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The PET technique enables quantitative assessment of
hypoxia and perfusion in tumors. To this end, consecu-
tive PET scans can be performed in one scan session.
Using different hypoxia tracers, PET imaging may provide INTRODUCTION
insight into the prognostic significance of hypoxia and - -
perfusion in lung cancer. In addition, PET studies may  Worldwide, lung cancer is the most common cause of
play an important role in various stages of personalized ~ cancer related death among men and women™. Every
medicine, as these may help to select patients for specific ~ year, approximately 1.2 million new cases of lung cancer
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are diagnosed globally and 1.1 million patients die of
this disease”. Non-small cell lung cancer (NSCLC) and
small cell lung cancer (SCLC) are the main histological
types and represent approximately 85% and 15% of the
lung cancer cases, respectivel§f[3‘4]. The prognosis of both
NSCLC and SCLC is poor and depends on the stage of
the disease™. For example, the 5-year overall survival is
approximately 1% and 2% for stage [V NSCLC and ex-
tensive stage SCLC, respectively. Treatment of lung can-
cer depends on histological type, stage and performance
status. The available treatment options include surgery,
radiation therapy and chemotherapy, or a combination of
these modalities. Systemic therapy of lung cancer consists
mainly of a platinum-based doublet, such as cisplatin or
carboplatin, in combination with a third generation cy-
totoxic drug such as gemcitabine, pemetrexed, paclitaxel
or docetaxel™. In addition, targeted agents, including
gefitinib, erlotinib, bevacizumab and crizotinib, have been
introduced for the treatment of advanced NSCLCP ',
For the last decades, several tumor characteristics have
been under investigation in order to further understand
the biology of lung cancer and enhance the efficacy of
the several treatment modalities.

In lung cancer, tumor hypoxia is a characteristic fea-
ture!"”! which is associated with a poor prognosis“sfzo] and
resistance to both radiation therapyrzﬂ and chemother-
apy[zz]. Hypoxia is a reduced Oz tension in tissue and is
defined between normoxia (pO: levels of 40-60 mmHg)
and anoxia (0 rang)m. In clinical practice, no consen-
sus has been achieved for hypoxic thresholds in tumors,
but tumors with pOz values below 10 mmHg are usually
considered hypoxicm]. Tumor hypoxia is the result of
an imbalance between oxygen supply and consumption
and can be caused by the following mechanisms™ )
the structurally and functionally abnormal tumor vascu-
lature leads to a perfusion-limited delivery of oxygenm,
thereby inducing “acute” hypoxia; (2) tumor proliferation
increases the distance between tumor cells and blood
vessels that provide nutrients and oxygen to tumor cells.
Consequently, the distances to blood vessels can become
larger than the diffusion distance of oxygen (> 70 pum),
locally causing diffusion-limited hypoxia (referred to as
“chronic” hypoxia); (3) tumor hypoxia is also associated
with a systemic decrease in oxygen supply, Ze¢., anemia,
which can be caused by tumor-related factors as well as
anticancer therapy.

To promote cell survival in hypoxic conditions hy-
poxia inducible factor-1 (HIF-1) is upregulated, which in
turn activates a number of processes including growth
factor signaling, angiogenesis, proliferation, glycolysis, tis-
sue invasion, and finally metastasis®. As a result, markers
of the HIF signaling cascade such as HIF-1q, glucose
transporter-1, and vascular endothelial growth factor
(VEGF), have been investigated as surrogate markers for
tumor hypoxia in lung cancer "7, Alternatively, im-
munohistochemical staining using injectable exogenous
bioreductive markers like pimonidazole and 2-(2-nitro-

1[H]-imidazol-1-y1)-N-(2,2,3,3,3-pentafluoropropyl)-
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acetamide (EF5) can be appliedps]. However, immuno-
histochemistry requires tissue samples and represents an
indirect measurement of tumor hypoxia. Alternatively,
pO: levels in tumors can be directly assessed using Ep-
pendorf polarographic electrodes. This an invasive tech-
nique that can be applied in tumors that are easily acces-
sible™. In lung cancer, this technique is not feasible!'”, as
these tumors are usually deeply seated within in de body.
Positron emission tomography (PET) may be useful, as
PET enables direct assessment of tumor hypoxia in pa-
tients non-invasively””.

As the development of tumor hypoxia is associated
with decreased perfusion, perfusion PET imaging may
provide more insight into the relation between hypoxia
and perfusion in malignant tumors. PET scans may
not only reveal the prognostic significance of hypoxia
and perfusion in lung cancer, but may also help to se-
lect patients for specific treatments including radiation
therapy, hypoxia modifying therapies, and antiangiogenic
drugsm’m. This review provides an overview of the clini-
cal applications of PET to measure hypoxia and perfu-
sion in lung cancer.

