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Abstract
Autophagy, a cellular degradative process, has emerged as a key regulator of 
cellular energy production and stress mitigation. Dysregulated autophagy is a 
common phenomenon observed in several human diseases, and its restoration 
offers curative advantage. Non-alcoholic fatty liver disease (NAFLD), more 
recently renamed metabolic dysfunction-associated steatotic liver disease, is a 
major metabolic liver disease affecting almost 30% of the world population. 
Unfortunately, NAFLD has no pharmacological therapies available to date. 
Autophagy regulates several hepatic processes including lipid metabolism, 
inflammation, cellular integrity and cellular plasticity in both parenchymal 
(hepatocytes) and non-parenchymal cells (Kupffer cells, hepatic stellate cells and 
sinusoidal endothelial cells) with a profound impact on NAFLD progression. 
Understanding cell type-specific autophagy in the liver is essential in order to 
develop targeted treatments for liver diseases such as NAFLD. Modulating 
autophagy in specific cell types can have varying effects on liver function and 
pathology, making it a promising area of research for liver-related disorders. This 
review aims to summarize our present understanding of cell-type specific effects 
of autophagy and their implications in developing autophagy centric therapies for 
NAFLD.

Key Words: Autophagy; Non-alcoholic fatty liver disease; Hepatocytes; Macrophages; 
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Core Tip: This review presents a succinct overview of the cell-specific distinct effects of autophagy modulation on hepatic 
pathophysiology and its implication on the progression of non-alcoholic fatty liver disease (NAFLD). The effects of 
autophagy alteration on hepatocyte lipid metabolism, macrophage polarization and hepatic stellate cell plasticity are 
reviewed and discussed with reference to NAFLD pathobiology.

Citation: Raza S, Rajak S, Singh R, Zhou J, Sinha RA, Goel A. Cell-type specific role of autophagy in the liver and its implications in 
non-alcoholic fatty liver disease. World J Hepatol 2023; 15(12): 1272-1283
URL: https://www.wjgnet.com/1948-5182/full/v15/i12/1272.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i12.1272

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome and a risk factor for diabetes, 
cardiovascular ailments, and hepatocellular cancers[1-3]. It is classically defined as hepatic steatosis which has developed 
in individuals with no or moderate alcohol consumption. The initial clinical presentation of NAFLD involves benign 
steatosis that may progress to a more severe form of the disease termed non-alcoholic steatohepatitis (NASH)[4]. NASH is 
characterized by increased hepatocyte damage, hepatocyte ballooning, inflammation, and fibrosis[5]. Several factors 
including high calorie diets, sedentary lifestyle, gut-microbiome, and genetic predisposition, constitute a multiple-hit 
basis of the progression of benign steatosis to NASH in certain individuals[6,7]. NASH is one of the leading causes of 
liver transplants worldwide[5]. Presently, there are no approved drug therapies for NAFLD and NASH. As physical 
activity is a key determinant of metabolic control, lifestyle modifications remain the only available treatment so far[8]. 
Furthermore, the prevalence of NAFLD, which is currently > 30%, has increased significantly in the last ten years with a 
nearly 50% increase occurring between 1990-2006 to 2016-2019[2]. At the molecular level, the development of NAFLD 
involves pathological changes in several hepatic cells including hepatocytes, macrophages, hepatic stellate cells (HSCs), 
endothelial cells and cholangiocytes[9]. Intracellular changes in the cellular metabolism, mitochondrial energetics, 
organellar homeostasis, redox hormesis and epigenetic changes in cellular plasticity govern the tissue damage and 
inflammatory milieu observed during NAFLD progression[10-13].

Autophagy is a cellular quality control process which is activated in response to energy crisis and cellular stress[14-
16]. Historically, the liver has been recognized as an organ with high autophagy activity and hepatocytes and Kupffer 
cells were the first cell types where the metabolic role of autophagy and lysosomes were discovered[17,18]. Autophagy 
serves as a key regulator of hepatocyte, lipid, and carbohydrate metabolism in the liver[19]. Similarly, autophagy in liver 
macrophages and HSCs differentially regulates their plasticity from a quiescent to activated phenotype[20]. In this 
review, we will describe the distinct roles of cell-type specific autophagy in hepatic physiology and its deregulation in 
NAFLD.

