation by endogenous ligands, such as fatty acids and their 
derivatives or synthetic agonists, which trigger a conformational change to interact with transcriptional coactivators[16,
17]. The PPARα isoform expression is high in the liver, muscle, and heart, and its activation, according to previous 
studies, suggests that this receptor participates in lipid metabolism. PPARγ is mainly expressed in white and brown 
adipose tissue (BAT), being responsible, among other functions, for adipogenesis. Finally, PPARβ/δ has a wide body 
distribution with described roles in fatty acids oxidation in muscle and general energy regulation[13].

PPARs exert their physiological activities by activating the transcription of their target genes and, in this way, regulate 
lipid metabolism, glucose homeostasis, cell differentiation, obesity, and cancer. Furthermore, PPARs may directly 
participate in immune responses and inflammation mechanisms[18].

Considering that PPARs are found at the intersection of several metabolic pathways, influencing glucose homeostasis, 
adiposity, and mitochondrial function in the liver, this review aimed to update the potential of PPAR agonists as targets 
to treat metabolic diseases, focusing on adipose tissue plasticity, hepatic, and pancreatic remodeling.
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Figure 1 Peroxisome proliferator-activated receptors mechanisms of action. Proliferator-activated receptors (PPARs) are ligand-activated transcription 
factors that regulate gene expression through two different mechanisms. A: PPAR-retinoid X receptor heterodimers bind to DNA-specific sequences called 
peroxisome proliferator-response elements to trigger target genes transcription (transactivation). PPARs’ target genes include thermogenic [Ucp1, PPAR-gamma 
coactivator 1 alpha (Pgc1α), and PR domain containing 16 (Prdm16)], mitochondrial and peroxisomal [carnitine palmitoyltransferase I (Cpt1), peroxisomal acyl-
coenzyme A oxidase (Acox), and pyruvate dehydrogenase kinase 4 (Pdk4)], anti-inflammatory (Adiponectin), insulin-sensitizing [glucose transporter 2 (Glut2), Glut4], 
and adipocyte metabolism [Cd36, adipocyte protein 2 (Ap2), lipoprotein lipase (Lpl), Perilipin, and acetyl CoA synthetase (Acs)] genes; B: PPARs regulate gene 
expression through transrepression, a DNA-independent mechanism. For example, PPARs inhibits the activity of nuclear factor kappa b and enzymes, yielding anti-
inflammatory effects. Abbreviations: Uncoupling protein 1, Pgc1α, Prdm16, Cpt1, peroxisomal Acox, Pdk4, Glut, Ap2, Lpl, and Acs, inducible nitric oxide synthase, 
nuclear factor kappa B, and ciclooxigenase-2. PPARs: Peroxisome proliferator-activated receptors; RXR: Retinoid X receptor; PPRE: PPAR-responsive elements; 
NF-κB: Nuclear factor kappa B; iNOS: Inducible nitric oxide synthase; COX-2: Ciclooxigenase-2.

ADIPOSE TISSUE PHYSIOLOGY AND PLASTICITY
In mammals, the adipose organ comprises two types of tissues: WAT and BAT. Depending on the adipose tissue origin 
(for example, gonadal or subcutaneous), differences occur in its lipolytic or lipogenic capacity[19].

The white adipocytes are the only cells specialized in storing lipids without compromising their functional integrity. 
They have the necessary enzymatic machinery to synthesize triacylglycerol (TAG) when the energy supply is abundant 
and to mobilize them through lipolysis when there is an energy deficit[20].

The autonomic nervous system acts directly on the adipose tissue. The sympathetic nervous system promotes catabolic 
actions (lipolysis) via adrenergic stimulation, which activates the hormone-sensitive lipase (HSL) enzyme[21]. Conversely, 
the parasympathetic nervous system yields anabolism by stimulating insulin secretion, increasing glucose uptake, and 
activating lipogenesis[22].

Regarding the mature white adipocyte characteristics, it stores TAG in a single large lipid droplet that occupies the 
central portion of the cell, promoting displacement of the nucleus to the periphery and its consequent flattening. The 
single lipid droplet occupies 85%-95% of the cell volume, characterizing the white adipocyte as unilocular[23,24].

WAT, described as the chief energy reservoir in mammals, has a mesenchymal origin and is composed of adipocytes 
and the stromal vascular fraction (the main constituent of pre-adipocytes, immune cells, and fibroblasts); together, 
adipocytes and the stromal vascular fraction produce the extracellular matrix to maintain the structural and functional 
integrity of the tissue[25,26].

For a long time, the WAT was a secondary structure whose characteristic was the reservoir of large amounts of fat in 
the form of TAG. There was a lack of attention to its participation in body weight and food intake control. As a result of 
the discovery of the ability of WAT to secrete substances with biological effects like leptin in 1994, known collectively as 
adipokines, WAT emerged as a major endocrine organ[27,28].

Conversely, BAT has a smaller adipocyte than WAT, exhibiting several cytoplasmic lipid droplets of different sizes 
(multilocular), relatively abundant cytoplasm, spherical and slightly eccentric nucleus, and numerous mitochondria that 
produce energy by oxidizing acids[29]. The brownish BAT coloration stems from its high mitochondrial content, whose 
uncoupling protein 1 (UCP1) is one of the primary markers for brown adipocyte identification[30,31].

The brown adipocytes specialize in performing nonshivering thermogenesis (NST), by which the UCP1 acts as an 
alternative channel in the inner mitochondrial membrane to the proton gradient in the intermembrane space return to the 
mitochondrial matrix without resulting in ATP synthesis. Instead, the chemical energy is released as heat, enhancing the 
body temperature and EE, a promising target to treat obesity through negative energy balance[32,33].

Brown adipocytes originate from myocyte progenitor cells (myogenic lineage) and express the myogenic factor 5. 
Prdm16 controls a bidirectional cell fate switching between skeletal myoblasts and brown adipose cells. Loss of the PR 
domain containing 16 (Prdm16) in brown fat precursors causes loss of brown fat characteristics and promotes muscle 
differentiation[34]. Prdm16 induces a complete program of brown fat differentiation, including the expression of PPAR-
gamma coactivator 1α (Pgc-1α) and Ucp-1. Pgc-1α is an essential transcriptional coactivator for NST and mitochondrial 
biogenesis[35].
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Although BAT total mass in mammals is small, previous research has already shown that its adequate stimulation 
(cold exposure, specific drugs, some food compounds, or physical activity) could quadruple the EE of an animal, parallel 
to an increase in tissue perfusion[36-38]. Thus, understanding the damage obesity causes to BAT morphology and 
physiology can help to develop strategies to treat obesity.

