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Abstract
Acute pancreatitis is an inflammatory disorder of the 
pancreas that may cause life-threatening complica-
tions. Etiologies of pancreatitis vary, with gallstones 
accounting for the majority of all cases, followed by 
alcohol. Other causes of pancreatitis include trauma, 
ischemia, mechanical obstruction, infections, autoim-
mune, hereditary, and drugs. The main events oc-
curring in the pancreatic acinar cell that initiate and 
propagate acute pancreatitis include inhibition of se-
cretion, intracellular activation of proteases, and gen-
eration of inflammatory mediators. Small cytokines 
known as chemokines are released from damaged 
pancreatic cells and attract inflammatory cells, whose 
systemic action ultimately determined the severity of 
the disease. Indeed, severe forms of pancreatitis may 
result in systemic inflammatory response syndrome 
and multiorgan dysfunction syndrome, characterized 
by a progressive physiologic failure of several interde-
pendent organ systems. Stress occurs when homeo-
stasis is threatened, and stressors can include physi-

cal or mental forces, or combinations of both. De-
pending on the timing and duration, stress can result 
in beneficial or harmful consequences. While it is well 
established that a previous acute-short-term stress 
decreases the severity of experimentally-induced 
pancreatitis, the worsening effects of chronic stress 
on the exocrine pancreas have received relatively lit
tle attention. This review will focus on the influence 
of both prior acute-short-term and chronic stress in 
acute pancreatitis.
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Core tip: Depending on the timing and duration, stress 
can result in beneficial or harmful consequences. Re-
garding the exocrine pancreas, a previous acute-short-
term stress decreases the severity of experimentally-
induced pancreatitis. This protection is conferred by 
distinct heat shock proteins (HSP) including HSP27, 
HSP60 and HSP70. Conversely, chronic stress increases 
the susceptibility of the exocrine pancreas, aggravat-
ing pancreatitis episodes. These worsening effects are 
mainly mediated by tumor necrosis factor alpha.
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INTRODUCTION
Acute pancreatitis is an inflammatory disorder of  the 
pancreas with an overall mortality of  approximately 
5%[1]. Etiologies of  pancreatitis vary, with gallstones 
accounting for the majority of  all cases, followed by al-
cohol. Other causes of  pancreatitis include trauma, isch-
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emia, mechanical obstruction, infections, autoimmune, 
hereditary, and drugs[2].

The main events occurring in the pancreatic acinar 
cell that initiate and propagate acute pancreatitis include 
inhibition of  secretion, intracellular activation of  prote-
ases, and generation of  inflammatory mediators[3]. These 
cellular events can be correlated with the acinar morpho-
logical changes (retention of  enzyme content, formation 
of  large vacuoles containing both digestive enzymes and 
lysosomal hydrolases, and necrosis), which are observed 
in the well-established in vivo experimental model of  
supraphysiological cerulein-induced pancreatitis[4], as well 
as in human acute pancreatitis[5]. Chemokines released 
from damaged pancreatic cells attract inflammatory cells, 
whose systemic action ultimately determined the severity 
of  the disease. Indeed, severe forms of  pancreatitis may 
result in systemic inflammatory response syndrome and 
multiorgan dysfunction syndrome, characterized by a 
progressive physiologic failure of  several interdependent 
organ systems[6].

Stress can be defined as “threatened homeostasis”, 
and stressors can include physical or mental forces, or 
combinations of  both. The reaction of  an individual to 
a given stressor involves the stimulation of  pathways 
within the brain leading to activation of  the hypothalam-
ic-pituitary-adrenal axis and the central sympathetic out-
flow[7]. This can result in visceral hypersensitivity through 
the release of  different substances, such as substance P 
and calcitonin gene-related peptide from afferent nerve 
fibers[8].

The main source of  pancreatic innervation comes 
from both vagus nerves and the celiac ganglion complex. 
The cephalic segment is innervated by the right celiac 
complex and the hepatic and mesenteric plexus coming 
from the right vagus. The splenic segment is innervated 
by the left celiac nerve and the splanchnic nervous net-
work. Except for the gastro-duodenal branches network, 
most of  the nerves enter the gland by its periphery and 
concentrate in the cephalic segment, which exhibits 
an important number of  ganglion cells. These charac-
teristics of  the macroscopic innervation decrease in a 
significant and progressive fashion towards the splenic 
segment[9,10].

