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Abstract
Glioblastoma Multiforme (GBM) is a grade IV astrocy-
toma, with a median survival of 14.6 mo. Within GBM, 
stem-like cells, namely glioblastoma stem cells (GSCs), 
have the ability to self-renew, differentiate into distinct 
lineages within the tumor and initiate tumor xenografts 
in immunocompromised animal models. More impor-
tantly, GSCs utilize cell-autonomous and tumor micro-

environment-mediated mechanisms to overcome cur-
rent therapeutic approaches. They are, therefore, very 
important therapeutic targets. Although the functional 
criteria defining GSCs are well defined, their molecular 
characteristics, the mechanisms whereby they establish 
the cellular hierarchy within tumors, and their contribu-
tion to tumor heterogeneity are not well understood. 
This review is aimed at summarizing current findings 
about GSCs and their therapeutic importance from a 
molecular and cellular point of view. A better charac-
terization of GSCs is crucial for designing effective GSC-
targeted therapies.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
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Core tip: Stem-like cells in glioblastoma, a malignant 
brain tumor, have increased tumorigenic capacity, 
generate tumor lineages and exhibit marked resistance 
to current therapies. A better understanding of these 
stem-like cells is necessary for designing new effective 
treatments. This review discusses the molecular char-
acteristics of these cells and their therapeutic impor-
tance.
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GLIOBLASTOMA MULTIFORME
Glioblastoma Multiforme (GBM), classified by World 
Health Organization (WHO) as grade IV astrocytoma, is 
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a deadly primary brain malignancy with more than 10000 
new cases in the United States annually (http://www.cb-
trus.org). Despite the aggressive treatment options involv-
ing surgery and concomitant chemoradiotherapy, median 
survival is 14.6 mo[1]. The fact that survival has improved 
by only a few months over the past 50 years highlights 
the need for a better understanding of  the disease and 
the design of  informed therapies[2].

GBM is a highly heterogeneous tumor with distinctive 
histologic hallmarks including high cell density, intratu-
moral necrosis, vascular hyperplasia and invasion through 
brain parenchyma[3]. This heterogeneity is also displayed 
at the microscopic level, where a cellular hierarchy is 
dominated by the presence of  stem-like cells, namely 
glioblastoma stem cells or GSCs[4]. In this review we will 
discuss the molecular and phenotypic characteristics of  
GSCs and their therapeutic implications. 

Cancer Stem Cell Hypothesis and 
Glioblastoma Stem Cells
Within multi-cellular systems, cells specialize to undertake 
different responsibilities, in order to maintain homeo-
stasis. As a consequence of  this specialization, every cell 
is not equal in its self-renewal and differentiation ability. 
Some cells are more stem-like, meaning that they can self-
renew and give rise to different progeny through more 
restricted intermediate progenitors (Figure 1A)[5]. The 
extent of  self-renewal is dictated by the developmental 
stage that cells are in and varies from tissue to tissue. For 
example, in tissues such as the gastrointestinal tract or he-
matopoietic system, where cellular turnover is high, adult 
stem cells self-renew more often, compared to more qui-
escent tissues such as the brain[6,7]. On the other hand, as 
cells differentiate, their self-renewal ability decreases and 
they adopt properties related to their tissue (Figure 1A)[8]. 
The differences in differentiation potential define a cel-
lular hierarchy within these systems, where stem cells rep-
resent the top of  this hierarchy. Lineage restriction and 
differentiation during physiological processes are mostly 
believed to be irreversible. However, pathologic condi-
tions or experimental manipulations can cause de-differ-
entiation[4,9]. Therefore, it is important to understand how 
cellular hierarchy is established and maintained in tumors 
in order to understand tumor biology.

Guided from research in liquid tumors, the idea of  
cancer cells with stem-like properties has revolutionized 
the field of  cancer biology[10,11]. Although initially thought 
to be controversial, cancer stem cells (CSCs) are a proven 
concept for many liquid and solid tumors, including 
GBM. 