AUTOPHAGY MECHANISMS
The term autophagy means “self-digestion” and plays a pivotal role in maintaining cellular homeostasis by recycling 
damaged or unnecessary cellular components. Autophagy ensures cell survival and contributes to various physiological 
and pathological processes. To date, three types of autophagy have been described: macroautophagy, micro-autophagy, 
and chaperone-mediated autophagy (CMA)[21]. Autophagy involves subcellular membrane trafficking to sequester a 
portion of cytoplasmic constituents and organelles by a membrane-sac (termed the phagophore) to form a double-
membrane structure termed the autophagosome. The autophagosome is then transported to the lysosome for bulk 
protein degradation (proteolysis) of the sequestered intracellular materials by the lysosomal hydrolases. The breakdown 
products are utilized as an internally derived source of energy. Autophagy may be adaptive or constitutive. Constitutive 
autophagy is a mechanism of ‘cellular housekeeping’ that involves the removal of damaged or senescent organelles and 
helps to preserve basal energy balance. However, adaptive autophagy is characterized by recycling of intracellular 
constituents (proteins, lipids, glycogens, and organelles) to fulfill energy requirements in the event of nutrient deficiency. 
CMA is a selective cellular process where specific proteins are targeted for degradation by lysosomes with the help of 
chaperone proteins.

Macro-autophagy (hereafter referred to as autophagy) is a highly orchestrated process that can be divided into several 
key stages: Initiation, elongation, maturation, and degradation. The coordinated activity of several regulatory 
components tightly regulates the process of autophagy from initiation to termination. Autophagy genes, often referred to 
as autophagy-related genes (Atgs), are a group of genes responsible for regulating and executing the autophagic process 
within cells[22]. More than 30 autophagy-related (ATG) proteins have been identified and characterized thus far. The 
autophagic process is initiated by a serine-threonine protein kinase, Unc-51 Like autophagy activating kinase 1 (ULK1)
[23]. The mammalian target of rapamycin (mTOR) is a central regulator of cell growth and metabolism and is known to 
inhibit autophagy when active. In nutrient-rich conditions, mTOR is activated, preventing autophagy initiation by 
phosphorylating the autophagy-initiating complex, ULK1/2. This phosphorylation inhibits ULK1/2 and prevents 
autophagosome formation. In contrast, AMP kinase (AMPK) is a sensor of cellular energy status. When energy levels are 
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low (e.g., during nutrient deprivation or stress), AMPK is activated. Activated AMPK phosphorylates ULK1/2, relieving 
the inhibition imposed by mTOR and promoting autophagy initiation. Additionally, AMPK activation further stimulates 
autophagy by inhibiting mTOR directly and by activating transcription factors such as transcription factor EB (TFEB), 
which control the expression of Atgs and various lysosomal genes. When activated, TFEB promotes autophagy by 
enhancing the production of autophagy-related proteins and lysosome biogenesis[24].

The initiation phase is primarily governed by the mTOR and AMPK pathways. The ULK1/2 complex plays a central 
role in autophagy initiation and is comprised of ULK1, ATG13, ATG101 and FIP200[25]. When mTOR is inhibited or 
AMPK is activated in response to nutrient deprivation or stress, ULK1 is activated by phosphorylation, and in turn, 
phosphorylates ATG13 and FIP200 to initiate the process of autophagosome formation[26]. Once initiated, autophagy 
proceeds through the elongation and maturation stages. Key proteins like autophagy-related protein 5 (ATG5) and ATG12 
form complexes that contribute to the elongation (expansion) of the isolation membrane, which eventually seals to form 
the autophagosome, a double-membraned vesicle that engulfs cellular cargo[27]. ATG5 is part of a complex with ATG12 
and ATG16L1, which is crucial for elongation of the phagophore and closure of the autophagosome. ATG8 or lipid-
conjugated microtubule-associated protein 1A/1B-light chain 3 (LC3-phosphatidylethanolamine), which is lipidated and 
incorporated into the autophagosomal membranes, plays a central role in the biogenesis and elongation of autopha-
gosomes[28].

The autophagy receptor or adaptor proteins facilitate the tethering of target proteins and organelles destined for 
degradation on to the autophagosome. Sequestosome1, also known as p62/SQSTM1 is a cargo receptor that recognizes 
ubiquitinated cargo, such as damaged organelles or proteins, and targets them for selective autophagic degradation. P62 
contains LC3-interacting regions to interact with LC3 on the autophagosome membrane. Once the double-membrane 
vesicle is formed, it travels along the microtubules to the lysosome, where the outer membrane of the autophagosome 
fuses with lysosomes via the interaction of a synaptosome complex containing STX17, SNAP29, RAB7, and VAMP8 with 
LAMP1 on the lysosome[28]. Inside the autolysosomes, the lysosomal enzymes enable the degradation of the cargo.

