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Abstract
Alcoholic liver disease (ALD) and hepatitis C virus (HCV) 
infection represent, either alone or in combination, more 
than two thirds of all patients with liver disease in the 
Western world. This review discusses the epidemiology 
and combined impact of ALD and HCV on the progres-
sion of liver disease. ALD and HCV affect the progres-
sion of liver disease to liver cirrhosis and hepatocellular 
carcinoma (HCC) in a synergistic manner. Thus, the risk 
for HCC increases five times with a daily alcohol con-
sumption of 80 g; in the presence of HCV it is increased 
20-fold, and a combination of both risk factors leads to 
a more than 100-fold risk for HCC development. Alcohol 
consumption also decreases the response to interferon 
treatment which is probably due to a lack of compliance 
than a direct effect on HCV replication. Several molecu-
lar mechanisms are discussed that could explain the 
synergistic interaction of alcohol and HCV on disease 
progression. They include modulation of the immune 
response and apoptosis, increased oxidative stress via 
induction of CYP2E1 and the hepatic accumulation of 
iron. Thus, both HCV and alcohol independently cause 
hepatic iron accumulation in > 50% of patients probably 
due to suppression of the liver-secreted systemic iron 
hormone hepcidin. A better understanding of hepcidin 
regulation could help in developing novel therapeutic 
approaches to treat the chronic disease in the future. 
For now, it can be generally concluded that HCV-infect-
ed patients should abstain from alcohol and alcoholics 

should be encouraged to participate in detoxification 
programs. 

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Alcoholic liver disease; Chronic hepatitis C; 
Steatosis; Steatohepatitis; Fibrosis; Cirrhosis; Reactive 
oxygen species; Hepatocellular carcinoma; Iron accu-
mulation

Peer reviewers: Thomas Bock, PhD, Professor, Department 
of Molecular Pathology, Institute of Pathology, University 
Hospital of Tuebingen, D-72076 Tuebingen, Germany; Milton 
G Mutchnick, MD, Professor and Division Chief of Gastro
enterology, Wayne State University School of Medicine, 
Detroit, Michigan, United States; Ali Mencin, MD, Assistant 
Professor of Pediatrics, Division of Pediatric Gastroenterology, 
Morgan Stanley Children’s Hospital of New York, CHN-702, 
3959 Broadway, New York, NY 10032, United States

Mueller S, Millonig G, Seitz HK. Alcoholic liver disease and 
hepatitis C: A frequently underestimated combination. World J 
Gastroenterol 2009; 15(28): 3462-3471  Available from: URL: 
http://www.wjgnet.com/1007-9327/15/3462.asp  DOI: http://
dx.doi.org/10.3748/wjg.15.3462

INTRODUCTION
Together, alcoholic liver disease (ALD) and chronic 
hepatitis C virus (HCV) infection are the most frequent 
chronic liver diseases in the Western world. In addition, 
they frequently coexist in the same individual. While 
both diseases alone have a similar progression sequence 
leading to cirrhosis in circa 15% of  patients within 
10-20 years, their coexistence dramatically enhances 
disease progression in a so-called synergistic manner. 
This synergism affects both fibrosis progression and 
the development of  hepatocellular carcinoma (HCC). 
The basic molecular mechanisms of  this synergism are 
far from being understood but may include increased 
production of  reactive oxygen species (ROS) and 
deposition of  iron. In the present article, we review and 
discuss the epidemiology of  ALD and HCV infection, the 
synergistic impact of  combined alcohol and HCV on the 
progression of  liver disease, viral replication and response 
to anti-HCV treatment. We finally analyze potentially 
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underlying mechanisms that may explain the interaction 
between alcohol and HCV and offer novel molecular 
strategies for future therapeutic interventions. 