In liquid tumors, cellular hierarchy is very well defined 
by the expression of  surface markers. These hierarchically 
distinct populations were easily isolated by Fluorescence-
Assisted Cell Sorting (FACS) via the expression of  surface 
markers and their tumor formation ability was assessed 
in vivo[10]. These surface markers were then investigated in 
many solid tumors and some of  them are still among the 

best-studied CSC markers. 
Glioblastoma cells need to fulfill specific criteria to 

be classified as GSCs. In particular, they should be able 
to: (1) self-renew (Figure 1A); (2) differentiate into distinct 
lineages, a property termed multipotency (Figure 1A); and 
(3) initiate tumors in animal models, which recapitulate the 
original disease phenotype and heterogeneity (Figure 1A 
and B)[12,13]. Self-renewal is assessed with in vitro tumor-
sphere formation assay, a system borrowed form neural 
stem cell culture. In this assay, single cells are plated in 
suspension and their sphere formation ability is evalu-
ated over serial passaging, which is an indicator of  long-
term self-renewal[14]. In vivo self-renewal is assayed by 
serial xenograft tumor formation experiments[11-13] (Figure 
1B). The differentiation potential of  GSCs is assessed via 
analysis of  tumor-derived lineages in vitro and in vivo[15-17].

Evidence for GSCs first came from Dirks and col-
leagues, who isolated cells from human GBM samples 
based on expression of  the cell surface glycoprotein 
CD133 (Prominin1/PROM1)[12,13]. They showed that 
these cells initiated orthotopic tumor xenografts in im-
munodeficient mice more efficiently than cells that did 
not express CD133.

Although the functional criteria defining GSCs are 
completely defined, the molecular characteristics of  
these cells are not understood. As expected by the het-
erogeneous histology of  GBM, there is extensive cellular 
heterogeneity within GBM cells, and GSCs as well. The 
complex interplay of  signaling pathways and lack of  uni-
versal molecular markers identifying GSCs further com-
plicate the study of  these cells. More importantly, GSCs 
are resistant to chemoradiotherapeutic approaches and 
are, therefore, believed to cause tumor recurrence[18-20]. 
Thus, it is of  major importance to understand the biolo-
gy of  these cells and their contribution to tumorigenesis, 
in order to overcome the problems current therapeutic 
approaches encounter. This review will focus on GSC 
markers, their molecular signatures and the signaling 
pathways important for their biology. Finally, we will dis-
cuss the therapeutic importance of  these cells. 

Molecular Markers
CD133, a pentaspan transmembrane protein of  unknown 
function, is one of  the best-studied GSC markers to 
date. CD133 expression has been observed during em-
bryonic development, as well as in adult neural stem cells 
and ependymal cells. However, CD133 knockout mice 
only have a mild retinal phenotype[21-23]. When isolated 
and injected into immunodeficient animals, CD133+ 
GBM cells are more tumorigenic than CD133- cells and 
produce xenograft tumors that phenocopy the original 
patient tumor[13]. Furthermore, knockdown of  CD133 
with shRNA impairs GSC self-renewal[24]. However, the 
facts that CD133- cells can also generate tumors and that 
some tumors do not have a CD133+ population suggest 
that CD133 is not a universal GSC marker[25-31]. 

GSCs were also expected to share common markers 
with neural stem cells, their normal counterparts, based 
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on the concept of  stem cells sharing common signaling 
pathways. With this rationale, expression of  neural stem 
cell markers was analyzed in GBM tumors. GSCs were 
shown to have increased expression of  Nestin, an inter-
mediate filament expressed in neural stem cells in neuro-
genic niches[18,32,33]. Besides Nestin, GSCs are enriched for 
Sox2, a transcription factor associated with multipotency 
and pluripotency[34,35]. 

Comparative gene expression analysis led to identifi-
cation of  more GSC markers, including Oct4, SSEA-1/
CD15, Bmi-1, Musashi-1, Nanog, integrin-α6, L1CAM, 
A2B5 and ABC-type transporters, whose expression 
defines the side population (SP) on flow cytometric 
analysis, through the ability to extrude Hoechst dye[25,35-40]. 
Interestingly, some of  these markers are expressed in 
embryonic stem cells, suggesting GSC overlap not only 
with NSCs but also with less differentiated stem cells as 
well. However, none of  these markers are universal. Fur-
thermore, the intracellular localization of  some of  these 
markers makes them less desirable candidates for selec-
tive therapeutic targeting. 