AUTOPHAGY IN NAFLD
NAFLD is characterized by the accumulation of excess fat (triglycerides) in the liver, independent from excessive alcohol 
consumption. Demonstration that autophagy plays a significant role in the pathogenesis of NAFLD comes from several 
lines of evidence described below:

ATG gene knockout mouse models
Studies performed in liver-specific autophagy gene (ATG5 and ATG7) knockouts revealed a lipolytic role of autophagy, 
and mice deficient in either of these genes showed increased hepatic steatosis[29]. The loss of autophagy genes also 
increased hepatocyte susceptibility to gut endotoxin-induced injury[30]. Autophagy is also known to regulate hepatic 
inflammation. In this regard, hepatic macrophages also known as Kupffer cells derived from ATG5-/- mice fed with a high-
fat diet (HFD), developed a pro-inflammatory phenotype resulting from macrophage polarization[31].

Studies involving pharmacological/non-pharmacological autophagy inducers in animal models of NAFLD
Preclinical experiments performed with a classical autophagy inducer, such as, rapamycin resulted in the reduction of 
hepatic steatosis and injury in animals fed a HFD[32]. Similarly, the administration of autophagy inducing hormones 
such as thyroid hormone, ghrelin, glucagon like peptide-1 and vitamin D also increased autophagy in mouse liver and 
reduced steatosis in animals fed high calorie diets[33-38]. In addition, several natural compounds including caffeine, 
epigallocatechin gallate, and resveratrol, together with several herbal extracts derived from traditional Chinese and 
Indian medicines, have exhibited potent pro-autophagy activity which is associated with their anti-NAFLD effect in 
animals[39-49]. Besides pharmacological agents, lifestyle modifications including intermittent fasting[50,51] and exercise
[52-54] also induce hepatic autophagy as a means to delay and/or reduce NAFLD/NASH progression.

Analysis of liver autophagy in human NAFLD
Assessment of autophagy in the liver biopsies of patients with progressive degree of severity showed impaired 
autophagy characterized by reduced expression of lysosomal cathepsins, accumulation of p62 and decreased autophagy 
flux[55,56]. Furthermore, the impairment of autophagy strongly correlated with markers of hepatic injury and inflam-
mation[55,56]. More recently, whole exome sequencing data has revealed pathogenic mutations in human autophagy-
related genes which increases susceptibility to NAFLD development[57,58]. Notably, the defects in autophagy observed 
in human NAFLD are similar to that observed in murine models of NAFLD, in which an early increase in autophagic flux 
is followed by a late block in autophagic flux and a concomitant increase in endoplasmic reticulum (ER)-stress[56,59].

AUTOPHAGY IN HEPATOCYTES
Hepatocytes are cells of parenchymal origin, and are the metabolic hub of the liver. These are the primary functional cells 
of the liver and play a central role in metabolic processes, detoxification, and protein secretion. Not surprisingly, 
autophagy has been widely studied in these cells under physiological and pathological conditions including NAFLD. 
Hepatocytes rely on autophagy to remove damaged organelles, manage energy balance, and regulate lipid metabolism. 



Raza S et al. Hepatic autophagy and NAFLD

WJH https://www.wjgnet.com 1275 December 27, 2023 Volume 15 Issue 12

The biological effects of autophagy on hepatocytes and its modulation under NAFLD are described below.