EPIDEMIOLOGY OF ALD AND HCV
Chronic alcohol consumption causes approximately 50% of  
the chronic liver disease burden in Germany and the death 
of  more than 18 000 inhabitants per year[1]. In the US alcohol 
is also responsible for more than 50% of  liver related deaths, 
and ALD is a major health care cost expenditure, accounting 
for nearly $3 billion annually[2]. At present, the country with 
the fastest increase in alcohol associated health problems 
is the Peoples Republic of  China with an annual per capita 
increase in alcohol consumption of  400% and more in some 
geographic regions[3]. The exact number of  alcohol related 
deaths is difficult to obtain due to inaccurate reporting of  
ethanol use. Since patients with compensated liver cirrhosis 
may often die by causes not obviously related to liver 
disease e.g. infectious complications, official mortality tables 
most likely underestimate the true prevalence of  ALD. 
If  the relationship between alcohol intake and prevalence 
of  ALD is examined on a population basis, the risk of  
developing ALD starts at 20-30 g ethanol per day. Liver 
cirrhosis develops only in 10%-20% of  people consuming 
more than 80 g of  ethanol daily[2]. Approximately 5% of  
the whole population in the US meet diagnostic criteria 
for alcoholism[4]. In Germany, more than 17.8% of  the 
population > 18 years drink more than 20-30 g of  alcohol 
per day[5], and a comparable number of  5% show high risk 
drinking behavior (> 80 g/d)[5]. 

In contrast to ALD, the prevalence of  HCV is easier 
to determine based on serological studies. The world-
wide seroprevalence of  HCV antibodies is estimated to 
be 3% with marked geographic variations from 1% in 
North America to 10% in North Africa[6]. The prevalence 
is higher in males than in females (2.5% vs 1.2%) and is 
highest in the 30-49 years old age group[7]. Taken together, 
there is an estimated prevalence of  high risk drinking and 
HCV of  1%-5% in the Western world. According to re-

cent data from the Center of  Disease Control and Preven-
tion, the prevalence of  HCV and ALD is relatively similar 
at 26% and 24%, respectively. Although there is a selec-
tion bias, these prevalence data are somehow reflected by 
large transplant centers. In our transplant center at the 
University of  Heidelberg, liver cirrhosis due to HCV and 
ALD are leading causes for liver transplantation account-
ing for 32% and 24%, respectively, of  all liver transplanta-
tions. In summary, HCV and ALD represent either alone 
or in combination, more than two thirds of  all patients 
with liver disease in the Western world[8] (Figure 1). 

NATURAL COURSE OF ALD AND HCV 
AND IMPORTANT PROGRESSION 
FACTORS
ALD is the most important organ manifestation of  chron-
ic alcohol consumption. Ninety percent to one hundred 
percent of  heavy drinkers develop alcoholic fatty liver. Ten 
percent to thirty-five percent of  them develop alcoholic 
steatohepatitis and 8%-20% develop alcoholic liver cirrho-
sis within 10-20 years[9]. The natural course of  ALD and 
HCV is given in Figure 2. Due to better treatment options 
for complications of  liver cirrhosis e.g. variceal bleeding, 
the prevalence of  HCC is increasing with an annual risk 
of  1%-2%. HCC represents the most common cause of  
death in patients with ALD. HCV shows a similar progres-
sion pattern. In a US study, the mean interval between 
HCV infection, chronic hepatitis, cirrhosis and HCC was 
circa 10, 20 and 30 years, respectively[10]. A large cohort 
study with long-term follow up showed that 75% of  HCV-
infected patients develop persistent infection while severe 
progressive liver disease occurred in 15%-20%[11]. 