SIGNALING PATHWAYS REGULATING 
GSC BIOLOGY
In addition to oncogenic pathways globally important to 
tumor biology, signaling pathways that are important for 
maintenance of  self-renewal and regulation of  differen-
tiation receive attention in cancer stem cell biology (Table 

1). In the context of  GSCs, pathways known to regulate 
neural development are of  major interest. Various signal-
ing pathways influence GSC biology by either maintain-
ing self-renewal or regulating differentiation. However, 
certain pathways can regulate either self-renewal or dif-
ferentiation in the appropriate context (Table 1). 

Self-renewal
Studies of  pathways involved in GSC self-renewal gained 
momentum when Fine and colleagues started cultur-
ing tumor cells in serum-free conditions[41]. By using the 
mitogens epidermal growth factor (EGF) and fibroblast 
growth factor (FGF), they limited differentiation and 
promoted GSC self-renewal. These mitogens act through 
their receptor tyrosine kinases (RTKs) and induce activa-
tion of  downstream pathways such as the Phosphoinosit-
ide 3-kinase/Akt (PI3K/Akt) and Mitogen-Activated Pro-
tein Kinase (MAPK), to induce proliferation, survival and 
tumorigenicity[41,42]. Furthermore, blocking the PI3K/Akt 
pathway has been shown to impair GSC self-renewal and 
tumorigenicity. Finally, knockdown of  CD133 in GSCs 
causes downregulation of  Akt phosphorylation, further 
highlighting the role of  the PI3K/Akt pathway in GSC 
biology[43,44].

Originally identified in genetic screens in Drosophila 
as a master regulator of  neurogenesis, Notch signaling 
plays diverse roles in nervous system development, in-
cluding maintenance of  self-renewal and regulation of  
fate decisions in neural and glial lineages[45-47]. Upon bind-
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Figure 1  Biological significance of glioblastoma stem cells. A: Glioblastoma stem cells (GSCs) have the ability to self-renew and differentiate into distinct lin-
eages through different intermediate progenitors, a property termed multipotency. Co-existence of cells with different differentiation capacities defines the cellular 
hierarchy within the tumor; B: GSCs have the ability to initiate tumors more efficiently than differentiated cells. Tumor initation ability can be tested via intracranial xe-
nograft models in immunodeficient animals. (1) These tumors can be imaged with Magnetic Resonance Imaging (MRI); (2) Microscopic analysis shows that xenografts 
maintain the histologic heterogeneity of the patient tumor, including the invasion of normal surrounding brain (arrowheads) (hNuc: human nuclear antigen marking hu-
man tumor cells in mouse brain, GFAP: Glial Fibrilary Acidic Protein, DAPI: nuclear counterstain); and (3) GSCs promote tumor heterogeneity by giving rise to distinct 
tumor lineages including tumor endothelium and pericytes, and maintain the phenotype of the parent tumor; C: GSCs are resistant to current therapeutic approaches 
causing relapse of the tumor. 
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Second, blockage of  TGF-β signaling decreases perivas-
cular CD44high/Id1high GSCs, via repression of  inhibitors 
of  DNA-binding proteins Id1 and Id3[58].

Sonic Hedgehog (Shh-Gli) signaling, which is highly 
important for brain and spinal cord patterning during em-
bryonic development, also plays crucial functions in GSC 
maintenance[59,60]. It has been shown to promote GSC 
self-renewal and expression of  stem cell genes, whereas 
its blockage leads to apoptosis, delay in tumorigenesis and 
inhibition of  GSC self-renewal and migration[56,61-66]. 