Role of autophagy in hepatocyte lipid and carbohydrate metabolism
Hepatocytes store excess neutral lipids in the form of lipid droplets (LDs) which are composed of triacylglycerol (TAG). 
These TAG stores can be degraded by lipases to release free fatty acids (FFAs) as fuel for ATP production. The lipolysis of 
TAGs mediated by an autophagy-lysosomal pathway was termed “lipophagy” in hepatocytes undergoing starvation[29]. 
The sequence of events involved in lipophagy consists of the engulfment of LDs by the autophagosomes, followed by 
their fusion with lysosomes where lipolysis of TAG takes place. The FFAs released from the lysosomes can then be 
utilized for mitochondrial fat oxidation[29]. The key lipase involved in this process is known as lysosomal lipase[29]. 
Defects in hepatocyte lipophagy are suspected to be a major cause of early NAFLD development in humans[60-62]. In 
addition to lipophagy, CMA also plays a key role in the lipolysis of TAGs within hepatocytes[63]. In this regard, both LD-
associated proteins perilipin 2 and perilipin 3 have been identified as CMA substrates and their degradation via CMA 
precedes lipolysis by lipophagy[63]. Additionally, lipid degradation by microautophagy termed “macrolipophagy” has 
been reported to occur in mouse hepatocytes supplemented with oleate, followed by nutrient starvation[64]. Lipophagy 
has been shown to be activated by MTORC1 inhibition[65], fibroblast growth factor-21[36], as well as by the activation of 
nuclear receptors including thyroid hormone receptors, peroxisome proliferator-activated receptor alpha and TFEB 
exhibiting anti-steatosis effects[47,66-69]. More recently, the induction of lipophagy was shown to enhance lysosomal 
mediated lipid exocytosis, thereby ameliorating NASH in animal models[70].

Surprisingly, autophagy and autophagy genes have also been implicated in the assembly of TAGs in hepatocytes. 
Reports have shown that the loss of autophagy genes such as MAP1LC3[71], ATG7[72] and FIP200[30] leads to decreased 
LD accumulation in hepatocytes (Figure 1). This opposing effect by autophagy, as described above suggests paradoxical 
dual roles of autophagy in LD assembly vs degradation which may be due to the differential effects of ATG genes and 
nutrient status in cells[73].

Besides its role in lipid metabolism, autophagy also plays a significant role in hepatocyte carbohydrate metabolism by 
regulating glycogen breakdown[74]. The lysosomal α-acid glucosidase can hydrolyze glycogen and release free glucose
[75]. Excessive glycogen deposition in hepatocytes commonly coexists with hepatic injury in both patients with NAFLD
[76] and those with glycogen storage disease type Ia (GSD Ia)[77]. GSD Ia is the most common glycogen storage disease. It 
is caused by the loss-of-function mutation of glucose-6-phosphatase, the enzyme converting glucose-6-phosphate to free 
glucose. Besides glycogen, GSD Ia is also characterized by excess lipid accumulation in the liver, and is now considered a 
fatty liver-like disease. Recently, the induction of autophagy was shown to attenuate the development of hepatic steatosis 
and reduce glycogen content in an animal model of GSD Ia[78]. These results, therefore, suggest an intricate interplay 
between hepatocyte autophagy and glycogenolysis.

Autophagy and hepatocyte lipotoxicity
Lee et al[79] used the term “Lipotoxicity” for the first time to describe the harmful effects of lipid species such as saturated 
FFAs (SFAs) and cholesterol in non-adipose organs. At the molecular level, NAFLD/NASH induced lipotoxicity in 
hepatocytes is characterized by increased oxidative stress, mitochondrial dysfunction, impaired unfolded protein 
response (UPR), pro-inflammatory cytokine production, and cell death[80,81]. Intriguingly, basal autophagy inhibition is 
also observed in response to SFAs such as palmitic acids[82]. Chronic SFAs administration impairs autophagosomal-
lysosomal fusion, causes disruption of hepatocyte autophagy through suppression of the immune surveillance protein 
DDX58/Rig-1 (DExD/H box helicase) and stimulates the STING-MTORC1 pathway contributing to the autophagy 
inhibition reported in advanced NAFLD[65,82,83]. Therefore, restoration autophagic flux has emerged as an important 
strategy to counter lipotoxicity in hepatocytes[84].