PET PRINCIPLES

PET enables non-invasive 3D imaging of dynamic pro-

cesses iz vivo. 'To this end, molecules of interest are ra-
diolabeled with positron emitting radionuclides. For PET
imaging, commonly used radionuclides are oxygen-15
(P0), carbon-11 (!'C) and fluorine-18 (°F). These radio-
nuclides are isotopes of elements that are often naturally
present in organic molecules as well as in chemically pro-
duced molecules, e.g., anticancer drugs. After replacing
one of the molecules’ atoms by its radioactive isotope,
the molecular structure is unchanged, leaving chemical
properties unaffected. After intravenous injection of a
PET tracer, the radiolabeled molecules can be located
within the body by detecting the emitted photons. Since
only a small amount of radiotracer is required for PET
imaging, it is assumed that the radiotracer does not affect
the dynamic process under study.

PET is based on the detection of positron emission.
During radioactive decay, the radionuclide, eg., "E, emits
a positron which, after traveling a short distance (few
mm) in tissue, annihilates with a nearby electron to emit
two 511 keV photons in opposite directions. These two
“annihilation” photons are registered by the PET scanner
using a coincidence detection circuitry, providing 3D in-
formation of the tracer distribution with high sensitivity
and resolution. To achieve quantitative accuracy, imaging
data needs to be corrected for attenuation: when emit-
ted from tissues deeper in the body, photons are more
likely to be absorbed than from superficial structures. As
a result, 3D images would falsely show low tracer con-
centrations in deeper structures compared to superficial
structures. In PET, the attenuation perceived by the an-
nihilation photon pairs, traveling in opposite directions
over a line through the body, is mathematically equivalent
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Figure 1 Graphical representation of the different components that deter-
mine the total positron emission tomography signal. Examples 1 and 2 can
represent either different patients, different lesions in one patient or different
scans of one patient, for example before and after therapy. In both examples
the contributions of specific uptake (the uptake of interest) are equal, but the
total signal is different due to differences in contribution of other (non-relevant)
signals. Measured standardized uptake value (SUV) values are reflected by the
dashed lines. As SUV does not only reflect the specific signal, its use should
be validated before it is used in a clinical setting, i.e., it is required to assess if
contributions from non-specific signals affect SUV values in a non-predictable
way. For the purpose of illustration, the Y-axis represents SUV values on an
arbitrarily chosen scale.

to the attenuation perceived by one photon transmitted
through the body over that same line. Therefore, accurate
attenuation correction can be achieved using a transmis-
sion soutrce, e.g., computed tomography (CT). In addition,
PET/CT systems can cotrect for false detections due to
random coincidence detection or scattered annihilation
photons. As a result, PET provides radioactivity measure-
ments with high quantitative accuracyml.

Quantification of tracer uptake, however, remains
challenging. First, the measured radioactivity concentra-
tion in tissue depends on the tracer concentration in
blood over time, which, in turn, depends on the injected
dose and distribution volume. The standardized uptake
value (SUV) takes this variability into account, as the ra-
dioactivity concentration in tissue is normalized by the
ratio of the injected dose to patient weight. Second, the
PET signal does not necessarily reflect specific uptake, e.g.,
trapping of the tracer by the process of interest. A tracer
could also be free in tissue, trapped by a different process
or reside in blood vessels within the region of interest, e.g.,
tumor (Figure 1). Pharmacokinetic modeling can be ap-
plied to distinguish between the various kinetic processes
and separates the total signal into these componentsm]

In addition to spatial information, temporal informa-
tion of the tracers’ distribution is used in pharmacoki-
netic modeling. To obtain information on the changes
in tracer activity concentrations over time (time activity
curves or TAC), sequential PET images are acquired
over the same body area. In addition, accurate temporal
data on tracer concentration in plasma is obtained from
arterial blood sampling and dedicated lab analysis. Math-
ematical models (“compartment models”) are then used
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to extract measures of the relevant components of the
tracers’ kinetics, such as specific uptake or binding. As
absolute quantification by kinetic modeling can be chal-
lenging and cumbersome in the clinic, alternatives have
been introduced to measure tracer uptake. Before clinical
implementation, these “simplified parameters” (such as
SUV) should be validated and correlated with parameters
from pharmacokinetic modeling.

To date, 2—deoxy—2—[ijﬂuoro—D—glucose (["FIFDG)
is the most commonly used PET tracer. As ["FJFDG is a
glucose analogue, it accumulates in malignant tumors with
high glucose consumption. As a result, [*FIFDG PET
is extensively used for diagnosis, staging and response
monitoring of cancer. Currently, ["FIFDG PET is rou-
tinely performed for initial stagingﬂs] and pre-operative
staging[36’37] of patients with NSCLC. As tumor hypoxia is
associated with increased glycolysis, it is conceivable that
hypoxia is associated with increased [*FIFDG uptake.
However, results on [*F]JFDG to assess tumor hypoxia
have been conﬂictingﬁs], indicating that [*FIFDG is not
specific enough to identify hypoxia. Therefore, other
PET tracers have been developed to measure hypoxia
and perfusion in tumors more specifically. In the follow-
ing paragraphs, these PET tracers will be discussed.