Factors that contribute to progression of  ALD and 
HCV are summarized in Table 1. For ALD, these include 
the amount of  alcohol consumed over a life time[12,13], 
drinking patterns, and nutritional status. Both malnutrition 
and obesity are associated with an increased risk for 
alcoholic cirrhosis[14-16]. This is especially relevant with the 
endemic occurrence of  non-alcoholic fatty liver disease 
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Figure 1  HCV and ALD, either in combination or alone, represent the 
majority of liver diseases (data from the US Centers of Disease Control 
and Prevention 2007). HCV: Hepatitis C virus; ALD: Alcoholic liver disease; 
HBV: Hepatitis B virus.
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Figure 2  Natural course of ALD and HCV alone or in combination. 
Estimated risk and time interval for disease states are indicated (for more 
details see text).
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(NAFLD) in the Western World due to obesity and being 
overweight associated with diabetes mellitus type Ⅱ and 
peripheral insulin resistance. Co-medication of  certain 
drugs together with ethanol may also harm the liver by 
increased conversion to toxic metabolites due to induced 
enzyme systems. This is well known for acetaminophen[17], 
methotrexate[18] and the tuberculostatic drug isoniazid[17] 
but also occurs with retinoids such as β-carotin and 
vitamin A[19]. Males and females show different courses 
of  ALD and HCV. While females are more susceptible 
to alcoholic damage, they progress slower in chronic 
HCV infection. Other important factors that contribute 
to disease progression in ALD are co-morbidities such 
as HBV, hemochromatosis, and Wilson’s disease. Factors 
associated with HCV progression are co-infection with 
HBV, HIV, schistosomiasis or conditions of  immunosu
ppression. Finally, iron accumulation has been recognized 
both in ALD and HCV as an independent risk factor for 
the development of  HCC. Pathological hepatocellular 
iron deposits are found in more than 50% of  patients 
with either HCV or ALD. Underlying mechanisms and 
potential therapeutic options are still under investigation. 

EFFECT OF ALCOHOL ON THE 
PREVALENCE OF HCV INFECTION
Chronic alcoholics have an increased prevalence of  HCV 
infection, increasing with the severity of  the ALD. Takase 
et al[20] showed that HCV prevalence demonstrated by anti-
HCV positivity increases with the severity of  ALD, having 
a prevalence of  approximately 5% in alcoholic fibrosis, 
almost 40% in alcoholic cirrhosis and almost in 80% in 
HCC due to alcohol. This could be due to the lifestyle 
of  chronic alcoholics, since many of  them are also 
intravenous drug abusers, which is a high risk for HCV 
infection. It could also be due to the immunosuppressive 
effect of  alcohol decreasing the HCV-clearance rate after 
infection since it has been shown that alcohol suppresses 
the function of  various immune components including 
natural killer cells, neutrophils, monocytes and others[21].

ALCOHOL CONSUMPTION, HCV 
REPLICATION AND RESPONSE TO HCV 
THERAPY
A great number of  studies emphasize the fact that 

alcoholics respond poorly to interferon therapy. More 
than ten years ago, Mochida et al[22] showed that almost 
30% of  non-alcoholics responded biochemically 
and virologically to interferon therapy compared to 
less than 10% of  alcoholics. The question remained 
open whether this is due to a direct inhibitory effect 
of  alcohol on interferon response or due to poor 
compliance of  these patients. Pessione et al[23] studied 
serum HCV RNA in HCV patients with increasing 
alcohol intake (reported in gram per week). In this study 
a significant dose-dependent increase in serum HCV 
RNA was noted starting from 70 g alcohol per week. 
In line with this observation, a decrease of  alcohol 
consumption prior treatment of  hepatitis C significantly 
reduced viral load. In addition, Cromie et al[24] showed 
that viral load decreased highly significantly within 4 mo 
when patients cut down on alcohol consumption from 
39-100 g/d to 0-50 g/d. More recent data, however, 
clearly suggest that the poor response of  alcoholics 
towards interferon therapy is more l ikely due to 
reduced compliance. In this study, the recorded alcohol 
consumption during the months before HCV treatment 
was associated with an increased rate of  therapy drop 
out (3% vs 26%, P = 0.002)[25] while the response rate 
was comparable (25% vs 23%) after correction for this 
confounding factor. In conclusion, poor compliance of  
alcoholics is probably the major cause for poor antiviral 
response to HCV therapy.