In addition to being involved in macromolecular breakdown of lipids, proteins and carbohydrates, autophagy is also 
involved in selective removal of damaged organelles. The autophagic removal of mitochondria, known as “mitophagy” is 
a process of mitochondrial pruning that prevents the accumulation of damaged mitochondria resulting from increased 
oxidative stress[85]. Defective mitophagy has been shown to be associated with impaired mitochondrial β-oxidation and 
increased oxidative stress and lipoapoptosis in both animal models as well as in human NAFLD[86,87]. In hepatocytes, 
the accumulation of damaged mitochondria resulting from lipotoxicity, may lead to mitochondrial mediated apoptosis as 
well as activation of the inflammasome complex[88]. Therefore, the induction of mitophagy ensures both sustained 
mitochondrial energetics as well as cell survival (Figure 1). Several mechanisms have been proposed to regulate 
mitophagy in NAFLD[35,88-96]. Acyl coenzyme A: lysocardiolipin acyltransferase-1 expression was shown to be elevated 
in HFD fed mice, and its silencing restored mitophagy in isolated hepatocytes with observable improvement in 
mitochondrial architecture and reduced hepatic steatosis in mice[97]. Furthermore, the plant flavanol quercetin alleviates 
HFD-induced hepatic steatosis by activating AMPK-dependent mitophagy[98]. Furthermore, sirtuin 3 overexpression 
stimulates mitophagy and protects hepatic cells against palmitic acid-induced oxidative stress[99]. Mitophagy is also 
induced by thyroid hormone[100] through increased reactive oxygen species (ROS) production from mitochondria, the 
release of intracellular calcium, and activation of calcium/calmodulin-dependent protein kinase kinase and AMPK to 
both maintain mitochondrial fat oxidation as well as prevent further cell damage by ROS.

Autophagy also protects hepatocytes against lipotoxicity-induced oxidative stress by degrading Kelch like ECH 
associated protein 1 (KEAP1), which results in nuclear factor, erythroid 2 Like 2 (NRF2/NFE2L2) nuclear translocation 
and transcription of antioxidant genes[101]. Autophagy gene ULK1 was shown to enhance the interaction of autophagy 
adapter protein p62/SQSTM1 with KEAP1 which results in the autophagy-mediated degradation of KEAP1 and NRF2 
mediated protection from lipotoxicity (Figure 1)[102].
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Figure 1 Cell-specific effects of autophagy modulation on liver pathology in non-alcoholic fatty liver disease. A: Hepatocytes: Loss of 
autophagy results in accumulation of oxidative protein and lipid adducts, triacylglycerols and defective mitochondria; B: Macrophage/Kupffer cells: Inhibition of 
macrophage autophagy results in increased generation of pro-inflammatory M1 polarized macrophages, which increases inflammation during non-alcoholic fatty liver 
disease (NAFLD)/non-alcoholic steatohepatitis progression; C: Liver sinusoidal endothelial cells (LSECs): Loss of autophagy in LSECs results in cellular stress and 
loss of cellular integrity, resulting in increased NAFLD progression; D: Hepatic stellate cells (HSCs): The effect of autophagy on HSCs is conflicting, with some studies 
demonstrating its anti-fibrotic action while others support its pro-fibrotic action by regulating the transformation of quiescent HSCs into collagen-secreting 
myofibroblasts. HSCs: Hepatic stellate cells.

SFA-induced ER-stress and impaired UPR response also are key features associated with NAFLD progression in 
humans[56,103]. SFAs, cause ER stress by increasing saturated diacyl glycerolipid and saturated phospholipid accumu-
lation in the ER, which causes persistent inositol-requiring enzyme-1α, and protein kinase RNA-like ER kinase activation 
in hepatocytes[104,105]. Eventually SFA-induced hepatocyte lipoapoptosis occurs owing to continuous UPR activation, 
which results in Jun N-terminal kinase and C/EBP Homologous Protein-mediated overexpression of proapoptotic 
proteins such as p53 upregulated modulator of apoptosis[106]. Autophagy serves as a key degradative mechanism for 
misfolded proteins in hepatocytes thus alleviating ER-stress caused by SFAs[107]. In this regard, HFD feeding was 
associated with increased hepatic ER stress and insulin resistance in autophagy defective animals[108]. Surprisingly, 
rescue experiments with ATG7 gene overexpression dramatically relieved lipid-induced ER-stress in the mouse liver, as 
well as hepatic insulin sensitivity[108]. Besides degrading specific misfolded proteins, autophagy can also degrade parts 
of damaged ER by a process known as “ER-Phagy”. Although the mechanistic basis of this process is still not very clear in 
hepatocytes, its role in NAFLD pathogenesis was highlighted by RNA sequencing data revealing numerous ER-phagy 
receptors such as ATL3, SEC62, and RTN3 which were differentially regulated in patients with NAFLD/NASH[107]. 
These data point towards ER-phagy playing an essential role during NASH and underscores its importance as a possible 
novel strategy for NASH treatment.