TUMOR HYPOXIA IMAGING

Clinical relevance

Tumor hypoxia is associated with resistance to both ra-
diation therapy”" and chemotherapy™. Radiation therapy
requires oxygen to induce DNA damage and hypoxic
cancer cells are three times less sensitive to radiation
therapy than normoxic cancer cells™*, Tn addition, the
resistance to anticancer drugs is attributed to the lack of
Oz available for drug activation, the increased genetic
instability, the antiproliferative effects of hypoxia, and
the increased gene transcription induced by HIF-1"4,
Currently, drugs that selectively target tumor hypoxia and
its increased gene transcription are still under study and
have entered the first clinical trials™™*. Since tumor hy-
poxia may affect clinical outcome, hypoxia imaging may
be useful to determine prognosis and tumor response in
lung cancer patients. Furthermore, hypoxia assessment
may help to optimize treatment strategies in individual
patients.

In particular, the efficacy of radiation therapy may
be increased by several interventions. First, the systemic
oxygenation level can be increased by hyperbaric cham-
ber treatment!*", carbogen breathingm and improved
oxygen transport by hemoglobin. For the latter, blood
transfusions and erythropoietin injections are available™".
Oxygen transport can be further improved by agents that
improve perfusion and affect vascular permeability™.
Second, the apparent oxygenation level in tumors can be
increased using radiosensitizers, which are usually based
on a nitroimidazole-group and specifically target hypoxic
tumor cells (pO2 < 10 mmHg). Once incorporated in hy-
poxic tumor cells, radiosensitizers mimic oxygen, thereby
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Figure 2 Radiation therapy treatment strategies for tumor hypoxia.

increasing the efficacy of radiation therapylSoJ. Third,
the radiation therapy plan can be adjusted to increase
the dose administered to hypoxic tumor tissue. This
can be achieved by dose boosting to the whole tumor,
dose painting, or dose painting by numbers”". For dose
boosting, an increased dose is administered to hypoxic
areas, thereby increasing the radiation dose to normal tis-
sue and, potentially, its associated side effects. For dose
painting, the dose to a specific area (eg., hypoxic area) is
increased, whereas the radiation to the remaining part of
the tumor can be either maintained or decreased. In the
latter case the total dose level can be maintained. Dose
painting can be further refined when it is directly based
on the voxel-by-voxel values of a PET image (referred
to as “dose painting by numbers”). For successful imple-
mentation of the previous mentioned radiation therapy
strategies, hypoxia imaging may help to identify hypoxic
tumors, prevent unnecessary side effects in patients with
normoxic tumors, and reveal heterogeneous distribu-
tion of hypoxia within tumors. Figure 2 summarizes the
potential applications of hypoxia imaging for radiation
therapy.

Characteristics of a hypoxia PET tracer

The ideal hypoxia tracer would freely and rapidly diffuse
to tissue, including remote areas. For optimal contrast
of the PET image, accumulation of the tracer should be
high in hypoxic cells, whereas no binding should occur
in normoxic cells. To achieve the best image quality, an
optimal balance between tracer half-life, accumulation
rates and clearance rates is required: the tracers’ half-life
should be long enough to obtain a high signal-to-noise
ratio whilst allowing the tracer enough time to diffuse and
bind to hypoxic cells and clear from normoxic tissues and
blood. Accumulation and clearance rates are influenced
by the tracers’ octanol/water partition coefficient. More
lipophilic compounds may more readily pass through
the cell membrane. On the other hand, more hydrophilic
compounds may more easily diffuse across tissues and
show faster clearance from blood and normoxic tumors
through the urinary pathwaypo’szj. Besides these hypoxia
specific characteristics, the tracer should be metabolically
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inert, since the formation of radiolabeled metabolites
results in a decreased amount of the original tracer avail-
able for hypoxia specific uptake, poor image contrast and
inaccurate tracer quantification.

For clinical implementation, hypoxia tracers require
fast kinetics, allowing for rapid accumulation in hypoxic
tissues, thereby limiting the time between tracer injection
and imaging. In addition, simplified and reproducible
methods (e.g., SUV) are needed to quantify tracer uptake.