The Wnt/β-catenin pathway induces proliferation of  
progenitor cells within gliomas[15,67]. Some reports suggest 
that Wnt signaling is important for GSC self-renewal. 
Overexpression of  Wnt ligands, Wnt3a and Wnt1, is 
observed in GSCs[67]. Other Wnt pathway components 
were shown to promote GSC self-renewal and tumorige-
nicity. Some of  pathway’s downstream effectors such as 
β-catenin, Lgr5, Dishevelled 2 and Frizzled 4 are associ-
ated with negative prognosis[66,68-70]. FoxM1, which pro-
motes nuclear localization of  β-catenin, was also shown 
to be critical for GSC maintenance and tumorigenesis[71].

Differentiation
Bone morphogenic protein (BMP), a member of  TGF-β 
superfamily, functions as a differentiation signal within 
GBM, as opposed to the previously discussed roles of  
other members of  the TGF-β family in maintenance 
of  self-renewal[34,72]. The difference between BMP and 
TGF-β’s effects on GSC biology can be ascribed to dis-
tinct signaling cascades, even though they belong to the 
same superfamily of  ligands. Also important for astrocyt-
ic differentiation in development, BMP4 treatment inhib-
its asymmetric division of  GSCs, thereby blocking their 
self-renewal and depleting the stem cell compartment of  
the tumor[73,74]. Treatment with BMP4 leads to differentia-
tion and proliferation block. However, a subset of  GSCs 
manages to escape this differentiation cue via epigenetic 
silencing of  BMP receptor 1B (BMPR1B)[74].

Although highly important for self-renewal, reports 
also suggest that Notch signaling is important for trans-
differentiation of  GSCs into tumor-derived endothe-
lium[16]. Similarly, TGF-β was shown to induce GSC 
differentiation into vascular pericytes, supporting vessel 
formation and leading to further tumor growth[17]. 

MicroRNAs
An additional level of  complexity in GSC biology is ex-
hibited by regulatory non-coding RNAs, which are fine 
tuners of  gene expression. Among them, microRNAs 
(miRNAs) have the ability to modify gene expression 
levels by specifically binding mostly to the 3’-UTRs of  
genes and causing their degradation through the RNAi 
machinery[75]. Besides being highly important for regula-
tion of  pluripotency and reprogramming, miRNAs play 
important roles in GBM tumorigenesis and GSC biology. 
Similar to other molecular markers enriched in GSCs, 
miRNAs regulating neural stem cell biology are also 
of  main interest in GSC biology. miRNAs upregulated 

ing to its ligands (Delta-like and Jagged), heterodimeric 
Notch receptors (Notch1-4) get cleaved by γ-secretase 
in the cytoplasm, releasing the Notch intracellular do-
main (NICD). NICD translocates into the nucleus where 
it acts as co-activator for transcription of  the Hes and 
Hey families of  genes[48]. These genes are transcriptional 
repressors of  neurogenic genes, thereby causing mainte-
nance of  stemness in activated cells[49]. In GBM, Notch 
signaling is involved in several distinct processes in tu-
morigenesis, by regulating both self-renewal and differen-
tiation of  GSCs[16,50,53]. Blockage of  Notch signaling with 
γ-secretase inhibitors inhibits self-renewal, as assayed by 
tumorsphere forming ability, and causes depletion of  
the CD133+ GSC population[54-56]. Furthermore, Numb, 
which prevents NICD from travelling to the nucleus and 
thus inhibits downstream signaling upon Notch activa-
tion, was shown to be asymmetrically distributed within 
GSCs and to promote asymmetric division. Asymmetric 
division of  GSCs gives rise to two distinct daughter cells: 
a stem cell (GSC); and a more restricted and differentiat-
ed cell[57]. These findings support a role for Notch signal-
ing in the maintenance of  GBM’s stem cell compartment. 

Inhibitors of  Notch pathway components represent 
promising therapeutic candidates in GBM. However, 
the overlapping roles with normal neural and other adult 
stem cell maintenance raises the question of  toxicity. Of  
note, there are ongoing phase Ⅱ trials with Notch inhibi-
tors in GBM patients (www.clinicaltrials.gov). 

Transforming growth factor-β (TGF-β) signaling pro-
motes GSC self-renewal through regulation of  distinct 
mechanisms. First, it was shown to act through SRY-Re-
lated HMG-Box transcription factors Sox2 and Sox4, fac-
tors important for GSC biology, to induce self-renewal[34]. 
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Table 1  Major signaling pathways and their roles in 
glioblastoma stem cell biology

Signaling pathway Function Ref.

