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Abstract
The present review aims to illustrate the strategies 
that are being implemented to regenerate or bioengi-
neer livers for clinical purposes. There are two general 
pathways to liver bioengineering and regeneration. The 
first consists of creating a supporting scaffold, either 
synthetically or by decellularization of human or animal 
organs, and seeding cells on the scaffold, where they 
will mature either in bioreactors or in vivo . This strat-
egy seems to offer the quickest route to clinical trans-
lation, as demonstrated by the development of liver 

organoids from rodent livers which were repopulated 
with organ specific cells of animal and/or human origin. 
Liver bioengineering has potential for transplantation 
and for toxicity testing during preclinical drug develop-
ment. The second possibility is to induce liver regen-
eration of dead or resected tissue by manipulating cell 
pathways. In fact, it is well known that the liver has 
peculiar regenerative potential which allows hepatocyte 
hyperplasia after amputation of liver volume. Infusion 
of autologous bone marrow cells, which aids in liver 
regeneration, into patients was shown to be safe and 
to improve their clinical condition, but the specific cells 
responsible for liver regeneration have not yet been 
determined and the underlying mechanisms remain 
largely unknown. A complete understanding of the cell 
pathways and dynamics and of the functioning of liver 
stem cell niche is necessary for the clinical translation 
of regenerative medicine strategies. As well, it will be 
crucial to elucidate the mechanisms through which cells 
interact with the extracellular matrix, and how this lat-
ter supports and drives cell fate.  
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INTRODUCTION
With the many recent advances in the general area of  
liver regenerative medicine, there have been a multitude 
of  significant improvements regarding the technology of  
liver bioengineering and regeneration. The purpose of  
the present review is to illustrate the two main strategies 
that are currently being implemented to manufacture liver 
organoids for clinical purposes. 

DECELLULARIZATION-
RECELLULARIZATION TECHNOLOGY
Several studies have provided evidence that this technol-
ogy offers a valuable platform for liver bioengineering 
through the repopulation of  an acellular liver with appro-
priate fresh cells.

The first report addressed the methodology for the 
decellularization of  rodent livers[1]. Livers were cannu-
lated through the inferior vena cava, with the portal vein 
severed and the superior vena cava clamped. The decellu-
larization process began with rinsing of  the liver with 100 
mL of  phosphate buffered saline (PBS) to clear the blood 
followed by perfusion of  three 300 mL isotonic solutions 
of  1%, 2%, and 3% Triton X-100 at a rate of  5 mL/min. 
This was followed by perfusion of  a 300 mL PBS solu-
tion containing 0.1% sodium monododecyl sulfate (SDS) 
and a 300 mL PBS wash. The disruption of  the lipid 
membranes cleared most of  the cellular components 
of  the organ except for intact nuclear cages containing 
DNA, which was further removed by a solution of  SDS. 
Hematoxylin and eosin staining of  the intact decellular-
ized liver showed a fine web of  matrix remaining in the 
acellularized liver, which was further analyzed by im-
munohistochemical staining of  collagen Ⅳ and laminin. 
The stains showed the presence of  collagen within the 
matrix and that laminin was present within the basement 
membrane of  the vessels. After the decellularization pro-
cess, the scaffold remained intact and strong enough to 
maintain further cannulation for the perfusion of  cells. 
106 cells of  the rat liver progenitor cell line WB344 in Ro-
swell Park Memorial Institute medium were infused into 
the decellularized liver through the cannulated inferior 
vena cava. Further histological analysis of  the center of  
the intact recellularized scaffold indicated that the intra-
hepatic vasculature was able to traffic cells from the in-
ferior vena cava. This report demonstrated the necessary 
process of  using SDS in the decellularization process to 
truly remove any cellular components, specifically DNA. 