Hypoxia tracers for PET

Over the last decades, several PET tracers have been
developed to measure tumor hypoxia. To identify all rel-
evant hypoxia tracers in lung cancer, a literature search
was conducted in PubMed to identify studies published
before 1 January 2014. To this end, PET specific search
terms (PET, positron emission tomography) were
combined with hypoxia specific search terms (hypoxia,
anoxia), and/or lung cancer specific search terms (lung
cancer, lung neoplasms, non-small cell lung cancer, small
cell lung cancer), and/or kinetic modeling specific search
terms (kinetic modeling, modeling), and/or radiation
therapy specific search terms (radiation therapy, radia-
tion). For these search terms, the corresponding Mesh
terms were included. Thereafter, the obtained English
abstracts were evaluated for relevance. Based on the
obtained publications, a specific search strategy was sub-
sequently performed for each identified hypoxia PET
tracer. Additional publications were identified by cross-
referencing. Brain studies were excluded since the blood-
brain barrier may affect tracer kinetics. Figure 3 and
Table 1 give an overview of the identified hypoxia tracers
that have been evaluated in oncology. The tracer names
and abbreviations are displayed in Table 2. These hypoxia
tracers can be subdivided in nitroimidazole-based and
thiosemicarbazone-based tracers. In the following para-
graphs, these tracers and their potential applications in
lung cancer patients will be discussed.

Nitroimidazole-based tracers: Originally, nitroimid-

azoles have been d_eveloped as radiosensitizers. Already
in 1984, Chapman[DSJ have proposed nitroimidazoles for
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Figure 3 Timeline for development and evaluation of hypoxia specific tracers that have been evaluated by preclinical or clinical positron emission tomog-
raphy. Development and in-vitro analysis (blank), preclinical positron emission tomography (PET) evaluation (grey), and clinical PET evaluation (black). The number
of published clinical studies in oncology is indicated (excluding brain studies). See Table 2 for full names.

hypoxia imaging. Upon entering the cell, nitroimidazole
undergoes electron reduction, thereby becoming a radi-
cal. In normoxic cells, this reaction is reversed by Oz In
hypoxic cells, the radical can react with an intracellular
macromolecule instead and remains trapped. As the latter
process occurs at pO2 < 10 mmHg, an oxygenation level
associated with increased radiation therapy resistance,
nitroimidazoles are able to detect clinically relevant hy-
poxiam].

Among the developed hypoxia tracers for PET (see
Figure 3), [*FJFMISO has been investigated most exten-
sively. Although [*F]FMISO showed rapid metabolism in
mice studies, it appeared to be a robust hypoxia tracer in
humans, with parent fractions up to 96% at 90 min after
injection®™, Since ["FJFMISO is rather lipophilic with a
partition coefficient (log P) of 0.4, clearance from blood
and normoxic tissues is slow. Therefore, the required
time intervals between injection and imaging are long, at
least 3 h"*. Efforts have been made to develop hypoxia
tracers with more favorable characteristics. Being the
most evaluated and validated hypoxia tracer to date, the
performance of new hypoxia tracers is often compared
with [*FJFMISO (see Table 1). Among these tracers,
[*FJFAZA has been introduced in the clinic. ["FJFAZA
(log P = 0.04) is more hydrophilic than [*FJFMISO and

shows faster clearance from blood and normoxic tis-
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sues”. This allows for a shorter time interval between in-
jection and imaging[sgl. In addition, [*FJFAZA has a high
parent fraction during imaging, accounting for a parent
fraction of 90% at 70 min after injection[”]. Other more
hydrophilic nitroimidazole tracers include [*FIFETNIM
and [*F]JHX4, which have a partition coefficient (log
P) of 0.17" and -0.69""" respectively. An example of
a more lipophilic tracer is [*F]EF5, which is the "“F-
labelled version of exogenous hypoxia marker EF5, with
a partition coefficient (log P) of 0.6.

Thiosemicarbazone-based tracers: Thiosemicarba-
zone-based tracers represent another subgroup of hypox-
ia tracers for PET. Thiosemicarbazones possess a strong
antitumor activity, particulatly when coupled with a metal
ion like copper (Cw)™. [Cu]ATSM is a therapeutic agent
which, by replacing the Cu atom with a suitable radioac-
tive Cu isotope, can be used for hypoxia PET imagingm.
In nuclear medicine, Cu is of particular interest for its
favorable radiochemical properties. First, Cu is relatively
easy to incorporate in molecules and has multiple radio-
active isotopes suitable for PET imaging. Second, with
half lives ranging from 24 min to 13h for “Cu and *Cu,
respectively, Cu has several potential applications. The
short-lived radionuclides can be used for sequential mea-
surements, whereas radionuclides with longer half lives do
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Table 2 Hypoxia positron emission tomography tracer abbreviations

Abbreviation Full name or chemical name

[*Cu]ATSM  [*Cu]-diacetyl-bis(N4-methylthiosemicarbazone)

[**F]EF1 2-(2-Nitroimidazol-1H-yl)-N-(3-[ *Ffluoropropyl)acetamide

[*F]EF3 2-(2-Nitroimidazol-1H-yl)-N-(3,3,3-[ *F]trifluoropropyl)acetamide

[*F]EF5 2-(2-nitro-1H-imidazol-1-y1)-N-(2,2,3,3,3-[ *F]-pentafluoropropyl)-acetamide
[*FIFAZA [**F]fluoroazomycin arabinoside