COMBINED EFFECTS OF ALCOHOL AND 
HCV ON FIBROSIS PROGRESSION
A huge number of  studies have shown that concomitant 
alcohol consumption in the presence of  HCV increases 
progression of  fibrosis[23,26-54]. This means that fibrosis oc-
curs at an earlier time point and its development is acceler-
ated. A summary of  selected studies on alcohol consump-
tion and fibrosis progression is given in Table 2. Thus, 
it has been shown in more than 2000 HCV patients that 
fibrosis progression was significant (P < 0.001) if  more 
than 50 g/d alcohol is consumed[26]. Similar results were 
obtained by Roudot-Thoraval et al[27] with a prevalence of  
cirrhosis of  35 % vs 18 % (P < 0.001). Pessione showed 
in more than 200 HCV patients that weekly alcohol con-
sumption correlated significantly with fibrosis score[23]. 
He also showed that the relative risk for decompensated 
cirrhosis correlated with alcohol intake. Alcohol-driven 
fibrogenesis in HCV patients is dose-dependent and starts 
at less than 30 g/d. Overweight and obese patients as 
well as type Ⅱ diabetics are especially sensitive to fibrosis 
progression[55]. HCV patients with excessive alcohol abuse 
have a 2-3 fold increased risk of  severe liver disease com-
pared with HCV patients without a history of  drinking[56]. 
So far it is still unclear how long a patient has to abstain 
from alcohol before the negative effect of  alcohol is 
abolished[57]. Alcoholics with HCV infection seem to stop 
drinking more frequently compared to alcoholics without 
HCV infection. This is possibly due to a higher awareness 
in these patients that liver disease can lead to cirrhosis and 
death without a change in lifestyle[58]. Finally, it has been a 
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Table 1  Comparison of risk factors for ALD and HCV

HCV ALD

Male gender Female gender
Amount and duration of alcohol consumption
Continuous drinking (vs sporadic drinking)
Overweight/malnutrition

Hepatic iron deposition
age > 40

Hepatic iron deposition

Immunosuppression Vitamin A, co-medication

ALD: Alcoholic liver disease; HCV: Hepatitis C virus.
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continuous debate whether small amounts of  alcohol (< 
20-30 g/d) alter progression in HCV infection. An answer 
may come from a Scandinavian study by Westin et al[59]. 
These authors investigated 78 patients with hepatitis C in-
fection who underwent two liver biopsies in a mean inter-
val of  6.3 years. Alcohol consumption was less than 40 g/d. 
The authors found progressive fibrosis with (a) increased 
total alcohol consumption (15.4 kg vs 3.9 kg; P = 0.007), 
(b) increased daily alcohol consumption (5.7 g vs 2.6 g/d; P 
= 0.03) and (c) increased frequency of  drinking occasions 
(35 vs 8 d per year; P = 0.006). These results underscore 
that even small amounts of  alcohol may increase fibrosis 
progression in HCV. Confirmation comes from another 
prospective study by Hezode et al[60] who showed an im-
pact of  mild alcohol consumption on histological activity 
and fibrosis starting as low as 20 g/d.

ROLE OF ALCOHOL AND HCV ON 
DEVELOPMENT OF HCC
Various studies have shown that there is an increased 
risk of  HCC in patients with HCV and alcohol abuse 
compared to either HCV or ALD alone[61-68]. Since these 
studies vary considerably in their definition of  alcohol 
abuse, Table 3 is restricted to comparable studies that tried 
to identify the independent contribution of  HCV and 
ALD to HCC development. It can be concluded from 
these data, that a daily uptake of  > 80 g alcohol alone 
increases HCC risk 5-fold while the presence of  HCV 
alone increases HCC 20-fold. A combination of  both 
risk factors increases the risk for HCC development over 
100-fold. Thus, HCV and alcohol act truly synergistic on 
HCC development.

POSSIBLE MECHANISMS FOR THE 
SYNERGISM OF ALCOHOL AND HCV
The underlying molecular mechanisms of  alcohol and 
HCV-mediated liver disease are complex and they are still 
incompletely understood despite intensive efforts over 
decades. 