While it is well established that a previous acute-
short-term stress decreases the severity of  experimen-
tally-induced pancreatitis[11-17], the worsening effects of  
chronic stress on the exocrine pancreas have received 
relatively little attention[18-20]. This review will focus on 
the influence of  both prior-acute-short-term and chronic 
stress in acute pancreatitis.

ACUTE STRESS
Preceding acute-short-term stress is a well-known induc-
tor of  cellular protection against numerous pathological 
conditions, including renal ischaemia, heart ischaemia, 
brain ischaemia, enterocolitis and pancreatitis[11-17,21-25]. 
Exposure of  organisms to an initial sublethal stress leads 

to the synthesis of  heat shock proteins (HSP) and con-
fers protection against further stress[26]. HSP comprise a 
highly conserved family of  proteins with molecular sizes 
ranging from 10 to 110 kDa. These molecular chaper-
ones are involved in synthesis, folding, transport and 
degradation of  proteins, and can be induced by stress-
ful conditions such as infection, inflammation, hypoxia, 
starvation, heat shock, water immersion, and oxidative 
stress[27-29].

The eventual protection conferred by acute stress-
induced HSP in pancreatitis, seems to be stressor- and 
disease-inducer-dependent[30,31]. Water immersion and 
heat shock induce pancreatic HSP60 and HSP70, re-
spectively, and protect rats from cerulein-induced acute 
pancreatitis by inhibiting autophagy, which prevents the 
subcellular redistribution of  cathepsin B and the activa-
tion of  trypsinogen[14,32,33]. Additionally, hyperthermia- or 
chemical-stimulated HSP70 also decrease the produc-
tion of  inflammatory mediators by downregulation of  
NF-κB[34,35]. Remarkably, transgenic mice knock-out 
for HSP70 (HSP70.1-/-) develop spontaneous activa-
tion of  pancreatic trypsinogen[36]. However, transgenic 
knock-in mice over-expressing HSP72 do not exhibit 
protection for development of  cerulein-induced acute 
pancreatitis, but HSP72 over-expression accelerates tis-
sue injury recovery by lessening NF-κB signaling[37]. 
Heat shock also induces pancreatic protection against 
cerulein hyperstimulation by upregulating HSP27[38]. In-
deed, over-expression of  HSP27 preserves the actin cy-
toskeleton of  pancreatic acinar cells and protect against 
cerulein-induced pancreatitis in a specific phosphorylation-
dependent manner[39]. HSP27 exerts a similar protective 
effect in coronary arteries[40]. Vessels (endothelial and/or 
smooth muscle cells) from patients with ischemic heart 
disease exhibit decreased levels of  HSP27 (in particular 
phospho-HSP27), which correlates with destabilization 
of  the actin cytoskeleton[40]. Regardless of  the underlying 
mechanism, disorganization of  the actin cytoskeleton 
is associated with dysregulation of  pancreatic enzyme 
secretion[41]. Interestingly, HSP27 seems to coordinate 
activity with other HSP members to provide the full ex-
tent of  resistance to injury[42]. For instance, , depletion 
of  HSP70 in renal cells does not impede association of  
HSP27 with actin, but prevents maximal cytoprotective 
effect against energy depletion[42].

Other pancreatitis-induced models exhibit some dif-
ferences with the previously mentioned, secretagogue hy-
perstimulation. Thus, hyperthermia protects against sub-
sequent L-arginine-induced acute pancreatitis in rats by 
increasing pancreatic expression of  HSP70 and HPS27, 
and phosphorylation of  HSP27, but without changing 
HSP60 levels[15,43]. As observed in the cerulein model, 
transgenic mice over-expressing HSP72 do not exhibit 
protection for L-arginine-induced acute pancreatitis[37]. 
However, HSP72 over-expression does not accelerate 
tissue injury recovery in L-arginine treated animals[37]. Al-
though both hot and cold water immersion induce pan-
creatic HSP72 and HSP60, respectively, only cold water 
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immersion slightly protect rats from sodium tauracholate-
induced acute pancreatitis, pointing the transcendence 
of  the subcellular redistribution of  cathepsin B in this 
necrohemorrhagic pancreatitis model[13].