[*F]FETA ["*F]fluoroetanidazole

[*F]JFETNIM [wF]ﬂuoroerythronitroimidazole

[*F]JEMISO [*F]fluoromisonidazole

[*FIFRP170  1-(2-[**F]fluoro-1-[hydroxymethyl]ethoxy)methyl-2-nitroimidazole
[*FIFPIMO  [*F]pimonidazole

[*FIHX4 3-[“*F]fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3,-triazol-1-yl)-propan-1-ol
[*'IIAZA [*1liodazomycin arabinoside

[*'IAZG [*IJiodazomycin galactoside

not require a cyclotron on-site and are more suitable for
the clinical setting, Remarkably, “Cu can also be applied
as radiation therapy agent, since it also emits a 3 particle
(40% yield)m’()ﬂ. In oncology, [CulATSM has been evalu-
ated both preclinically and clinically. This tracer shows
favorable kinetics with rapid uptake in hypoxic tissue and
fast clearance from normoxic tissues, enabling imaging
within 30 min after injection*”. However, the exact up-
take mechanism of [Cu]ATSM is still under debate!®***"”
and several preclinical studies have shown that [Cu] ATSM
uptake depends on tumor type and other characteristics

than hypoxia alone™ ™.

Clinical evaluation of hypoxia PET tracers in lung cancer
Hypoxia PET imaging is in development and most clinical
studies have been focused on notoriously hypoxic cancer
types such as cervical cancer and head and neck cancer.
Nevertheless, several clinical PET studies have evaluated
hypoxia imaging in lung cancer (Table 3). In the following
paragraphs, data acquisition, quantification and clinical
observations of these hypoxia tracers will be discussed.

Data acquisition and analysis: Nitroimidazole based
tracers require relatively long time intervals for accumula-
tion in hypoxic cells and clearance from normoxic cells.
In concordance, most studies used images > 2 h after
injection for hypoxia assessment. The length of the time
interval between injection and imaging may affect the
tracers’ distribution pattern in tumors. For example, it has
been shown that the distribution of ["FJFMISO at 2 h is
significantly different from the distribution at 4 h, whereas
only the 4 h data are predictive of tumor recurrence .
In contrast, the distribution of [*FJHX4 was similar at 2
h and 4 h™. Compared to nitroimidazole based tracers,
[Cu]ATSM shows fast kinetics and images were acquired

after time intervals as short as 10 min after injectjon[m’w'gﬂ.

Quantification of hypoxia: To identify hypoxia in tu-
mor tissue, several simplified parameters have been used,
including tumor-to-blood ratio, tumor-to-background
ratio, tumor-to-muscle ratio, tumot-to-mediastinum ratio,
and SUV. In addition, several studies have used dynamic
PET scans to investigate the tracers’ kinetics in more
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detail, for example by using pharmacokinetic modeling
for quantification. Furthermore, consecutive imaging
using multiple tracers has been performed to facilitate the
identification and quantification of hypoxia. For example,
consecutive PET scans have been performed with hypox-
ia tracer [CulATSM and perfusion tracer coppet-pyruv-
aldehyde-bis(N4-methylthiosemicatbazone ([Cu]PTSM).
Here, the ratio of [Cu]ATSM SUV to [Cu]PTSM SUV
has been used as a measure of hypoxia[sﬂ

To date, it is not known which measutre and threshold
accurately reflects pOz levels in tumors. As repeated mea-
surements with a polarographic electrode ate not feasible
in lung cancer, a more pragmatic approach is required.
The clinical relevance of a threshold can be determined
by clinical parameters like tumor response, progression-
free survival and overall survival.

Determination of clinically relevant hypoxia: Among
the clinical studies on hypoxia PET tracers in lung cancer,
most studies have only evaluated tumor hypoxia prior
to treatment. For [*FJFMISO, a pretreatment threshold
of > 2 for tumor-to-mediastinum ratio was associated
with poor outcome after radiation therapy. However, the
shape of the time activity curve appeared to be a better
predictor of response[m. In contrast to these results, oth-
er authors did not find a predictive value for [*FJFMISO
after chemoradiation™". In other patients treated with
chemoradiation, a threshold of tumor-to-blood ratio >
1.9 for [*FIFETNIM™* and > 3.0 for [Cu]ATSM™ was
assoclated with poor overall survival and tumor response,
respectively. In addition, a number of studies have evalu-
ated the changes in hypoxia tracer uptake during therapy.
While hypoxic cells are considered to be more resistant
to radiation therapy, most studies in lung cancer reported

a decrease in hypoxia tracer uptake after radiation thera-
[58,82,87]

PET FOR TUMOR PERFUSION
MEASUREMENTS

Tumor angiogenesis
Blood flow is not only required for the delivery of PET
tracers and anticancer drugs to tumors, but also for the
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Tracer' Year Authors N? Stage Time® Duration* Measure® Therapy®
[®Cu]ATSM 2003  Dehdashtietal®™ 18  I-IV 30 min 30 min /M Radiation
Chemoradiation, chemotherapy