Recently, experimental studies reported that diet-induced obesity (DIO) results in glucose intolerance, functional BAT 
hypoxia, and structural whitening. Brown adipocytes in obese animals reduce their thermogenic capacity and assume a 
white phenotype, becoming unilocular[39,40]. The molecular mechanisms that lead to reduced BAT activity in obesity 
and its physiological implications are under investigation, and altered PPAR expression may have a role in the whitening 
phenomenon as Pparα expression declines in whitened BAT[41]. Compared to WAT, BAT is more extensively vas-
cularized, and vascular endothelial growth factor-A (VEGFA)-dependent angiogenesis is pivotal for the thermogenic 
response[42]. The hypoxic microenvironment in BAT, due to obesity, has been shown to lead to an accelerated loss of 
mitochondria, and as oxidative capacity is lost, lipid droplets accumulate, generating the white phenotype[39].

Since obesity is a public health problem in developed and developing countries, the world urges us to find new 
approaches to treat or prevent this metabolic disease and its comorbidities. WAT plasticity towards an intermediary 
adipocyte between white and brown, the beige adipocyte, may emerge as a suitable strategy to fight the obesity pandemic
[43].

Beige adipocytes are found in the subcutaneous WAT (sWAT) and exhibit a brown-like adipocyte phenotype 
(multilocular). In the basal state, beige adipocytes act like white adipocytes, but under the right stimulus, they can acquire 
intermediate mitochondrial content and perform thermogenesis, a process called browning[44]. Prdm16 is essential to the 
browning phenomenon once its down-regulation turns a beige adipocyte into a white one, showing that browning is 
reversible and morphophysiological changes rely on adequate PRDM16 expression and active mitochondrial biogenesis 
machinery to increase mitochondrial content and thermogenic capacity[45,46].

Beige adipocytes originate from mature white adipocytes [low expression of the cluster of differentiation 137 (Cd137)], 
which under specific stimulation, acquire a brown-like phenotype, or even from a beige pre-adipocyte (high Cd137), 
which differentiates into a multilocular cell capable of performing thermogenesis. The latter originates from a lineage 
different from the WAT[47,48]. Although the beige adipocytes have a lower thermogenic activity than the brown 
adipocytes, their presence is linked to a metabolically healthy phenotype in humans[49], reducing the chances of 
developing type 2 diabetes mellitus (T2DM), hepatic steatosis, and other metabolic constraints.

The metabolic benefits of beige/brown adipocytes presence also stem from their endocrine role in secreting the 
batokines. Like the adipokines from the WAT, batokines act in autocrine, paracrine, and endocrine fashions to provide 
increased neurovascular supply to BAT, favoring thermogenesis and inhibiting whitening besides exerting anti-inflam-
matory effects, favoring browning, and influencing glucose homeostasis[50]. Figure 2 depicts white and BAT plasticity 
under obesogenic and thermogenic stimuli.

The recent literature suggests that less than 100 g of adipose tissue in an adult human with thermogenic activity can 
prevent 4 kg of fat accumulation per year[51], stimulating the search for drugs that trigger browning while inhibiting 
whitening, relevant for metabolic disease control.

PPARS ROLE IN THE ADIPOSE TISSUE PLASTICITY
PPARα was the first receptor discovered, mapped to chromosome 22q12-13.1 in humans, found in metabolically active 
tissues such as the liver, kidney, heart, skeletal muscle, and brown fat[52,53]. PPARα has polyunsaturated fatty acids and 
leukotrienes as natural ligands, which are inflammatory mediators; as pharmacological ligands, the family of 
hypolipidemic drugs, fibrates, is considered an accessible PPARα agonist[54].

The participation of PPARα in the thermogenic pathway involves directing NEFAs, generated after adrenergic 
stimulation, to the β-oxidation instead of cellular efflux. β-adrenergic stimulus mobilizes most of NEFA in normal 
conditions, and this mobilization is related to the inflammatory response and the reduction of cell function in the long 
term. The chronic stimulation of the beta-3 adrenergic receptor upregulates PPARα expression, increasing adipocytes’ 
oxidative capacity[55].

Natural or pharmacological ligands mainly control the expression of genes involved in lipid metabolism. If the concen-
tration of fatty acids increases, PPARα is activated and absorbs the oxidized forms of these acids. During the influx of 
fatty acids, the transcription of PPARα-regulated genes increases, and the systems are activated[55,56]. Thus, PPARα 
functions as a lipid sensor and controls energy combustion.

A previous study showed that treatment with WY14643 (PPARα agonist) exerted lipolytic effects with reduced fat mass 
and increased whole-body fat oxidation. These results demonstrate a novel role for PPARα activation in beta-adrenergic 
regulation of adipose tissue lipolysis[57]. In addition, treatment with WY-14643 has already shown effects in reducing 
hepatic steatosis, serum insulin, and inflammation in adipose tissue, and these changes are generally observed in obesity 
onset[58,59].

In BAT, PPARα stimulates lipid oxidation and thermogenesis in synergy with PGC1α[60]. In this scenario, a study 
demonstrated that the activation of PPARα by a pharmacological agent (fenofibrate) activated NST (and mitochondrial 
biogenesis in the BAT of obese mice fed a high-fat diet[61]. Subsequently, the chronic intake of a high-fat diet caused BAT 
whitening, and the treatment with WY14643 mitigated this morphophysiological impairment through anti-inflammatory 
signals and enhanced VEGFA, resulting in increased thermogenesis. In the same experiment, the high-fructose diet did 
not trigger whitening, but the WY14643 also attenuated the histological changes caused by excessive dietary fructose[62].



Souza-Tavares H et al. PPAR in metabolic diseases

WJG https://www.wjgnet.com 4140 July 14, 2023 Volume 29 Issue 26

Figure 2 Adipose tissue plasticity and peroxisome proliferator-activated receptor effects. Under an obesogenic diet, the white adipocytes undergo 
hypertrophy and profound change in adipokine profile release, leading to growing insulin resistance and low-grade inflammation. Conversely, under adequate stimuli 
[peroxisome proliferator-activated receptors α (PPARα) and dual PPARα/γ], the subcutaneous white adipose tissue can also undergo browning and form beige 
adipocytes, an intermediate between white and brown adipocytes with lower thermogenic capacity than brown adipocytes but whose presence points to metabolic 
homeostasis. Finally, the brown adipose tissue, which has the most potent thermogenic capacity, can express a whitened phenotype when exposed to a lipotoxic 
milieu. Whitening entails decreased vascularization and pro-inflammatory signals characterizing brown adipocyte dysfunction. In contrast, PPARα and dual PPARα/γ 
treatments counter whitening, increasing thermogenesis through anti-inflammatory and proangiogenic effects. Made with Biorender (www.biorender.com). PPARs: 
Peroxisome proliferator-activated receptors; WAT: White adipose tissue; BAT: Brown adipose tissue. Created by BioRender.

PPARα is the isoform that induces the browning of sWAT more abundantly. Fenofibrate has yielded expressive 
browning in DIO mice, with an irisin-Pgc1α-Prdm16 interaction driven by PPARα stimulating thermogenesis and 
mitigating insulin resistance and inflammation, countering obesity[63]. Confirming these results, the PPARα agonist 
WY14643 yielded Cd137/Prdm16/Ucp1+ beige adipocytes, whereas the PPARβ/δ agonist GW0742 reduced sWAT 
adipocyte size and increased beta-oxidation without browning induction[59]. PPARβ/δ activation by GW501516 
countered adipocyte hypertrophy through suppression of angiotensin-converting enzyme (ACE)/angiotensin II receptor 
type 1 (AT1r) axis and downstream potent anti-inflammatory effects[64].