Both alcohol and HCV can reproduce the four 
sequential hallmarks of  liver disease: steatosis, steato

hepatitis, fibrosis and HCC. Molecular key features of  
ethanol and HCV mediated liver damage include direct 
biochemical consequences of  alcohol metabolism such 
as the production of  acetaldehyde, generation of  reactive 
oxygen species (ROS) and oxidative damage, epigenetic 
modifications such as hypomethylation of  histones and 
modulation of  the signaling machinery. Some of  these 
events lead to similar downstream effects such as fatty liver, 
ROS and iron accumulation but are based on different 
mechanisms which could well explain the synergistic 
effects of  alcohol and HCV on the liver. Thus, steatosis 
in HCV is mainly caused by impairment of  mitochondria 
preventing mitochondrial metabolism of  fatty acids, while 
ethanol primarily stimulates lipogenesis. On the other 
hand, HCV and ethanol both stimulate ROS generation 
via distinct mechanisms and they both lead to hepatic iron 
accumulation, one of  the most pro-fibrogenic and pro-
tumorigenic factors in liver disease. For this reason, ROS 
generation and iron accumulation are discussed separately 
below. It should also be mentioned that alcohol may 
have direct molecular effects on HCV infection since it 
exerts stimulatory effects on HCV replication probably 
via signaling pathways[69]. The enhanced quasispecies 
complexity in the hypervariable region 1 of  HCV in 
alcoholics may be one major cause that sensitizes for faster 
disease progression[70]. 

Alcohol, HCV and liver damage
Ethanol biochemically leads to a shift towards NADH 
which ultimately stimulates lipogenesis. In addition, 
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Table 2  Fibrosis progression in HCV and alcohol consumption from selected studies

No. of patients Alcohol consumption Results Ref.

2235 0 g, < 50 g, > 50 g > 50 g independent risk factor for fibrosis progression (P < 0.001) [26]

6664 > 5/6 drinks (female/male), > 1 year Higher risk of cirrhosis (35% vs 18 %) [27]

176 > 40/60 g (female/male), > 5 years Faster cirrhosis progression (58 % vs 10 %), 2-3 fold increased risk of developing 
cirrhosis

[29]

168 Low < 30, medium 30-80; high > 80 g/d, > 5 J Alcohol consumption low/medium/high significantly different between non-
cirrhotics (58%/27%/16%) and cirrhotics (76%/15%/9%) (P < 0.05)

[28]

234 Lifetime alcohol consumption Cirrhotics have greater alcohol consumption than patients with hepatitis 
(240 g/wk vs 146 g/wk) (P = 0.02) 

[30]

233 0, 25, 50, 75, 100, > 125 g Weekly alcohol consumption correlates with serum HCV RNA levels and 
fibrosis score (P < 0.001)

[23]

702 0/175 g/d HCV increases OR for cirrhosis from 1 to 15 (0 g), 9.2 to 147.2 (175 g) [141]

1667 Subgroup: > 260 g/wk vs < 90 g/wk Risk for cirrhosis increases by 3.6 [31]

636 > 80 RR for cirrhosis: HCV 7.8, HCV + alcohol 31.1 [32]
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Table 3  Odds ratio for the development of HCC as a function 
of HCV seroprevalence and amount of alcohol consumption

Alcohol consumption (in grams alcohol per day)

No Yes 0-40 40-80 > 60 > 80 Ref.