["Cu]ATSM 2000  Takahashietal™ 6  NA 10 min 10 min T/B

2008  Wong et al® 2 NA  15min 5 min SsUv

2009  Lohith et al'™” 13 I-IV 10 min 10 min SUVmean

2013  Zhanget al™ 5 1-IV 15 min 5 min SUViypoxia/perfusion7
[*FIFAZA 2009 Postemaetal™ 13 NA 2-3h 3-4 min T/Bg

2013  Trinkaus et al® 11 I 4h 30 min T/Bg Chemoradiation

2013  Bollinenietal™ 11 M-IV 2h NA T/Bg

2013  Verwer et al™ 9 NA O0h 70 min® \%
[*FIFETNIM 2010  Lietal® 26 I 2h 20 min T Bk Radiation

Chemotherapy

2013 Huet al®™ 25 1 2h NA T/Me Chemotherapy
[*FIFMISO 1995  Koh et al®” 14 I 2h 40 min T/B Radiation

1996  Rasey et al™" 21 M-IV 2h 40 min T/B

2005  Eschmannetal” 8 M-IV 4h NA T/Me Radiation

2006  Cherk et al®™ 21  I-T 2h NA SUVimax

2006  Gagel et al'™ 8 M-IV 3h 30 min SuUV, T/M Chemoradiation

2011 Veraetal™ 7 I 3h NA SUVmax Chemoradiation Chemotherapy
[®FIFRP170 2007  Kaneta et al™ 3 NA O0h 60 min® SUV TAC
[*FIHX4 2010  vanLoonetal™ 4 IV = 2h NA T/B

2013 Zegers et al™ 15 1-IV 4h 30 min T/B

'Refer to Table 2 for full tracer names; “Number of lung cancer patients (evaluable scans); *Start time after injection of the positron emission tomography

(PET) frame that was used for quantification; ‘Duration of the PET frame that was used for quantification; °(Semi)quantitative measure used for evaluation;
“Evaluated therapy; "Hypoxia marker uptake normalized to perfusion marker uptake: mean (SUV[Cu]ATSM/SUV[Cu]PTSM); *Dynamic PET data used
for quantification; *Volume of distribution derived from full pharmacokinetic modeling. NA: Data not available; SUV: Standardized uptake value; T/M:
Tumor-to muscle ratio; T/Me: Tumor-to-mediastinum ratio; T/B: Tumor-to-blood ratio; T/Bg: Tumor-to-background ratio; VT: Volume of distribution;

TAC: Time activity curve.

transport of nutrients, e.g., glucose, and oxygen. Under hy-
poxic conditions in tumors, the HIF protein is usually up-
regulated. Activated HIF translocates to the nucleus of tu-
mor cells and results in transcription of a large repertoire
of genes including VEGF B9 VEGF is a potent protein
and plays a key role in tumor angiogenesis, which is the
formation of new blood vessels. This tumor angiogenesis
is essential for tumor growth, metastatic spread and sut-
vival of tumor cells. As a result, VEGF signaling has be-
come an important therapeutic target for the treatment of
malignant tumors. To date, several antiangiogenic drugs
have been developed including monoclonal antibodies that
bind circulating VEGF (eg, bevacizumab™) and tyrosine
kinase inhibitors that target the intracellular domain of the
VEGEF receptors (¢g., sunitinib and sorafenib”™). Among
the currently available antiangiogenic drugs, bevacizumab
has been registered for the treatment of patients with
NSCLC. In combination with paclitaxel and carboplatin,
bevacizumab has been approved for first-line treatment
of non-squamous NSCLC". As tumor vascularization is
an important factor in the biology of malignant tumors,
and antiangiogenic strategies have been introduced for the
treatment of lung cancer, imaging techniques are increas-
ingly used for perfusion measurements in lung cancer.
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Imaging of tumor perfusion

PET is a sensitive technique to quantify tumor perfusionm].
To this end, perfusion tracers like rubidium-82 (*Rb™,
radioactive ammonia (["N]NH:""), radioactive water
([POJH20"""" can be administered. Other PET tracers
such as [*Galtransferrin"™ and [''CJmethylalbumin"*” are
available to assess vascular permeability. Currently, experi-
ence with perfusion PET tracers is rather limited in oncolo-
gy, except for ["OJH-0. In particular, previous PET studies
have shown that quantification of tumor perfusion using
["OJH:0 is feasible in patients with lung cancer """,

[°OJH:0 PET

As [POJH:0 is a freely diffusible tracer with near 100%
extraction over a wide perfusion range (0-6 mL/min per
mlL), its kinetics directly reflect tumor perfusion. As a re-
sult, [PO]JH:O is an ideal tracer for quantitative perfusion
imaging. The short half-life of O, which is 2.03 min,
enables sequential PET scans using both ["OJH20 and
another tracer, e.g., [lSF]FDG[(m or a hypoxia tracer”.
However, it requires the presence of a nearby cyclotron.
Because ["O]Hz0 is metabolically inert and is not re-
tained in cells, quantification using SUV, which is a pa-
rameter for quantification of irreversible uptake, is not
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possible. Instead, pharmacokinetic modeling, using short
(< 10 min) dynamic PET scans, is required to quantify
tumor perfusion.