PPARγ received much attention since the mid-1990s as the molecular target of thiazolidinediones (TZDs) or glitazones, 
a class of insulin-sensitizing and antidiabetic drugs[65]. PPARγ, a transcription factor from the nuclear receptor family, 
plays a significant role in lipid and glucose metabolism regulation[66]. WAT and BAT, large intestine, and spleen express 
PPARγ. However, its expression is much higher in adipocytes[67,68].

Ligand-activated PPARγ induces adipocyte differentiation, stimulates mitochondrial biogenesis, and inhibits the 
production of pro-inflammatory mediators[68]. In addition, PPARγ activated in adipocytes ensures a balanced and 
adequate secretion of adipokines (adiponectin and leptin), mediators of insulin action in peripheral tissues[69].

In WAT, PPARγ is pivotal to lipid accumulation. In contrast, PPARγ activation in BAT induces the expression of genes 
related to the thermogenic program, including Pgc1α and Ucp1. PPARγ is crucial for brown adipocyte differentiation, but 
additional transcription factors, including PRDM16, are required to activate the thermogenic program[70].

The PPARγ1 isoform is expressed in almost all cells, while PPARγ2 is mainly limited to adipose tissue. However, 
PPARγ2 is a more potent transcriptional activator[71]. Both PPARγ1 and PPARγ2 are essential for adipogenesis and 
insulin sensitivity control. However, PPARγ2 is the isoform upregulated in response to nutrient intake and obesity[72,73].

TZDs, synthetic PPARγ ligands, are antidiabetic drugs with potent insulin-sensitizing effects that confer long-term 
glycemic control[74]. However, its clinical use has been contested due to side effects such as weight gain, edema, and 
bone fractures[75]. The increase in body weight after TZDs administration is due to PPARγ-dependent WAT expansion
[76] and fluid retention caused by PPARγ activation in the renal collecting ducts[77].

TZDs improve peripheral insulin sensitivity and have a spectrum of anti-inflammatory properties, including a 
reduction in plasma inflammatory markers and adipose tissue macrophages[72,78]. In WAT, TZDs promote adipocyte 
differentiation, insulin action, and the formation of beige adipocytes[66]. In BAT, TZDs activate thermogenic activity[79].

http://www.biorender.com
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The dual PPARα/γ agonist tesaglitazar reversed iBAT whitening through gut dysbiosis and ultrastructure 
improvements[80]. Intestinal PPARα activation suppresses postprandial hyperlipidemia by increasing the fatty acid 
oxidation of intestinal epithelial cells[81]. In addition, intestinal PPARα activation reduces cholesterol esterification, 
suppresses chylomicron production, and increases enterocytes’ HDL synthesis[82]. These observations pave a new way to 
treat metabolic diseases through the modulation of gut microbiota by PPARs and the consequent gut-adipose tissue 
stimulation of thermogenesis due to anti-inflammatory, angiogenic, and high beta-adrenergic signaling[80]. Figure 2 
shows the main PPAR effects on the adipose tissue.

PANCREAS MORPHOPHYSIOLOGY AND OBESITY OUTCOMES
The human pancreas is a mixed gland made up of five anatomical divisions: Head (fitted with the duodenum), uncinate 
process, neck, body, and tail (nearby the spleen); measures 15-25 cm in length; and weighs 100 g to 150 g in a healthy 
adult[83]. The inferior pancreaticoduodenal artery, the superior pancreaticoduodenal artery, and the splenic artery are 
responsible for its perfusion, and the pancreatic plexus, celiac ganglia, and vagus nerve innervate this gland[84,85].

The pancreas has endocrine and exocrine functions, encompassing four structural components: The exocrine portion, 
constituted by acinar and ductal cells; the endocrine region formed by the islet cells; the blood vessels; and the 
extracellular space[84]. The exocrine portion corresponds to 85% of the pancreas volume, comprehending a ductal system 
like a bunch of grapes with a blinded end. Each acinus corresponds to a grape and secretes pancreatic juice enzymes that 
flow into bicarbonate-secreting ductal epithelial cells[83,84]. After passing through accessory ducts, these enzymes reach 
the main pancreatic duct that connects with the bile duct in the ampulla of Vater in the duodenum. The exocrine 
pancreatic secretion (amylase, lipase, and zymogens) helps to digest proteins, fats, and carbohydrates, being secreted by 
the autonomic nervous system stimulation in the presence of food in the duodenum and the consequent release of 
secretin, cholecystokinin, and other hormones by the enteroendocrine cells[83].

The endocrine portion of the pancreas comprises mini-organs called islets of Langerhans, corresponding to 1%-2% of 
the total pancreatic volume. Pancreatic islets have a spherical shape and secrete hormones related to glucose homeostasis. 
There are five islet cell types: Alpha cells (α cells, produce glucagon), beta cells (β cells, insulin), delta cells (δ cells, 
somatostatin), PP cells (also known as F cells, pancreatic polypeptide-containing cells), and epsilon cells (ε cells, ghrelin). 
Neuroendocrine, endocrine, paracrine, and endocrine mechanisms influence islet secretion. Therefore, overactivation or 
inactivation of their regulatory pathways can drastically impact the metabolism, causing metabolic diseases[86-88].

The most prevalent cell types in pancreatic islets are alpha and beta cells. In mice, alpha cells are restricted to the islet 
periphery, while the beta cells found in the core of the islet are vastly innervated and comprehend 60%-80% of the total 
islet mass. In humans, alpha and beta cells are interspersed all around the islets, with beta cells comprising 50%-75% of 
the islet mass with a sparse innervation. The remaining islet cell types do not differ significantly between men and mice. 
Even though there are cytoarchitectural differences regarding the islets of these species, the dynamics of islet remodeling 
in obesity and T2DM are similar and propitiates relevant translational studies[87].

Obesity entails an impaired glucose-stimulated insulin secretion (GSIS) triggered by the adipoinsular axis deregulation 
due to increased demand for insulin release. The resistance to insulin action relates to hyperleptinemia, prompted by the 
inflamed hypertrophied WAT[89,90]. Under an insulin-resistant state, the glucose fails to enter the pancreatic beta cell, 
resulting in a high demand for insulin to keep euglycemia. Islet hypertrophy and hypersecretion are commonplace 
features in DIO mice as the expansion of alpha and beta cell masses cope with normal glycemic levels maintenance at the 
beginning of glucose homeostasis impairments[91-93].

Insulin resistance (IR) precedes the T2DM diagnosis by around ten years[94]. Initially, the compensatory hyperinsu-
linemia prompts normal fasting glucose levels (IR). As adiposity evolves, hyperinsulinemia cannot cope with adequate 
glycemic control. At this point, raised plasma insulin and glucose concentrations coexist, characterizing glucose 
intolerance[91,95]. Glucose-intolerant mice exhibit hyperglycemia, alpha cells infiltrated to the islet core, besides a 
disrupted GSIS, with endoplasmic reticulum (ER) stress and loss of beta cell polarity, compromising its secretion and 
threatening islet survival[96,97].