SFA exposure in hepatocytes triggers the NLRP3-inflammasone signaling, leading to the activation of interleukin (IL)-1
β which causes hepatocyte cell death[109-112]. The inhibition of inflammasome activation and hepatocyte pyroptosis is 
another way of cellular protection conferred by autophagy in hepatocytes[35].
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AUTOPHAGY IN LIVER MACROPHAGES
The liver is a vital organ with diverse functions, including metabolism, detoxification, and immune regulation. Within the 
liver’s intricate cellular landscape, Kupffer cells, the resident macrophages, are critical players in immune surveillance 
and tissue homeostasis. Autophagy, a conserved intracellular process, has emerged as a key regulator of Kupffer cell 
functions and liver physiology. Autophagy in Kupffer cells, plays a pivotal role in maintaining hepatic homeostasis, 
regulating inflammation, by eliminating misfolded or aggregated proteins, removing damaged organelles and invading 
pathogens[113].

Macrophages are highly heterogeneous immune cells, which can polarize to diverse phenotypes in response to the 
surrounding microenvironment[114]. During inflammation or injury, macrophage polarization determines the fate of an 
organ[114]. When an organ or a tissue is inflicted with an infection or injury, macrophages are first polarized to their pro-
inflammatory M1 phenotype to facilitate the removal of antigens and necrotic cells by releasing pro-inflammatory 
cytokines. Furthermore, the M1 macrophages polarize with the M2 macrophages at the stage of repair, to secrete anti-
inflammatory cytokines and suppress inflammation, which promotes tissue repair and remodeling. Autophagy regulates 
macrophage polarization in NAFLD[31,115,116]. Macrophage autophagy reduces chronic inflammation and lowers the 
progression of organ fibrosis by inhibiting M1 macrophage polarization[117] (Figure 1). Impaired macrophage autophagy 
increased immune response and chronic hepatic inflammation and injury in obese mice[31]. Ubiquitin-specific protease 
19-induced macrophage autophagy promoted anti-inflammatory M2-like macrophage polarization[116]. Chronic liver 
injury results in organ scarring, termed liver fibrosis. Tissue-resident macrophages are the crucial regulators of organ 
fibrosis[118]. Inflammation plays a vital role and may be a cause of fibrosis[119]. As macrophage autophagy inhibits 
macrophage polarization to pro-inflammatory M1 type, it may be a potential target for organ fibrosis. Macrophage 
activation and polarization are increasingly being recognized to play an essential role in liver inflammation and fibrosis
[120]. Autophagy inhibited the release of inflammatory cytokines, particularly IL-1, from hepatic macrophages and 
reduced HSC activation to protect against liver fibrosis in mice[121]. Also, the suppression of Atg5 showed increased 
liver inflammation and fibrosis via the enhanced mitochondrial ROS/NF-κB/IL-1α/β pathway in autophagy-deficient 
liver macrophages[122]. Macrophage autophagy was reported to downregulate hepatic inflammation by inhibiting 
inflammasome-dependent IL-1β production[123]. Spermine, a polyamine, reduced liver injury by inhibiting the pro-
inflammatory response of liver-resident macrophages by inducing autophagy[124]. LC3-associated phagocytosis (LAP) 
inhibited inflammation and liver fibrosis by pharmacological as well as genetic interventions. Inhibition of LAP 
aggravated the pro-inflammatory and pro-fibrotic phenotype in the liver[125]. Autophagy is also involved in immune 
regulation in liver macrophages. It promotes antigen presentation and major histocompatibility complex-II expression, 
facilitating efficient antigen recognition by T cells. Conversely, defective autophagy can lead to exaggerated inflammatory 
responses[126]. Dysregulation of autophagy in Kupffer cells can have wide-ranging implications for liver diseases, 
making it an attractive target for future therapeutic interventions. Further research into the precise mechanisms and 
therapeutic potential of autophagy modulation in liver macrophages is warranted to advance our understanding of liver 
pathophysiology and develop novel treatment strategies.

AUTOPHAGY IN HSCs
Among several cell types that contribute to liver function and pathology, HSCs have emerged as key players in the 
development of liver fibrosis, a common endpoint in chronic liver diseases. Autophagy, a cellular process of self-
digestion and recycling, has gained increasing attention due to its role in HSC biology and its implications in liver disease 
progression. Autophagy in HSCs is intricately involved in maintaining metabolic homeostasis. It ensures an efficient 
turnover of cellular components, provides energy during stress or activation, and helps regulate key signaling pathways. 
Dysregulation of autophagy in HSCs can disrupt these metabolic processes and contribute to liver fibrosis and disease 
progression.