Monitoring tumor perfusion during treatment

Currently, [POJH20 PET scans are increasingly used
to assess response of the tumor vasculature to antian-
giogenic therapy" """, As ["OJH20 PET has shown
high reproducibility in lung cancer", it can be applied
for response monitoring during treatment. de Langen ez
al"" have investigated changes in tumor perfusion in 44
NSCLC patients who were treated with bevacizumab and
etlotinib. Three weeks after the start of treatment, a mean
decrease of 11% in tumor perfusion was measured using
["OJH20 PET""'. A significant reduction in tumor per-
fusion was measured in patients with a partial response
according to the response evaluation criteria in solid
tumors (RECIST"'?). More importantly, patients with >
20% reduction in tumor perfusion had an improved pro-
gression-free survival as compared to other patients (12.5
mo 25 2.9 mo). The latter findings indicate that [°O]H20
PET may have predictive value in lung cancer patients
who are treated with antiangiogenic drugs. For eatly pre-
diction of tumor response, early perfusion measurements
may be useful, as the effects of antiangiogenic can be
very rapid" .

Tumor perfusion and drug delivery

As the short half-life of O enables sequential PET scans
using both ["OJH20 and an additional tracer, [°O]H20
PET is a useful tool to investigate drug delivery of radio-
labeled anticancer agents by correlating uptake of radiola-
beled drugs with [?O]H20 perfusion data"*!"”. Apparent-
ly, it has been shown that tumor perfusion is an important
determinant of drug tumor exposure, as indicated by
several PET studies on [*F]5-fluorouracil(FU)" ",
['CIDACA"™, and ["'C]docetaxel"™"!). Consequently,
tumor petrfusion may be predictive of tumor response
to the above mentioned anticancer drugs. These findings
advocate further studies investigating the predictive value
of tumor perfusion for tumor response to chemotherapy.
As tumor perfusion is the key factor for the uptake of

. . [122]
several anticancer drugs in tumots

, antiangiogenic
drugs may affect drug exposure in tumors. To investigate
this concept, a PET study has been performed in NSCLC
patients using both ["OJH20 and the radiolabeled taxane
[''Cldocetaxel”. In that study, bevacizumab reduced
both perfusion and net influx rate of [''C]docetaxel within
5 h. These rapid effects persisted after 4 d and wete not
associated with significant changes in tumor heterogeneity.
The mentioned studies indicate that ["OJH20 PET may
reveal the role of perfusion in drug delivery and antian-

giogenic therapy in malignant tumors'>

IMAGING HYPOXIA AND PERFUSION

It is conceivable that the development of tumor hypoxia
is associated with a decrease in tumor perfusion. This
may complicate PET imaging, as tracer delivery will be
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reduced in these areas. Although the uptake of the ideal
hypoxia tracer is not directly related to perfusion, lack of
perfusion will limit tracer delivery.

Diffusion-limited hypoxia is present in tumor cells lo-
cated away from capillaries, Ze., further than the diffusion
distance of oxygen. As perfusion is relatively low in these
areas, tracer delivery may be limited and this may, in turn,
affect uptake of hypoxia tracers. In addition, low pet-
fused areas can become necrotic. The PET signal will be
decreased in areas containing necrosis even though these
areas may also contain highly hypoxic cells. In Figure 4,
these hypothetical considerations are summarized. The
figure also illustrates the limitations of using a predefined
threshold to delineate hypoxic areas on a PET image, as
areas likely to contain the most severely hypoxic cells will
be missed. The mentioned considerations may explain
the conflicting results between the uptake of hypoxia
tracers and the direct assessment of tissue oxygenation
using polarographic electrodes™ ", ["OJH.0 PET
may help to understand these conflicting results and may
identify the remote, low perfused areas. An example of
images obtained from consecutive perfusion and hypoxia
PET imaging is displayed in Figure 5.

Acute hypoxia is directly caused by a (temporary) lack
of tumor perfusion. Since acute hypoxia is presumed to
be transient or even cycling!"™, hypoxia tracer uptake may
not accurately reflect this type of hypoxia. [*OJH20 PET
may help to study the effect of acute hypoxia and its rela-
tion with hypoxia tracer uptake.