Glucotoxicity (hyperglycemia) elicits ER stress, which leads to proinsulin misfolding and accumulation, a hallmark of 
beta cell dysfunction and T2DM onset[98]. Beta cell dysfunction originates from continuing islet hypertrophy and 
hypersecretion (lipotoxicity), impaired GSIS, beta cell ER stress (glucolipotoxicity), and downregulation of proliferative 
markers like the pancreatic duodenal homeobox-1 (PDX1)[96,99]. Compromised beta cell proliferation, increased 
apoptosis rate, and dedifferentiation result in beta cell failure[100]. T2DM is linked to a decreased beta cell mass (-22%-
63%) and begins when beta cell mass cannot compensate for the high demand for insulin to sustain glucose homeostasis
[101].

As a multi-hormonal disease, T2DM entails decreased beta cell mass coupled with the loss of incretin effect. Incretins 
are gut-derived hormones that enhance insulin secretion and sensitivity after meal ingestion, participating in the glycemic 
control at the postprandial state. Chronic high-fat diets lead to loss of the incretin glucagon-like peptide-1 (GLP-1) 
capacity to enhance beta cell responsiveness to glucose and proliferation, resulting in beta cell exhaustion[102,103]. Loss 
of incretin effect occurs even with normal GLP-1 and gastric inhibitory polypeptide levels in obese subjects, suggesting a 
possible resistance to their actions like described for insulin and leptin[104].

To avoid the progression of IR towards T2DM onset, therapies that could promote pancreatic alpha cell transdifferen-
tiation into beta cells to maintain glycemic control are promising approaches to tackle beta cell exhaustion and reduced 
beta cell mass[105]. In this context, PPARs may be therapeutic targets for glycemic homeostasis.
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PPARS EFFECTS ON PANCREATIC REMODELING AND ISLET PRESERVATION
PPARs regulate the expression of several target genes and allow the proper functioning of pathways linked to energy 
metabolism. An imbalance of these pathways can lead to the development of T2DM and other disorders[106,107]. Thus, 
PPARs are relevant therapeutic targets for the clinical management of diabetes.

Numerous drugs have been used and developed for the treatment of hyperlipidemia and T2DM such as PPARα 
agonists (fibrates, e.g., fenofibrate, bezafibrate and clofibrate) and PPARγ agonists (TZDs, e.g., troglitazone, rosiglitazone, 
pioglitazone and ciglitazone). PPARβ/δ does not have a role well-established in glucose metabolism, but it is known to 
improve insulin sensitivity by facilitating fatty acid oxidation in some tissues and reducing glucose oxidation[108,109].

PPARα plays an essential role in glucose homeostasis and regulates enzymes and proteins involved in glucose 
synthesis in the fasting state[110]. In addition, it stimulates pancreatic beta cells and increases fatty acid oxidation and 
GSIS[111]. Fenofibrate and fish oil countered islet hypertrophy and increased adiponectin levels in diabetic KK mice
[112], mitigating lipotoxicity-induced beta cell dysfunction by inhibiting the nuclear factor kappa B (NF-κB) and reducing 
macrophage migration[113]. In agreement, fenofibrate exerted anti-inflammatory and antiapoptotic effects besides 
enhancing islet innervation in young non-obese diabetic mice, providing adequate glucose handling, and preventing 
diabetes-associated diseases[114].

Conversely, Fenofibrate long-term use (12 wk, 100 mg/kg) disrupted beta cell function due to increased NF-κB and 
inducible nitric oxide synthase islet expression in monosodium glutamate-induced obese rats[115]. An in vitro study 
showed that PPARα activation by WY14643 or bezafibrate (pan-PPAR agonist) enhances GSIS. However, long-term 
treatments contribute to beta cell dysfunction owing to overstimulation[116]. In a clinical study, bezafibrate showed that 
parameters related to insulin resistance were attenuated during the follow-up period, while the placebo group showed an 
increase in this parameter over two years[117].

PPARγ, in turn, controls glucose homeostasis as it increases glucose transporter (GLUT4) expression and its translo-
cation in adipocytes, causing adipose remodeling by reducing visceral fat deposits while selectively increasing sWAT, 
resulting in a possible insulin sensitization scenario[118,119]. Furthermore, studies have shown that PPARγ activation 
increases adipocytes’ fatty acid uptake, reducing lipotoxic damage to insulin-sensitive tissues[120], increasing glucose 
uptake by skeletal muscle, and consequent peripheral reduction[120,121].

PPARγ agonists are the most developed antidiabetic and insulin-sensitizing agents to date. Studies have shown that 
TZDs (or glitazones) bind specifically to the ligand binding domain (LBD) of recombinant PPARγ but not to PPARα or 
PPARβ/δ. These agents also selectively stimulate the activity of the PPARγ gene promoter and modulate the expression 
of several of its target genes[122]. TZDs class increases glucose catabolism and reduces its hepatic production[123,124], 
sensitizes cells to insulin, improves insulin sensitivity and action[125,126], and promotes pre-adipocyte differentiation 
along with lipogenesis, which favors a reduction in NEFAs concentrations, attributed to increased glucose utilization and 
reduced gluconeogenesis.

Human and animal studies indicate that the TZDs (total PPARγ agonists) rosiglitazone and pioglitazone improve 
hyperglycemia by reversing insulin resistance and improving insulin sensitivity. In addition, both agents also show 
significant effects on plasma lipoprotein lipids in humans, although pioglitazone results in a relatively better lipid profile 
than rosiglitazone[127,128]. Of note, the clinical use of rosiglitazone was discouraged owing to the unwanted effects of 
fluid retention, arterial vasodilation, endothelial alterations[129,130], increased risk of bone fracture and congestive heart 
failure[131], and weight gain in both animal models and humans due to the master regulatory role of PPARγ in 
adipogenesis[66].

Pioglitazone (15 mg/kg per mouse) yielded healthy pancreatic islets in db/db mice, enhancing insulin and NK6 
homeobox 1 expression and restoring islet function in this mice model[132]. The islet preservation due to PPARγ 
activation by pioglitazone encompasses anti-inflammatory effects and alleviation of ER stress[133]. Pioglitazone and 
vildagliptin (DPP-4 inhibitor) combination maximized pioglitazone’s effects on suppressed inflammation and oxidative 
stress in male rats[134]. In agreement with this, pioglitazone plus sitagliptin enhanced alpha and beta cell functions at the 
postprandial state in T2DM subjects[135].

Telmisartan, a partial PPARγ agonist and angiotensin receptor blocker, reduces serum insulin levels and mitigates 
insulin resistance without affecting serum adiponectin levels[136]. The experimental background shows that telmisartan 
reduced islet hypertrophy, with adequate glycemic control and normalized alpha and beta cell mass in DIO mice. These 
effects were maximized by telmisartan combination with sitagliptin, reverting oral glucose intolerance and normalizing 
body mass in this DIO model[93]. Telmisartan combination with linagliptin promoted islet preservation by suppressing 
oxidative stress[137].