Self-renewal
   Notch Signaling Maintenance of GSCs [50-57]

Tumorsphere formation
Tumorigenesis

Asymmetric division
   TGF-β Signaling Regulation of self-renewal [34,58]

Maintenance of perivascular GSCs
   Sonic Hedgehog 
   Signaling

Promotion of self-renewal and migration [56,61-66]
Upregulation of stem cell associated genes

Tumorigenesis
   Wnt/b-catenin 
   Signaling

Self-renewal and maintenance of GSCs [15,66-71]
Tumorigenesis

Associated with bad prognosis
   PI3K/Akt 
   Signaling

Promotion of GSC self-renewal in vitro [41-44]
Proliferation and survival of GSCs

Tumorigenesis
   MAPK Signaling Proliferation and survival of GSCs [41]
Differentiation
   BMP Signaling Inhibition of asymmetric division [72-74]

Differentiation and proliferation block
   Notch Signaling Trans-differentiation to tumor-derived 

endothelium
[16]

   TGF-β Signaling Trans-differentiation to vascular pericytes [17]
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GSC: Glioblastoma stem cell; TGF: Transforming growth factor.



in GBM and particularly in GSCs have anti-apoptotic, 
anti-differentiation, pro-proliferative and pro-invasion 
properties[40,76,77]. On the other hand, miRNAs promoting 
differentiation were shown to be downregulated in GBM, 
including miR-124, which is important for neural differ-
entiation[78-81].

Stem Cell Niche and Tumor 
Microenvironment
To better understand the interplay of  different signal-
ing pathways mentioned above and how they regulate 
GSC biology, we need to study the niches in which GSCs 
reside. Besides providing crucial signals for GSC mainte-
nance, stem cell niches and the tumor microenvironment 
are critical factors in the response to therapy.

Vascular niche
Endothelial cells provide signals required for self-renewal 
of  neural stem cells and many other adult stem cell popu-
lations[82]. Similar to their normal counterparts, GSCs 
reside in a perivascular niche, where they maintain close 
contact with CD34+ endothelial cells[83-85]. This close 
contact facilitates presentation of  Notch ligands on the 
surface of  endothelial cells. These ligands activate Notch 
signaling in GSCs, thereby promoting self-renewal[85]. 

The perivascular niche is also subject to bidirectional 
cues coming from GSCs. CD133+ GSCs express higher 
levels of  vascular endothelial growth factor (VEGF), 
leading to angiogenesis and increased vascularity of  the 
tumor, when compared to their CD133- counterparts[86]. 

New evidence for trans-differentiation of  GSCs into 
endothelial cells and pericytes further suggests that GSCs 
play a central role in maintaining the tumor microenvi-
ronment and their own niches, when presented with ap-
propriate signaling cues[16,17]. 

Necrotic niche
As mentioned earlier, GBM is characterized not only by 
extensive vascular hyperplasia but also pronounced intra-
tumoral necrosis. One of  the main histologic hallmarks 
of  GBM is a phenomenon called pseudopalisading ne-
crosis (PPN), where densely packed tumor cells surround 
a necrotic area[87]. Although the etiology and biological 
significance of  these areas are not well understood, they 
are believed to be regions of  active tumor growth and 
neo-vascularization. Considering the importance of  hy-
poxia in promoting self-renewal in embryonic stem cells 
and NSCs, pseudopalisades represent plausible niches 
for GSCs[88,89]. This hypothesis is further supported by 
studies showing immunoreactivity for CD133 in pseudo-
palisades[90]. Furthermore, hypoxia leads to activation of  
angiogenesis and neo-vascularization through the upregu-
lation of  VEGF in GSCs[91,92]. Some evidence also sug-
gests that hypoxia reprograms CD133- GSCs to become 
CD133+ and induces Notch signaling, whose importance 
for GSC biology was mentioned above[88,89]. 