Without HCV 1 1.5 7.3 [63]

1 2.4 1.7 4.5 [68]

2 [67]

3 [64]

With HCV 26.1 62.6 126 [63]

19.1 53.9

[64]



ethanol is metabolized to the mutagenic metabolite 
aceta ldehyde and during that react ion ROS are 
produced mainly as a byproduct of  CYP2E1. Additional 
mechanisms include the release of  cytokines such as 
TNF-α, which increases free fatty acid release from 
adipocytes in the periphery of  the liver[71], stimulates 
lipogenesis in hepatocytes[72], and inhibits β-oxidation of  
fatty acids[73]. Chronic ethanol consumption also impairs 
transport and secretion of  triglycerides as VLDL[74] which 
again leads to an increased hepatic fat accumulation. 
Activation of  macrophages by lipopolysaccharides via the 
toll-like receptor 4 (TLR-4) leads to the production of  a 
variety of  inflammatory mediators, such as TNF-α and 
ROS. HCV also leads to steatosis but in contrast to ALD 
mainly via a decreased mitochondrial β-oxidation with 
ultrastructural alterations of  hepatocyte mitochondria in 
more than half  of  the patients. This means that HCV and 
alcohol stimulate fat accumulation in the liver via distinct 
mechanisms. In addition to its role in steatosis, abnormal 
production of  TNF-α is also a critical inflammatory 
component in the liver induced by chronic ethanol 
exposure[75,76]. Although direct exposure of  macrophages 
in culture can mimic some of  the effects of  ethanol[77,78], 
there seem to be multiple hepatic and extra-hepatic 
consequences of  ethanol that finally render Kupffer cells 
more reactive to LPS, leading to generation of  ROS and 
ROS-modulated signal transduction cascades[79,80]. The fat 
regulating hormone adiponectin also seems to be involved 
in ethanol mediated steatohepatitis[81-83]. Some data 
indicate that ethanol directly drives fibrosis progression: 
acetaldehyde is supposed to increase TGF-β1 secretion[84] 
and both ethanol and acetaldehyde induce accumulation 
of  collagen[85]. Similar findings have been shown for HCV-
replicating hepatoma cells[86].

HCC pathogenesis by ethanol seems to require 
several factors[87] including the presence of  cirrhosis, 
oxidative stress, altered methyl transfer resulting in 

DNA hypomethylation, and a decrease in retinoic 
acid. In addition, co-morbidities such as viral hepatitis, 
diabetes mellitus and obesity are known to accelerate 
HCC development in patients with ALD. ROS play an 
important role in hepatocarcinogenesis[87,88]. Chronic 
ethanol consumption results in the generation of  ROS 
via multiple pathways leading to lipid peroxidation (LPO) 
and LPO-byproducts such as 4-hydroxy-2-nonenal 
(4-HNE) and malondialdehyde (MDA). These DNA-
reactive aldehydes in turn form mutagenic exocyclic 
DNA adducts including 1, N6-ethenodeoxyadenosine 
(εdA) and 3, N4-ethenodeoxycytidine[89,90].

Role of ROS in HCV and ALD
The generation of  ROS seems to be a hallmark of  
both ALD and HCV[91-95] (Figure 3). While location and 
mechanisms of  their generation differ markedly between 
ALD and HCV, downstream events of  oxidative 
damage are similar due to the high but rather unspecific 
reactivity of  species such as hydroxyl radicals or lipid 
peroxidation products. Hepatocyte mitochondria are 
structurally altered in more than 50% of  HCV patients 
and these conditions are accompanied by a significant 
depletion of  hepatocellular and lymphocyte glutathione 
(GSH), an increase of  oxidized GSH (GSSG) and the 
lipid peroxidation marker malondialdehyde[91]. ROS are 
either induced directly by the virus or indirectly through 
activation of  inflammatory cells. HCV core[96] and 
NS5A[96,97] have been implicated in generating ROS via 
mitochondrial damage and calcium release. 