The beneficial effects of telmisartan on islet cytoarchitecture featured ultrastructural remodeling, with polarized cells 
and mature insulin granules reestablished after the treatment[97]. Telmisartan elicited enhanced islet vascularization, 
enhanced PDX1 and GLP-1 islet expression plasma concentrations, ameliorating GSIS and preserving pancreatic islets 
through reduced apoptosis rate and macrophage infiltration[96]. Due to improved islet proliferation capacity, telmisartan 
might be a candidate for beneficial islet cell transdifferentiation to slow insulin resistance to T2DM onset progression. 
Figure 3 summarizes the main effects of PPARα and partial PPAR γ agonists on the endocrine pancreas.

Drugs with specificity for at least two PPAR isoforms (e.g., dual PPARα/γ or pan-PPAR agonists) could be more 
effective and have relatively fewer undesirable side effects compared with currently used agonists with specificity for a 
single PPAR isoform[138]. In this context, a series of dual PPARα/γ agonists, named glitazars, was designed to combine 
total PPARα and partial PPARγ activation, retaining the insulin-sensitizing property of PPARγ target genes with the 
beneficial effects of PPARα activation on energy metabolism[139,140]. However, muraglitazar showed many of the same 
side effects (weight gain and edema) in patients[141,142], having glitazars development halted due to safety concerns.
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Figure 3 Beneficial effects of Peroxisome proliferator-activated receptor agonist on islet remodelling. Diet-induced obese mice exhibit enlarged 
pancreatic islets, with are prone to exhaustion in the long run due to glucolipotoxicity. Peroxisome proliferator-activated receptor α (PPARα) and partial PPARγ 
activation are promising targets to counter glucolipotoxicity, yielding islet preservation. Made with Biorender (www.biorender.com). PPARs: Peroxisome proliferator-
activated receptors; GSIS: Glucose-stimulated insulin secretion; ER: Endoplasmic reticulum. Created by BioRender.

Research is ongoing to develop new PPAR agonists without side effects. Since PPARs orchestrate many physiological 
processes, agonists may play beneficial or non-beneficial effects. So, PPAR actions on pancreatic islets need elucidation to 
support the development of new drugs with more assertive outcomes.

LIVER MORPHOPHYSIOLOGY AND OBESITY IMPLICATIONS
The liver is a complex organ that concentrates on several physiological processes as macronutrient metabolism, immune 
system support, fatty acid, and cholesterol homeostasis, besides the degradation of xenobiotic compounds and many 
medications[143]. It is the largest solid glandular organ in the body. With versatile endocrine and exogenous functions, 
the liver is considered paramount for metabolic activities[144]. It has a remarkably uniform anatomical structure 
composed of the regular arrangement of lobules that are the functional unit of the liver. The base of the lobule is 
composed of hepatocytes, the most prevalent cells of the liver[145]. Hepatocytes arranged between the sinusoids along 
the portal-central axis demonstrate heterogeneity concerning their biochemical and physiological functions[146]. 
Additional cell types within the liver include cholangiocytes, Kupffer cells, stellate cells, and endothelial cells, with 
specialized functions[147].

The liver is enriched with cell organelles to fulfill its metabolic functions. It is one of the organs with the highest 
number and density of mitochondria, which interact with other organelles such as ER, lipid deposits (LDs), and 
lysosomes[148,149]. In the gastrointestinal tract, food digestion generates metabolic substrates (glucose, fatty acids, and 
amino acids) that are absorbed by the bloodstream and conducted to the liver through the portal vein circulation system. 
In the postprandial state, glucose forwards to glycogen storage, and the excess undergoes de novo lipogenesis (DNL) in 
the liver. DNL forms new TAG from acetyl-CoA or malonyl-CoA[150,151].

In mammals, acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS)-an enzyme intricately regulated by several 
nuclear receptors (NRs, e.g., PPARα, PPARγ, and the bile acid receptor/farnesoid X receptor) catalyze fatty acid 
production. NRs are also relevant mediators of insulin signaling, whereas DNL occurs under anabolic conditions, linking 
glucose and lipid metabolism. Further support of this link encompasses insulin stimulation of FAS expression. In 
hepatocytes, NEFAs are esterified with glycerol-3-phosphate to synthesize TAG. TAG is stored in LDs within hepatocytes 
or secreted into the circulation as very low-density lipoprotein (VLDL) particles. In the fasted state or during exercise, 
fuel substrates (glucose and TAG) are delivered from the liver into the circulation and metabolized by muscle, adipose 
tissue, and other extrahepatic tissues[150,151]. However, the increased intake of dietary lipids, associated with 
upregulated DNL process, causes lipotoxicity and the abnormal accumulation of lipids, often consistent with insulin 
resistance in steatotic livers, which is related to disturbed ER protein folding homeostasis in hepatocytes[152,153].

The ER in hepatocytes can adapt to extracellular and intracellular changes, allowing the maintenance of essential 
hepatic metabolic functions. However, several alterations can disturb the ER homeostasis of hepatocytes, contributing to 
the dysregulation of hepatic lipid metabolism and liver diseases. Consequently, ER includes a progressively conserved 
pathway called unfolded protein response (UPR) to control liver protein and lipid homeostasis[154]. UPR decreases 
secretory protein quantity, increases ER protein folding (chaperone and foldase transcription), and enhances deletion 
capacity by stimulating autophagy and ER-related degradation[152]. Thus, ER stress is a cellular stress in which the 
demand for folding newly synthesized proteins exceeds ER capacity to fold or to correct it through UPR, generating 
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unfolded protein accumulation[155].
The existence of three transmembrane-ER proteins is understood to reveal and transduce the ER stress response: 

Protein kinase RNA-like ER kinase (PERK), inositol-requiring protein-1α (IRE-1α) and activating transcription factor 6 
(ATF6). Activation of ATF6 and PERK elicit the expression of the C/EBP homologous protein (CHOP), whereas IRE-1α 
induces the activation of the N-terminal C-Jun kinase and also generates an improved form of X-box binding protein-1 
(XBP1), the spliced XBP1, which attempts to the depletion of misfolded ER proteins through chaperone, folding proteins, 
and ERAD components encoding[156].

However, when ER stress is intense to the point that damage is irreversible, the ER cannot restore its function. Hence, 
inflammatory responses trigger cell death pathways[157]. There is strong communication between ER homeostasis 
perturbations and mitochondrial dysfunction in the onset of obesity and metabolic syndrome. The mitochondrion 
organelle plays an essential role in hepatic cellular redox, lipid metabolism, and cell death regulation[158], and genes 
related to mitochondrial fatty acid β-oxidation are mostly transcriptionally regulated by PPARα[159]. Fatty acids input 
into the mitochondria requires carnitine palmitoyltransferase 1a (Cpt1a) (a PPARα target gene), located in the outer 
mitochondrial membrane. PPARα activation leads to the transcription of Cpt1a, associated with fatty acid oxidation in 
mitochondria, peroxisomes (acyl-CoA oxidase, ACOX), and cytochrome P450 4A family[160].