Upon liver injury or inflammation, HSCs undergo activation, transforming into proliferative, fibrogenic myofibroblasts 
that contribute to fibrous scar formation[127]. The role of autophagy in HSC activation remains paradoxical and context 
specific. Studies performed in HSCs in vitro and in vivo showed the profibrotic effect of autophagy induction during 
transforming growth factor beta induced HSC activation[128] (Figure 1). Specifically, autophagy is proposed to induce 
the activation of HSCs through lipophagy, a selective type of autophagy that degrades LDs[129]. On the other hand, 
autophagy also plays a critical role in maintaining HSC quiescence and limiting their activation. Inhibition of autophagy 
in activated HSCs has been associated with increased fibrogenesis, while induction of autophagy can suppress their 
activation and collagen production[130] (Figure 1). Indeed, HSC autophagy attenuated liver fibrosis by inhibiting the 
release of extracellular vesicles[131]. Autophagy in HSCs was recently shown to induce the release of miR-29a. Inhibition 
of autophagy reduced miR-29a secretion and repressed fibrogenic gene expression in a mouse model of liver fibrosis and 
in patients with chronic hepatitis C infection[132]. These findings underscore the therapeutic potential of targeting 
autophagy in HSCs to mitigate liver fibrosis and, consequently, liver disease progression. Autophagy in HSCs has 
significant implications for liver disease. Understanding these mechanisms holds promise for developing targeted 
therapies to modulate HSC metabolism and mitigate liver fibrosis. The role of autophagy in maintaining HSC quiescence 
and limiting fibrogenesis makes it a promising target for therapeutic intervention. Pharmacological agents that regulate 
autophagy in HSCs are being investigated for their potential to halt or reverse liver fibrosis and alleviate the burden of 
liver diseases worldwide. Furthermore, strategies to enhance the specificity of these interventions to HSCs also hold 
promise for minimizing their off-target effects.



Raza S et al. Hepatic autophagy and NAFLD

WJH https://www.wjgnet.com 1278 December 27, 2023 Volume 15 Issue 12

Autophagy in liver sinusoidal endothelial cells (LSECs)
LSECs form the first barrier of defense in the liver owing to their unique position, lining the sinusoidal lumen. 
Endothelial dysfunction is known to play a key role in liver injury[133]. Autophagy maintains cellular integrity, 
phenotype and homeostasis and can be found in various cell types, including liver endothelial cells[134]. Decreased 
autophagy has been observed in liver endothelial cells of patients with NASH as compared to patients with simple 
steatosis or those with normal liver[135]. The selective disruption of ATG5 or ATG7 in endothelial cells impairs the 
normal endothelial phenotype and favors liver injury, inflammation and fibrosis in mice exposed to prolonged HFD 
feeding or carbon tetrachloride[133,135] (Figure 1).

CONCLUSION
Autophagy in the liver plays key role in hepatic metabolism, immunomodulation, and cellular plasticity with profound 
effects on NAFLD progression. Future research should focus on better understanding the role of autophagy in inter-
cellular crosstalk among various cell types of the liver and its targeting as a future therapy for NAFLD/NASH in 
humans. Investigating hepatocyte-specific autophagy mechanisms and their response to various stressors, such as 
nutrient imbalances, oxidative stress, and toxic insults, is crucial to explore the therapeutic potential of autophagy 
modulation in NAFLD/NASH. Understanding how autophagy affects inflammation and antigen presentation in Kupffer 
cells could provide insights into liver-related immune disorders and manipulating autophagy in these cells may have 
implications for treating conditions like liver fibrosis. Additionally, exploring how autophagy contributes to LSEC 
integrity, angiogenesis, and regulation of blood flow may provide a better understanding of its role in liver health and 
disease. Furthermore, the deduction of molecular mechanisms by which autophagy influences HSC activation and 
collagen production can provide insights into therapeutic strategies for liver fibrosis.

Given the dynamic sequence of involvement of different cell types and the pleiotropic effect of autophagy during 
NAFLD progression, an optimal therapeutic time-window for targeting autophagy should be identified. Finally, 
identifying biomarkers of autophagy flux in humans would be useful clinically to monitor disease progression and 
response to treatment. Clinical trials of autophagy modulating drugs for NAFLD/NASH treatment could provide 
significant therapeutic advances, particularly since there are no pharmacological treatments for this disease.
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