ROS also play an important role in alcohol-induced 
liver injury and in hepatocarcinogenesis[87-90]. Several 
enzyme systems are capable of  producing ROS including 
the mitochondrial respiratory chain, the cytosolic 
enzymes xanthine oxidase and aldehyde oxidase, as 
well as the microsomal cytochrome P450-dependent 
mono-oxygenases[88]. One member of  the latter system, 
cytochrome P450 2E1 (CYP2E1), is involved in the major 
pathway by which ethanol generates oxidative stress. 
Expression of  CYP2E1 has been shown to correlate well 
with the generation of  hydroxyethyl radicals and with LPO 
products such as 4-HNE and MDA[98]. CYP2E1 is induced 
by chronic alcohol consumption within a week even at 
a relatively low ethanol dose (40 g/d), but the degree 
of  CYP2E1 induction shows high variations between 
individuals[99]. Inhibition of  CYP2E1 by chlormethiazole, 
a specific CYP2E1 inhibitor, improved ALD as shown 
in the Tsukamoto-French rat model[100]. An increase of  
oxidative DNA adducts and of  mutagenic apurinic and 
apyrimidinic DNA sites has been found in chronically 
ethanol-treated wild- type mice but not in mice that lack 
functional CYP2E1[101] further stressing the importance 
of  CYP2E1 in the generation of  DNA damage following 
ethanol ingestion. Increased levels of  Cyp2E1 also 
potentiate pro-apoptotic effects of  TGF-β resulting in 
increased cell death of  hepatocytes[102]. Recently, we have 
been able to detect etheno-DNA adducts such as εdA in 
the livers of  patients with ALD[89,103]. 

Kupffer cells are also an important source of  ROS 
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Figure 3  Potential molecular mechanisms that explain the synergistic effect 
of alcohol and HCV on the progression of liver disease. Reactive oxygen 
species (ROS) and iron accumulation seem to be key features of both diseases.
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during ethanol exposure[93] and in response to LPS[104]. 
NADPH oxidase-dependent production of  ROS is 
implicated in ethanol-induced liver injury since p47phox 
-/- mice which are deficient in this regulatory subunit 
of  NADPH oxidase are resistant to chronic ethanol-
induced injury[105]. Chronic ethanol feeding increases the 
LPS-stimulated production of  ROS by Kupffer cells; 
this increase is primarily due to an increase in NADPH 
oxidase activation after chronic ethanol feeding[81]. 
Recently, Thakur and colleagues have specifically 
identified NADPH oxidase-derived ROS as an important 
contributor to increased TLR-4 mediated signal 
transduction and TNF-α expression in rat Kupffer cells, 
particularly after chronic ethanol exposure[81]. 

Ethanol and HCV lead to hepatic iron accumulation
In contrast to hepatitis B infection, iron deposits are 
found in more than 50% of  patients with HCV infection 
or chronic ethanol consumption[96,106-109]. Even mild 
to moderate alcohol consumption has recently been 
shown to increase the prevalence of  iron overload[110]. 
Iron localization has been reported in Kupffer cells[108] 
as well as in hepatocytes[111-113]. In our experience, iron 
accumulation is more common in hepatocytes than 
Kupffer cells in patients with ALD. Increased hepatic 
iron content is associated with greater mortality from 
alcoholic cirrhosis, suggesting a pathogenic role of  
iron in ALD. Genetic hemochromatosis in conjunction 
with excessive alcohol consumption exacerbates liver 
injury[100]. It should be mentioned that iron per se is the 
most profibrogenic and genotoxic factor and 50% of  
patients with hereditary hemochromatosis develop 
fibrosis and have a 200-fold increased risk for HCC[114]. 
On the other hand, immune surveillance can be impaired 
by iron overload, since it compromises anti-tumor 
activity of  macrophages[115-117]. 