Mitochondrial dysfunction is associated with acute and chronic liver diseases, and relevant information indicates that 
mitophagy, a selective form of autophagy (catabolic process, which manifests itself by selective sequestration of 
mitochondria by autophagosomes, phagophores, a double membrane that isolates autophagic components)[161] of 
dysfunctional/excessive mitochondria, plays a pivotal role in liver physiology and pathophysiology[158]. There are 
specificities and mechanisms mediating mitophagy, many of them mediated by the FUN14 domain containing 1 
(FUNDC1), a mitochondrial outer membrane protein tightly regulated at transcriptional and post-transcriptional levels. 
NRF1 (nuclear respiratory factor 1) and PGC1α, the major transcription factor and related cofactor in mitochondrial 
biogenesis, beneficially adjust FUNDC1 expression and enhance mitophagy[162]. Therefore, mitophagy favors 
mitochondrial remodeling, and PPARs are implicated in this pathway[163]. Figure 4 summarizes liver alterations under 
lipotoxicity in obesity.

PPARS IN THE LIVER
Functional studies have demonstrated that PPARα governs hepatic expression of genes involved in nearly all aspects of 
lipid metabolism, including fatty acid uptake, elongation and desaturation, activation and binding of intracellular fatty 
acids, formation and degradation of TGs and lipid droplets, and metabolism from plasma lipoproteins[164,165]. The 
constitutive activity of mitochondrial β-oxidation was significantly reduced in the liver of mice lacking the Pparα gene (
Pparα null mice)[166]. Pparα knockout mice fed a high-fat diet increased markers of oxidative stress, inflammation, and 
cell death[167].

Thus, PPARα has been the target of hypolipidemic drugs from the fibrate family, under investigation for treating non-
alcoholic fatty liver disease (NAFLD). PPARα upregulates fatty acid β-oxidation and lipolysis, upregulating the 
expression of several genes involved in lipid metabolism (Pgc1α and Cpt1a), leading to less fat accumulation in NAFLD
[168]. Pgc1α modulates the expression of key metabolic enzymes involved in gluconeogenesis, fatty acid oxidation, and 
oxidative phosphorylation in the liver through their functional interaction with PPARα[169]. Mitochondrial β-oxidation of 
long-chain fatty acids is regulated by CPT1a, an enzyme physiologically inhibited by malonyl-CoA, a glucose-derived 
metabolite and an intermediate in DNL synthesis[170].

Administration of Wy-14643, one of the most potent PPARα agonists, decreased serum insulin, rescued hyperglycemia, 
and suppressed carbohydrate response element binding protein (ChREBP), mitigating steatosis and hepatic damage. The 
reductions in ChREBP and FAS activity likely reflect the diminished stimulatory effects of glucose on ChREBP and as a 
substrate (AcylCoA) for fatty acid synthesis[171]. Moreover, WY-14643 markedly reduced hepatic steatosis in high-fat-fed 
C57BL/6 mice by augmenting the volume density of mitochondria per area of liver tissue and downregulating hepatic 
gluconeogenesis and DNL[58]. More recently, WY-14643 treated gut dysbiosis in high-fat and high-fructose-fed-mice, 
exerting antisteatotic effects through diminished endotoxemic inflammatory inputs to the liver, showing that PPARα 
mitigates liver steatosis by acting on multiple hits that trigger this outcome[172,173].

Fibrates are a less potent but clinically relevant class of PPARα agonists compared to Wy-14643, which have also been 
evaluated in experimental models and human studies[174]. In vivo experiments, treatment with pemafibrate, a selective 
PPARα agonist, identify PPARα as a pharmacological, sexually dimorphic target primarily related to related gene 
functions to lipid homeostasis, with the female liver being much more responsive to pemafibrate than the male liver[175]. 
The potency of synthetic PPARα agonists may differ from receptor to species as measured using the PPARα-GAL4 
transactivation system, i.e., fenofibrate (mouse receptor, EC50 = 18000 nM vs human receptor, EC50 = 30000 nM), 
bezafibrate (EC50 = 90000 nM vs 50000 nM, respectively) and Wy14643 (EC50 = 630 nM vs 5000 nM, respectively)[176].

In contrast, several studies have provided evidence that hepatic PPARγ expression markedly increases in many models 
of obesity (lipoatrophy and hyperphagic obesity), insulin resistance, and diabetes with varying degrees of steatosis[177]. 
PPARγ expression in the liver is low under healthy conditions but increases as steatosis develops in rodents[178]; this 
effect is not seen in humans[75,179]. They have tremendous potential in patients with NAFLD because they promote 
preadipocyte differentiation into adipocytes and may induce fat redistribution from visceral sites such as the liver and 
muscle to peripheral subcutaneous adipose tissue, increase circulating adiponectin levels, and improve insulin sensitivity
[180].
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Figure 4 Schematic illustrates hepatic lipotoxicity caused by obesity. There is an increase in lipolysis, which triggers the intracellular accumulation of 
fatty acids (FAs) within hepatocytes, resulting in a delay in mitochondrial beta-oxidation followed by an increase in lipogenesis, favoring the deposition of lipid droplets 
in the hepatic parenchyma, culminating in hepatic steatosis. Concomitantly, there is a reduction in insulin signaling, potentiating inflammation, and endoplasmic 
reticulum (ER) stress. ER stress is detected by the unfolded protein response-IRE1, PERK, and activating transcription factor 6 (ATF6) in the ER membrane. If it is 
impossible to reverse the unfolded proteins, ATF4 promotes transcription of the C/element binding protein homologous protein, a transcription factor that induces 
apoptosis. Made with Biorender (www.biorender.com). TAG: Triacylglycerol; UPR: Unfolded protein response; UPR: Unfolded protein response; PERK: Protein 
kinase RNA-like ER kinase; ATF: Activating transcription factor 6; IRE6: CHOP: C/EBP homologous protein; NEFAs: Non-esterified fatty acids. Created by 
BioRender.

PPARγ agonists, such as the TZDs, stimulate genes that favor the storage of TAG, thus lowering circulating free fatty 
acid concentrations[181]. In humans, one-year treatment with pioglitazone (at low dosage) significantly improved liver 
steatosis, inflammation, and systemic and local adipose tissue insulin resistance in patients with T2D. A decrease in sterol 
regulatory element-binding transcription factor 1c (SREBP-1c) expression by pioglitazone has a primary effect in reducing 
hepatic steatosis[182]. Pooled results suggest that acetaldehyde produced from ethanol metabolism may increase the 
synthesis of the mature SREBP-1 protein, which increases hepatic lipogenesis, thus leading to the development of fatty 
liver[183,184].