Another similar subsequent report that used a simi-
lar decellularization method showed vascular patency 
through portal vein dye[2]. The decellularization process 
was performed by sequential perfusion of  different con-
centrations of  detergents through the portal vein at a 
flow rate of  1 mL/min. The livers were perfused for 72 
h with SDS in distilled H2O: 0.01% SDS for 24 h, 0.1% 
SDS for 24 h, and 1% SDS for 24 h. The livers were 
then perfused with distilled H2O for 15 min and with 1% 

Triton X-100 for 30 min to cleanse the livers of  any re-
maining SDS. After rinsing the decellularized livers with 
PBS for 1 h, only the median lobe was sterilized in 0.1% 
peracetic acid in PBS for 3 h and kept for recellulariza-
tion after further extensive PBS washing. The decellular-
ized scaffolds were histologically analyzed to demonstrate 
that the scaffolds were acellular and functionally similar 
to an intact normal liver, in order for recellularization 
to be possible. Histological analysis showed that there 
were no nuclei or cytoplasmic staining in the decellular-
ized liver compared to a normal rat liver. Immunohis-
tochemical analysis of  four extracellular matrix (ECM) 
proteins (collagen type Ⅰ, collagen type Ⅳ, fibronectin 
and laminin-β1) showed that the structural and base-
ment membrane components of  ECM remained intact 
similarly to the normal liver. DNA analysis of  the decel-
lularized scaffold showed that less than 3% of  residual 
DNA remained after the decellularization process. They 
also reported intact functional vascular beds and micro-
vasculature through the perfusion of  the Allura Red dye. 
The dye flowed through the vasculature just as expected 
in a functioning liver. The acellular translucent scaffold 
was then infused with rat-derived hepatocytes through 
perfusion of  the portal vein at 15 mL/min. The perfu-
sion system consisted of  a peristaltic pump, bubble trap, 
and oxygenator from a donors-after-cardiac-death organ 
resuscitation perfusion system. They introduced approxi-
mately 12.5 million cells during each of  the four steps 
in ten-minute intervals, which showed superior engraft-
ment efficiency when compared to a single-step infusion. 
The recellularized grafts were maintained in a perfusion 
chamber for up to 2 wk in vitro, with histological staining 
of  the recellularized sections at 4 h, 1 d, 2 d, and 5 d of  
perfusion. At 4 h, the majority of  the cells remained in 
and around the vessels; however, at 1 d and 2 d, the cells 
leave the vessels and become distributed throughout the 
matrix. 

It should be emphasized that this is the first report 
that contains data showing the level of  function exhibited 
by the hepatocytes grown on the decellularized matrix. 
They report that hepatocyte viability was maintained dur-
ing culture and that cell death was kept to a minimum. 
They were also able to determine that the cells migrated 
beyond the matrix barrier to reach decellularized sinusoi-
dal spaces through scanning electron microscopy (SEM) 
and histological analysis. They also determined that albu-
min synthesis was not increased in the recellularized ma-
trix compared to an intact liver; however, urea synthesis 
was significantly higher in the recellularized liver than the 
hepatocyte sandwich during culture. The analysis of  the 
expression of  drug metabolism enzymes showed that the 
levels of  Cyp2c11, Gstm2, Ugt1a1, and Cyp1a1 that were 
expressed in the recellularized grafts were similar to those 
of  the sandwich hepatocyte cultures. The recellularized 
liver grafts were then transplanted into recipient rats 
that underwent unilateral nephrectomy for auxiliary liver 
graft transplantation. The recellularized liver grafts were 
perfused quickly with blood and the appropriate efflux 
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occurred only after 5 min. The graft was maintained in 
vivo for 8 h, and then harvested for further Tdt-mediated 
dUTP Nick-End Labeling staining analysis. This staining 
demonstrated that the cells were minimally damaged and 
further histological staining showed that the hepatocytes 
reserved normal morphology and parenchymal positions. 

While it is extremely important to have these previous 
promising reports on liver decellularization and recel-
lularization, the ultimate necessary technology that needs 
to be expanded upon is the decellularization and recellu-
larization of  whole organs-specifically human organs, and 
subsequently human derived cell lines-in order to create 
a transplant graft for possible human functioning. The 
report by Baptista et al[3] demonstrated the potential for 
the colonization of  human hepatocyte progenitors on a 
decellularized liver matrix.  This is one of  the first reports 
to show the decellularization and recellularization process 
with a whole liver instead of  thin slices or lobes of  the 
liver, as well as the first report to recellularize successfully 
with human liver cells. They attempted to decellularize 
whole livers from multiple species as well, including mice, 
rats, ferrets, rabbits, and adult pigs. 