Keeping these findings in mind, the possibility of  a 
necrotic niche for GSCs is biologically intriguing and rep-
resents a therapeutic challenge for systemic drug delivery 
methods, since these areas are devoid of  blood vessels. 

Invasion
The most malignant feature of  GBM is its invasion of  
brain parenchyma. GBM cells infiltrate normal brain tis-
sue and can be found centimeters away from the tumor 
core[93]. The vast majority of  recurrence after surgery and 
chemoradiotherapy occurs within 2 cm of  the resection 
cavity suggesting that these invading cells also have tu-
morigenic capacity[94-96]. 

Expression of  C-X-C chemokine receptor type 4 
(CXCR4) and its ligand, stromal derived factor 1α (SDF-
1α), which are important regulators of  invasion of  GBM 
cells, is enriched in GSCs[91]. This signaling pathway also 
mediates recruitment of  GSCs towards endothelium, 
causing further invasion, differentiation and endothelial 
cell proliferation via VEGF expression[92]. 

GSCs as Therapeutic Targets
Standard care for GBM is surgical resection, followed by 
concomitant temozolomide, an alkylating agent, and ra-
diotherapy. GSCs represent important therapeutic targets 
because they have intrinsic machinery that overcomes 
current chemoradiotherapeutic approaches (Figure 1C). 
Some of  the molecular mechanisms underlying GSC re-
sistance to chemoradiotherapy are discussed below. 

Chemotherapy resistance
GSCs are believed to resist chemotherapy via several dis-
tinct mechanisms. One such mechanism involves the ac-
tive transport of  chemotherapeutic agents to the extracel-
lular space via ABC-type transporters on the cell surface. 
This mechanism also defines the side population (SP) of  
GBM cells on flow cytometry, through the exclusion of  
Hoechst dye[97]. Enrichment of  stem cell markers such 
as CD133, CD117, CD90, CD71 and CD45 is observed 
in cells resistant to lethal doses of  chemotherapeutic 
drugs[98]. Furthermore, CD133 expression is increased in 
recurrent tumors. Transcriptional analysis of  CD133+ 
GSCs showed that these cells have increased expression 
of  anti-apoptotic genes, suggesting that GSCs have in-
trinsic mechanisms of  chemoresistance[36]. 

In line with these observations, more compelling 
evidence came from Parada and colleagues, who showed 
that a restricted Nestin+ GSC population was able to re-
generate tumors after temozolomide treatment. Selective 
ablation of  this population led to tumor growth arrest, 
consistent with the notion that GSCs resist conventional 
chemotherapy and cause relapse[18]. 

Another mechanism for chemoresistance lies in the 
cell cycle profiles of  GSCs. Most chemotherapeutic 
agents target actively cycling cells. However, GSCs are 
mostly dormant or slow-cycling cells, thereby resisting 
such therapies[99].
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Radioresistance 
In addition to their chemoresistance, GSCs evade radia-
tion, with radiation-resistant clones showing increased ex-
pression of  GSC markers. More importantly, the Notch 
and TGF-β signaling pathways, which were mentioned 
earlier as critical for GSC self-renewal, promote radiore-
sistance as well[51,100]. GSCs have increased DNA repair 
capacity. CD133+ GSCs selectively activate Chk1 and 
Chk2 kinases upon radiation, making them less suscep-
tible to radiation-induced apoptosis[19]. 

CONCLUSION
In this review, we have summarized recent advances in 
understanding the biology of  GSCs. We have focused on 
molecular markers commonly used to identify GSCs and 
signaling pathways that regulate important GSC charac-
teristics, such as self-renewal, differentiation and therapy 
resistance. Due to their high tumorigenic potential and 
resistance to current therapies, GSCs represent critical 
drug targets. However, the lack of  universal markers 
identifying GSCs, the complexity of  signaling cascades 
regulating GSC biology and the large overlap between 
tumorigenic pathways active in both GSCs and normal 
stem cells complicate the development of  GSC-targeted 
therapeutics. A better understanding of  GSC biology and 
their contribution to cellular hierarchy and tumor het-
erogeneity is crucial for designing effective new therapies 
against gliomas and other brain malignancies. 
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