Administration of the PPARγ agonist rosiglitazone (5 mg/kg, daily, gavage) accelerated regression of liver fibrosis as 
associated with increased expression of PPARγ in mice, with similar findings in human hepatic stellate cells (HSCs). 
Furthermore, in vitro, GATA binding protein 6 (GATA6)-deficient HSCs exhibit a defect in inactivation, suggesting that 
GATA6 and PPARγ agonists can be used to drive the inactivation of HSCs/myofibroblasts and could compose a 
combination strategy to halt liver fibrosis in patients[185]. On the other hand, some studies associate TZD therapy with an 
average weight gain of 4 kg to 5 kg[186,187]. Weight gain combines adiposity and fluid retention as the increased 
peripheral edema observed during the pre-marketing clinical trials of pioglitazone and rosiglitazone. Increased vascular 
permeability through high vascular endothelial growth factor secretion and decreased systemic vascular resistance are 
non-kidney factors that contribute to this edema[188,189].

Recently, dual PPAR-α/γ agonists emerged as a strategy to lessen undesirable side effects related to PPAR-γ agonism. 
In a randomized controlled clinical trial, Saroglitazar (PPAR-α/γ agonist, 4 mg) significantly improved alanine transa-
minase, liver fat content, insulin resistance, and atherogenic dyslipidemia in participants with NAFLD/nonalcoholic 
steatohepatitis (NASH)[190]. In an in vitro study on HepG2 cells, saroglitazar prevented HSC activation from quiescent 
cells to highly proliferative and fibrogenic cells. Pro-inflammatory cytokines, upregulated in NAFLD, can activate hepatic 
stellate cells, causing increased collagen deposition that initiates fibrogenesis. In turn, the use of saroglitazar reduced the 
expression of pro-inflammatory [tumor necrosis factor-alpha (Tnfα), interleukin (IL)-1β, and IL-6] and pro-fibrogenic 
(monocyte chemoattractant protein-1, transforming growth factor beta, collagen type I alpha 1 chain, and α-smooth 
muscle actin) genes in HSC[191]. Evidence is growing in favor of dual PPARα/γ agonism as a candidate for the treatment 
of NAFLD/NASH due to findings of improvements in all components responsible for these conditions.

In agreement with PPARα beneficial effects on the liver, PPARβ/δ possesses anti-inflammatory effects in the liver by 
inhibiting NF-κB activity by directly binding to its subunit p65[192-195]. The PPAR-β/δ agonist GW0742 Led to the 
modulation of the inflammatory response induced by NF-κB in rats, reducing the release of pro-inflammatory cytokines 
and neutrophils infiltration into the liver[193,196]. During the induction of inflammatory responses, the inactivated PPAR
β/δ participates in the activation of NF-κB p65. Activation by ligand PPARβ/δ results in a lack of this cooperation, and 
consequently, activation of PPARβ/δ interferes with the function of NF-κB p65. As a result, inflammatory responses 
caused by a high concentration of glucose, activation of the receptor for TNF-α, IL-1β, or activation of TLR4 are reduced
[197]. Along with the anti-inflammatory effects, GW0742 has recently mitigated hepatic steatosis through attenuating 
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Figure 5 Beneficial effects of Peroxisome proliferator-activated receptor activation on the liver. Peroxisome proliferator-activated receptor α 
(PPARα) activation mitigates hepatic steatosis through the activation of genes related to mitochondrial biogenesis and beta-oxidation, such as Pgc1α and Cpt1a. 
Dual PPARα/γ agonists emerge as promising candidates to treat nonalcoholic steatohepatitis once this approach reduces hepatic stellate cells activation, keeping 
their quiescent stage and impeding fibrogenesis. PPARβ/δ/δ activation entails antisteatotic effects through alleviating the hepatic endoplasmic reticulum stress, 
inflammation, and apoptosis. Made with Biorender (www.biorender.com). PPAR: Peroxisome proliferator-activated receptor; Pgc1α: Peroxisome proliferator-activated 
receptor gamma coactivator-1 alpha; Cpt1a: Carnitine palmitoyltransferase 1a; HSC: Hepatic stellate cell; ER: Endoplasmic reticulum. Created by BioRender.

hepatic ER stress (reduced p-eIF2α/ATF4/CHOP expression), yielding anti-apoptotic signals and favored beta-oxidation 
over lipogenesis in high-fat-fed mice[198].

Despite this, the contribution of PPARβ/δ to hepatic lipid metabolism is still controversial. PPAR-β/δ null mice on a 
high-fat diet showed an increased rate of hepatic VLDL production and an increase in the plasma VLDL apoB48, apoE, 
apoAI, and apoAII levels, as well as a reduction in hepatic lipid stores[178]. However, the other potent PPARβ/δ agonist, 
GW501516, increased the expression of the lipogenic enzyme ACC2 and consequently increased the hepatic TAG content 
in db/db mice[192,199]. The role that PPAR-β/δ has on liver metabolism is not defined as there is not a PPAR-β/δ 
agonist available to the population[200]. Figure 5 depicts the beneficial effects of PPAR activation on the liver. Table 1 
shows the main mechanisms and endpoints of PPAR agonists on experimental, in vitro, and clinical backgrounds.

CONCLUSION
Overall, there is no doubt that PPARs are promising therapeutic targets for metabolic syndrome, insulin resistance, 
dyslipidemia, and NAFLD/NASH. However, more research, improvement, and testing are needed to apply PPAR-
targeted agents to human metabolic diseases with increased safety and efficacy. Much as PPARs agonists are widely 
prescribed to treat dyslipidemia, hypertension, and T2DM, dual agonists are promising in the context of obesity due to 
the combination of anti-inflammatory, lipid oxidation, insulin-sensitizing, and thermogenesis activation, which prevails 
from one of the isoforms actions and might be highlighted with suitable modulation of their combined activation. 
Considering that the jury is still out on defined drug therapy for obesity and NAFLD (one of obesity’s more prevalent 
comorbidity), PPARs entail a potent target to reach adequate control of the glucolipotoxicity that trigger metabolic 
diseases, whether as part of a combination of different PPARs isoforms or combined with agents from other drug classes.

Table 1 Summary of evidence on PPARs agonists on metabolic outcomes in clinical and experimental studies

Model PPAR agonist Effect/mechanism Ref.

HF diet fed C57BL/6 
mice (14 wk)

WY14643 (3.0 mg/kg BM) Decreased body mass and increased hepatic beta-oxidation Barbosa-da-Silva et al
[57], 2015

HF diet fed C57BL/6 
mice (14 wk)

WY14643 (2.5 mg/kg BM) Decreased insulin, hepatic steatosis, and enhanced 
mitochondria per area of liver tissue

Veiga et al[58], 2017

HF diet fed C57BL/6 
mice (14 wk)

WY14643 (2.5 mg/kg BM) Browning of subcutaneous WAT, increased thermogenesis Rachid et al[59], 2018

HF diet or high-fructose-
fed C57BL/6 mice (17 
wk)

WY14643 (3.5 mg/kg BM) Reduced whitening in HF-fed mice via increased VEGFA 
and reduced inflammation

Miranda et al[62], 
2020

http://www.biorender.com
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HF diet fed C57BL/6 
mice (15 wk)

Fenofibrate (100.0 mg/kg BM) Increased irisin-Pgc1α-Prdm16 and induced thermogenic 
beige adipocytes