The underlying mechanisms of  iron accumulation 
observed in ALD and HCV are still poorly understood 
but seem to involve an inadequate upregulation of  
the iron hormone hepcidin. Genome wide microarray 
based screening for candidate genes that could cause 
iron overload involved several genes not yet linked 
to iron metabolism[118]. Preliminary data from ALD 
patients and ethanol-treated mice models suggest 
that hepatic iron uptake pathways are increased in the 
liver and potential mechanisms involve an increase of  
the transferrin receptor (TfR)1 and repression of  the 
systemic iron hormone hepcidin that controls duodenal 
iron absorption and RES-mediated iron release via the 
iron exporter ferroportin[119,120]. Using novel in vitro and 
in vivo models[121,122], we have recently demonstrated that 
H2O2 alone increases TfR1 via posttranscriptional and 
translation mechanisms ultimately leading to cellular 
accumulation of  iron[123,124]. These data show that 
chronic exposure of  cells to non toxic levels of  H2O2 
lead to accumulation of  iron via distinct regulatory 
mechanisms promoting Fenton chemistry. We suggest 
that increased oxidative stress in the form of  H2O2 is 
an important regulatory factor that causes continuous 
iron accumulation and may support ALD progression. 

Valuable information on the direct interaction of  
HCV with host metabolism has been gained from 
studies with genetically modified animals, though with 
some controversial results[125]. Thus mice transgenic 
for the total open reading frame of  HCV under the 
murine albumin promoter developed steatosis and liver 
cancer[126,127], but this association disappeared in later 
generations of  animals, casting doubt on the earlier 
conclusions that HCV infection alone (in the absence 
of  cirrhosis and iron overload) drives hepatic carcino
genesis[109,128,129]. In addition, iron overload induced in 
mice either through diet[130,131] or genetic deletion of  
the HFE locus[132] did not lead to advanced fibrosis or 
HCC. In HCV transgenic mice, hepcidin was found to 
be suppressed despite iron loading. This is unexpected, 
since hepcidin inhibits cellular iron efflux by inducing 
internalization of  ferroportin[133], an iron exporter 
that is expressed in macrophages, hepatocytes and 
intestinal cells. The mechanism by which hepcidin was 
downregulated in the present model remains elusive, 
since cytokines such as TNF-α, IL-1β and IL-6 which 
can upregulate hepcidin levels[134,135] were not suppressed. 
Other important players such as iron regulatory proteins 
(IRP1 and IRP2) which sense iron but also ROS at the 
cellular level have not been assessed[136]. 

Finally, it has also been investigated whether iron 
directly affects HCV replication. In hepatoma cells 
iron loading promoted reporter expression under the 
control of  regulatory HCV mRNA stem-loop structures 
by upregulating expression of  the translation initiation 
factor 3eIF3[137]. In contrast, iron was shown to suppress 
HCV replication by inactivating the RNA polymerase 
NS5B[138]. Clinical data indicate that iron status does not 
significantly influence HCV replication in vivo, since the 
response to therapy of  patients with β-thalassemia was 
not influenced by the degree of  iron accumulation[139], 
and venesection did not reduce hepatitis C viral load[140]. 
Taken together, iron accumulation in patients with 
HCV and ALD is an important progression factor. The 
underlying mechanisms are being intensively studied in 
search for novel therapeutic approaches. 

CONCLUSION
ALD and HCV are the most common liver diseases 
in the Western world either alone or in combination. 
Coexistence of  both diseases has a true synergistic effect 
on fibrosis progression and HCC development. Thus, a 
daily consumption of  more than 80 g alcohol increases 
the risk for HCC 5-fold, in the presence of  HCV 
100-fold while HCV alone increases the risk for HCC 
20-fold. Alcohol abusers have an increased prevalence of  
HCV infection probably due to lifestyle or to immune 
suppression. Alcoholics also have a decreased response 
rate to antiviral therapy which is most probably due to 
poor compliance. There is obviously no safe level of  
drinking in patients with hepatitis C and it remains unclear 
how long abstinence is necessary to abolish the negative 
effect of  alcohol on the liver. Potential mechanisms which 
may explain the synergistic negative effect of  alcohol 
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and HCV infection on liver disease include generation 
of  ROS, iron accumulation, steatosis induction, immune 
modulation, stimulation of  HCV replication and direct 
DNA damage. Abstaining from drinking in HCV patients 
who do not respond to antiviral treatment is the sole 
efficient treatment option to date. A better understanding 
of  the underlying molecular mechanisms could help to 
develop novel targeted treatment options. 
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