Besides the previous considerations for combining
["OJH20 perfusion PET imaging with hypoxia tracer
PET imaging, the combination may provide further in-
sight into the effects of treatment. Jain has previously
proposed that antiangiogenic therapy may normalize
the abnormal tumor vasculature, thereby decreasing
tumor hypoxia and improving drug delivery of cyto-
toxic agents“zg’wm. This is underscored by the fact that
a decrease in [*FJFMISO uptake has been measured in
renal cell cancer after treatment with sunitinib™", On
the other hand, an increase in [*F]JFMISO uptake after
sorafenib™ and a rapid decrease in tumor perfusion af-
ter bevacizumab have been reported as well". The latter
findings suggest that antiangiogenic therapy may decrease
tumor perfusion and subsequently the delivery of hy-
poxia tracers to tumors. To further clatify these findings,
future PET studies need to combine hypoxia tracers with
["OJH20 at different time points after drug administra-
tion.

FUTURE PERSPECTIVES

In the present review, the currently available tracers for
PET imaging of hypoxia and perfusion in lung cancer
patients were discussed. Considering the currently avail-
able studies, PET seems feasible to assess hypoxia and
perfusion in lung cancer. In contrast to traditional probe
measurements, PET hypoxia imaging is non-invasive and
provides information on the heterogenecous distribution
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Figure 4 Representation of hypothetical considerations on the link
between perfusion and the hypoxia signal as measured by imaging
positron emission tomography. The continuous curve represents hy-
pothetical level of hypoxia in tissue for increasing levels of perfusion (i.e.,
closer to the capillaries). The dotted line represents the positron emission
tomography signal obtained from hypoxia imaging using an optimal imag-
ing protocol. The horizontal line represents a threshold used for delinea-
tion of hypoxic areas.
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Figure 5 Example of consecutive perfusion and hypoxia positron emission tomography in a patient with non-small cell lung cancer. A: Low dose computed
tomography; B: Perfusion image (averaged image acquired over time interval 30-120 s after injection of 370 MBq [°0]Hz0); C: Hypoxia image (averaged image over

time interval 40-70 min after injection of 185 MBq [*F]FAZA).

of hypoxia in tumors. In addition, whole body PET scans
using a hypoxia tracer can reveal hypoxic areas not only
in primary tumors, but in metastases as well. To date,
several tracers have been developed to measure tumor
hypoxia, whereas tumor perfusion has been mostly quan-
tified using ["O]H20. While acquisition and quantifica-
tion of [°OJH20 data is rather straightforward, several
challenges remain for PET hypoxia tracers.

Although several hypoxia tracers have been developed
and evaluated in the clinical setting, no consensus has
yet been reached on the most feasible tracer, the optimal
timing of acquisition, and the most accurate quantifica-
tion method. In lung cancer, the studies on hypoxia PET
tracers are preliminary and include a limited number of
patients. Ideally, the clinical impact of hypoxia imaging
would be evaluated in large clinical trials validating hypox-
ia tracers for prediction of tumor response and survival.
In addition, clinical trials are needed to reveal the clinical
value of hypoxia tracers for advanced radiation therapy
strategies such as dose painting. In NSCLC, several trials
are currently recruiting patients for [ "FJFMISO based
(NCT01576796) and [wF]FDG based (NCT01024829)
dose boosting.

In patients with lung cancer, quantification of tracer
uptake can be challenging due to tumor movement dur-
ing respiration. As PET acquisition usually takes 10min
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to 1 h, patient motion during PET imaging is unavoidable
and the acquired image of the lung tumor will be blurred,
which complicates accurate delineation of hypoxic areas.
As a result, these images are less suitable for dose paint-
ing techniques, especially for dose painting by numbers.
For PET imaging, respiratory gated imaging (4D imag-
ing) is currently under study. In respiratory gated imaging,
patient motion is continuously monitored during acquisi-
tion. As a result, PET data can either be corrected for the
registered motion or PET data from a specific interval
of the respiratory cycle can be used for reconstruction.
As similar techniques are also under study for radiation
therapy, dose painting strategies may be further improved
by combining 4D PET hypoxia imaging with 4D radia-
tion therapy.

Since the introduction of antiangiogenic drugs, perfu-
sion measurements have been increasingly applied in the
clinic. [?OJH20 PET provides quantification of tumor
perfusion and may be useful for response monitoring
during antiangiogenic therapy. Further studies are needed
to evaluate the predictive value of tumor perfusion for
tumor response to anti-cancer drugs. In addition, tumor
petfusion may not only affect the delivery of drugs to
tumors, but also the delivery of PET tracers such as hy-
poxia tracers.

In conclusion, PET using both ["OJH20 and a hy-
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poxia tracer is a promising method to further understand

the development of hypoxia in lung cancer. As previously

mentioned, these PET scans are promising for response

monitoring of radiation therapy and antiangiogenic

drugs. In addition, hypoxia tracers may be useful to select

patients for treatment with radiosensitizers (e.g., nimora-
zole, NCT01733823) and realize a more precise radiation
plan including dose boosting and dose painting. As the
available PET studies on hypoxia and perfusion are rather
preliminary in patients with lung cancer, further studies

are needed for validation and clinical implementation in
this patient population.
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