Rachid et al[63], 2015

High-fructose diet-fed 
C57BL/6 mice (11 wk)

GW501516 (3.0 mg/kg/d) Potent anti-inflammatory effects that reversed adipocyte 
hypertrophy

Magliano et al[64], 
2015

Knockout mice for Pparγ 
in collecting duct

Rosiglitazone (320.0 mg/kg diet) PPARγ regulates sodium transport in the collecting ducts 
and mediates the rosiglitazone-induced edema

Zhang et al[77], 2005

Human subcutaneous 
white adipose tissue 
biopsy

Pioglitazone (45 mg daily for two 
months)

Pioglitazone reduced CD68 and MCP-1 expression in 
adipose tissue, improving insulin sensitivity

Di Gregorio et al[78], 
2005

HF diet fed C57BL/6 
mice (16 wk)

Tesaglitazar (4 mg/kg BM) PPARα/γ synergism treated dysbiosis and favored thermo-
genesis

Miranda et al[80], 
2023

Human jejunal biopsies Cells treated with GW7647 (600 nM) or 
GFT505 (1 μM) for 18 h

Intestinal PPARα activation induces HDL production Colin et al[82], 2013

Knockout mice 25.0% fish oil in the diet Increased adiponectin, improved glucose metabolism, and 
islet hypertrophy

Nakasatomi et al
[112], 2018

Non-obese diabetic mice 0.1% fenofibrate in the diet Anti-inflammatory, antiapoptotic effects, and enhanced islet 
innervation, ameliorating glucose handling

Holm et al[114], 2019

Monosodium glutamate 
induced obese rats

100 mg/kg fenofibrate for 12 wk Long-term treatment disrupted beta cell function due to 
increased NF-κB and iNOS expression

Liu et al[115], 2011

Rat pancreatic islets in 
vitro

300 microM bezafibrate for 8 h Bezafibrate enhanced GSIS through Pparα activation in 
short-term culture. Long-term culture caused beta cell 
dysfunction due to overstimulation

Yoshikawa et al[116], 
2001

Diabetic subjects 400 mg bezafibrate for two years Bezafibrate avoided the progressive decline of beta cell 
function and insulin resistance increase

Tenenbaum et al
[117], 2007

Subjects diagnosed with 
type 2 diabetes and 
dyslipidemia

Pioglitazone 30 mg/d for 12 wk and 45 
mg/d for additional 12 wk; rosigl-
itazone 4 mg/d for 12 wk and 8 mg/d 
for additional 12 wk

Pioglitazone had better effects regarding improvements in 
triglycerides, HDL cholesterol, LDL particle concentration, 
and LDL particle size

Goldberg et al[127], 
2005

db/db mice Pioglitazone 15 mg/kg BM for 18 d Restoration of pancreatic islet function with increased 
expression of insulin and NK6 Homeobox 1 expression

Collier et al[132], 
2021

Knockout-Ay mice High-fat diet plus pioglitazone 0.02% 
for 6 wk

Islet preservation through ER stress and inflammation 
alleviation

Hong et al[133], 2018

Diabetic Wistar rats (low 
streptozotocin dose)

10 mg/kg pioglitazone or vildagliptin or 
their combination for 4 wk

Vildagliptin maximized pioglitazone effects on inflam-
mation and oxidative stress attenuation

Refaat et al[134], 2016

Type 2 diabetic patients Sitagliptin 100 mg/d or Pioglitazone 30 
mg/d or their combination for 12 wk

Both drugs exerted complementary effects on blood glucose 
control

Alba et al[135], 2013

Non-diabetic 
hypertensive subjects

Telmisartan (80 mg/d) for 6 wk Telmisartan enhanced insulin sensitivity in hypertensive 
patients independent of adiponectin induction

Benndorf et al[136], 
2006

High-fat diet-fed mice 
(16 wk)

Telmisartan (5 mg/kg BM) alone or in 
combination with sitagliptin (1 g/kg 
BM) or metformin (300 mg/kg BM)

Treated animals exhibited marked mitigation of hepatic 
steatosis and islet hypertrophy; telmisartan combination 
with sitagliptin normalized alpha and beta cell mass

Souza-Mello et al
[93], 2010; Souza-
Mello et al[97], 2011

High-fat diet-fed mice 
(15 wk)

Telmisartan (10 mg/kg) Amelioration of endocrine pancreas structure and function, 
with enhanced islet vascularization and reduced apoptosis 
rate

Graus-Nunes et al
[96], 2017

db/db mice Telmisartan (3 mg/kg BM), linagliptin 
(3 mg/kg BM) or their combination for 
eight weeks

Combined therapy provided better results than the 
monotherapies on glucose homeostasis, islet cell functions, 
and structure via reduced oxidative stress

Zhao et al[137], 2016

High-fat-fed foz/foz 
obese/diabetic mice for 
16 wk

WY14643 (0.1% w/w) for 10 d or 20 d PPARα activation mitigated steatosis, and hepatocyte 
ballooning, besides reducing NF-κB and JNK activation. 
Persistent adipose-derived MCP1 enhanced levels may limit 
its property to treat NASH

Larter et al[171], 2012

High-fructose diet-fed 
mice (17 wk)

WY14643 (3.5 mg/kg BM) or linagliptin 
(15.0 mg/kg BM) or their combination

The WY14643 monotherapy or its combination with 
linagliptin-treated dysbiosis, controlling endotoxemia and 
mitigating liver steatosis

Silva-Veiga et al
[173], 2020

Type 2 diabetic patients Metformin 2 g/d + Pioglitazone (15 
mg/d, 30 mg/d, or 45 mg/d)

All pioglitazone doses exerted similar effects, with 
mitigation of liver steatosis and inflammation, with 
improved systemic insulin resistance

Della Pepa et al[182], 
2021

CCl4-injured mice Rosiglitazone (5 mg/kg BM) for two 
weeks

Rosiglitazone blocked liver fibrosis progression through the 
down-regulation of fibrogenic genes and HSCs inactivation

Liu et al[185], 2020

Patients with Saroglitazar 1 mg, 2 mg, or 4 mg for 16 Saroglitazar 4 mg significantly mitigated insulin resistance Gawrieh et al[190], 
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NAFLD/NASH wk and atherogenic dyslipidemia 2021

HF diet fed mice (14 wk) GW0742 (1 mg/kg BM) for four weeks PPARβ/δ mitigated hepatic steatosis through improved 
insulin resistance and ER stress alleviation

Silva-Veiga et al
[198], 2018

HF: High-fructose; NAFLD: Non-alcoholic fatty liver disease; NASH: Nonalcoholic steatohepatitis; PPAR: Peroxisome proliferator-activated receptors; 
WAT: White adipose tissue; ER: Endoplasmic reticulum; NF-κB: Noncanonical nuclear factor-kappaB; HSCs: Hepatic stellate cells; iNOS: Inducible nitric 
oxide synthase; GSIS: Glucose-stimulated insulin secretion; HDL: High-density cholesterol; LDL: Low-density cholesterol.
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