Nevertheless, prior-acute-short-term stress protects 
against pancreatitis by distinct HSP, which seem to exert 
its beneficial effects through different pathways (Figure 
1).

CHRONIC STRESS
Chronic stress has been proved to increase the suscepti-
bility of  different rat organs, such as the small intestine, 
colon and brain, to inflammatory diseases[8,20,44-46], as well 
as to aggravate atherosclerotic lesions in mice[47].

Even though oxidative stress and inflammation each 
occur in the pancreas during the early stage of  supra-
maximal cerulein-induced acute pancreatitis model, 
neither oxidative stress nor an inflammatory insult alone 
cause the characteristic changes of  acute pancreatitis[48]. 
However, chronic stress leaves the exocrine pancreas 
susceptible to pancreatitis by submaximal cerulein 
stimulation[20]. Pancreatic tissue from rats chronically ex-
posed to restraint exhibit measurable levels of  the pro-
inflammatory cytokine tumor necrosis factor α (TNF-α) 
as well as a low but detectable leukocyte infiltrate and 
myeloperoxidase activity[20], suggesting leukocytes as a 
feasible source of  TNF-α induced by chronic stress. 
Interestingly, in vitro incubation of  mice pancreatic acini 
with phorbol-12-myristate-13-acetate-activated neu-
trophils or macrophages directly induce intracellular 
trypsinogen activation and cell death, being protease 

activation and necrosis mediated by leukocyte-secreted 
TNF-α in a cathepsin-B and calcium-dependent man-
ner[49].

TNF-α has an important role in various biological 
functions, including cell proliferation, cell differentia-
tion, survival, apoptosis and necrosis[50], and in stress-
related inflammatory disorders[45-47,51]. For a long time, it 
has been known that TNF-α participates in the inflam-
matory cascade which propagates pancreatitis[52]. Nev-
ertheless, its relevance in the genesis of  this debilitating 
disease only recently captured the attention of  research 
investigation[20,49].

Secretion of  TNF-α by several stress stimuli has been 
demonstrated in vitro in many cell types, including pancreat
ic acinar cells[53-60], and in vivo in different tissues[47,51,61-63]. 
Our lab has shown that in vitro hypoxia-reoxygenation 
conditions also induce TNF-α secretion by acinar cells[20]. 
These conditions are concomitant with ischemia-reperfu
sion processes, which can be the result of  microcircula-
tory disturbances generated by stress[64]. Indeed, local 
pancreatic blood flow is reduced by stress[65]. Hence, 
alternate vasoconstriction and vasodilatation leading to 
tissue ischemia and reperfusion could reflect another 
putative local origin of  chronic stress-derived TNF-α 
found in the pancreatic tissue. This is supported by the 
increased levels of  the transcription factor hypoxia induc-
ible factor 1 alpha (HIF-1α) observed in experimentally 
stressed rats[20]. HIF-1α is induced by hypoxic conditions 
and is involved in different inflammatory processes, such 
as dermatitis, rheumatoid arthritis[66], and also pancreati-
tis[67].

Different reports evaluated the response of  pancre-
atic acinar cells to exogenous TNF-α, showing disrup-
tion of  the typical filamentous actin distribution[20,68]. A 
similar redistribution of  actin from apical to basolateral 
membranes was observed in pancreatic acini supra-
stimulated with CCK[69]. While TNF-α alone does not 
stimulate amylase secretion in human pancreas[70] or in 
isolated rat pancreatic acini[20,68], it certainly inhibits sub-
maximal CCK-stimulated amylase secretion[20]. Although 
necessary, the inhibition of  pancreatic enzyme secretion 
alone is not sufficient to induce pancreatitis[3]. None-
theless, TNF-α also activates pancreatic acinar nuclear 
factor-κB (NF-κB), a key transcriptional regulator of  the 
expression of  inflammatory molecules[20,68,71,72]. Consis-
tently, rat pancreatic acinar cells treated with high doses 
of  exogenous TNF-α, exhibit a notable increase in the 
production of  cytokines interleukin (IL)-1β, IL-4, IL-6, 
IL-10, as well as TNF-α[73].

TNF-α has been shown to regulate the activity of  
distinct protein kinase C (PKC) isoforms in diverse cell 
types, including the pancreatic acinar cell[72,74,75]. PKC 
family comprises at least 12 members differing in tissue 
distribution and activation requirements. There are three 
subclasses: classical PKC isozymes (-α, -β1, -β2, and -γ), 
which require calcium and are activated by diacylglycerol 
and phorbol ester; the novel PKC isozymes (-δ, -ε, -η, 
and -θ), which are activated by diacylglycerol and phor-
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Figure 1  Hypothetical mechanisms underlying prior-acute-short-stress 
protects against pancreatitis. Pancreatic insults may provoke dysregulation 
of enzyme secretion, premature protease activation and inflammatory acinar 
response, which result in the development of pancreatitis. Different stressors 
such as hyperthermia, hypothermia, hypoxia, energy depletion and chemicals, 
can induce pancreatic heat shock proteins (HSP) by a prior-acute-short-stress 
exposition. Distinct HSP avoid the disruption of the actin cytoskeleton, zymo-
gen/lysosomal enzyme colocalization and activation of the pro-inflammatory 
nuclear factor-kappa beta (NF-κB) caused by the pancreatic insult. These HSP-
mediated effects seem responsible for the protection against pancreatitis. The 
specific pathway inhibited by each HSP is depicted in green.
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bol ester independently of  calcium; and the atypical PKC 
isozymes (-λ, -ι, and -ζ), which are calcium independent 
and not responsive to phorbol ester. Rat pancreatic acini 
express the α, δ, ε, and ζ PKC isozymes[76]. Changes 
in PKC activity are associated with inflammation in a 
variety of  tissues, including skin, kidney, intestine, and 
pancreas[77-80]. Specifically, PKC-δ and PKC-ε regulate 
the signal transduction pathways implicated in the patho-
physiological activation of  NF-κB and trypsinogen in 
rat pancreatic acini[72,81]. TNF-α activates both PKC-δ 
and PKC-ε in rat pancreatic acini[72], which convert 
physiological CCK concentrations into phytopathogenic 
concentrations[20]. Different studies have consistently 
shown that modulation of  PKC activity sensitizes acinar 
cells to physiological secretagogue treatments, resulting 
in harmful levels of  NF-κB and trypsin activity[81,82]. In 
agreement, TNF-α plus submaximal CCK pathologically 
activates NF-κB and trypsinogen in rat pancreatic acini, 
and induced both apoptosis and necrosis[20]. However, 

pancreatic acini response from rats seems to differ from 
that observed in mice, since TNF-α by itself  only in-
duces trypsinogen activation and necrosis in mice, with 
an extent comparable to supramaximal cerulein stimula-
tion[20,49]. This could be a concentration-dependent effect 
or relative to differences between species, which is well-
documented for experimentally-induced pancreatitis in 
rodents[83-86], but further studies are required to address 
this disparity in pancreatic acinar response to exogenous 
TNF-α.

Summarizing this topic, chronic stress appears as a 
risk factor to develop pancreatitis by sensitizing the exo-
crine pancreas through TNF-α, which seems to exert its 
detrimental effects through different pathways (Figure 2).

CONCLUSION
Depending on the timing and duration, stress can result 
in beneficial or harmful consequences for the exocrine 
pancreas. Prior acute-short-term stress could be useful 
for high-risk procedures such as endoscopic retrograde 
cholangiopancreatography. Conversely, the management 
of  chronic stress appears critical for patients with risk 
of  pancreatitis. Nonetheless, the mechanisms underlying 
protection by previous-acute-short-term stress as well as 
burden by chronic stress, have to be further explored.
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