All of  the dissected livers were cannulated with differ-
ent gauged cannulas, depending on the species, through 
the inferior vena cava and the portal vein, which were 
then hooked up to a Masterflex peristaltic pump in prep-
aration for decellularization. There was approximately 40 
times the volume of  the liver perfused with distilled water 
at a flow rate of  5 mL/min. The decellularization process 
was performed by perfusion of  approximately 50 times 
the volume of  the liver with 1% Triton-X 100/0.1% Am-
monium Hydroxide. The approximate perfusion times 
for the decellularization process were 1 h for mice, 2 h 
for ferret, 3 h for rat, and 24 h for pig livers. It was visibly 
clear after the perfusion period that the parenchyma be-
came transparent and the vascular tree was visible under 
low magnification microscopy (Figure 1). 

Spectrophotometric and agarose gel DNA analysis 
showed the removal of  approximately 97% of  the DNA 
from the tissue, indicating efficiency of  the decellulariza-
tion process. SEM was performed to determine that that 
ultrastructure was preserved. The SEM analysis showed 
that reticular collagen fibers that support the hepatic 
tissue were present and the “portal triad” structures re-
mained intact, as well as the lack of  any cells. Histological 
analysis of  acellular ECM was performed to further char-
acterize the scaffold composition. The staining showed 
that there was no cellular nuclear material or any other 
cellular material present. The staining also showed that 
collagen layers with vascular channels were present, along 
with collagen fibers, elastin fibers, and glycosaminogly-
cans (Figure 2). 

Quantification of  the ECM components showed 
higher levels of  collagen and glycosaminoglycans in the 
decellularized scaffold compared to native tissue, which 
can be explained by the absence of  cellular components, 
while there was no difference in elastin presence. The 
localization of  the specific extracellular matrix proteins 

collagen Ⅰ, collagen Ⅲ, collagen Ⅳ, laminin, and fibro-
nectin were all observed around the vascular structures, 
specifically denser around the larger vessels, and the pa-
renchymal areas of  the acellular liver, as well as the fresh 
tissue. Vascular preservation and patency was demon-
strated by the ability of  the network of  vascular remnants 
to retain labeled dextran that had a similar molecular 
weight to that of  blood proteins. 

The recellularization methods used in this report 
show that perfusion through the vena cava or the portal 
vein (preferred) both allow the green fluorescent protein-
labeled MS1 endothelial cells to line the vascular network, 
including the larger vessels to the capillary sized vessels. 
Portal vein-seeded endothelial cells were primarily depos-
ited in the periportal regions of  the liver lobule while the 
vena cava-seeded endothelial cells were primarily concen-
trated in the regions of  the central veins and in smaller 
branches and vessels. Through fluorescent microscopy 
and transmission electron microscopy they were able to 
determine that the lumens of  the acellular vascular rem-
nants could be colonized by endothelial cells that were 
able to actively spread and cover the vessel basement 
membrane while forming appropriate cell-cell junctions. 
They also determined that the surface of  the vascular 
lumen was non-thrombogenic, which was confirmed by 
the lower quantification of  platelets in the bioscaffold 
compared to the fresh tissue. The reseeding experiments 
performed in this report utilized the coseeding of  human 
umbilical vein endothelial cells and freshly isolated hu-
man fetal liver cell’s, while using similar recellularization 
protocols previously mentioned. Immunohistochemical 
analysis was used to assess the proliferation and analyze 
the presence of  hepatocytic lineage markers. Staining of  
Ki67 to assess proliferation showed a high number of  
positive cells throughout the bioscaffold, which was 3 
times higher than the number of  apoptotic cells present. 
The staining also showed that the hepatocytic mark-
ers α-fetoprotein, CYP2A, and CYP3A were expressed 
in the parenchyma. Cytokeratin 19 was strongly seen 
throughout the bioscaffold in biliary tubular structures 
while clusters of  albumin-expressing hepatocytes were 
distributed in the parenchyma. The small amount of  co-
expression of  these specific markers implies that there 
are specific niches within the bioscaffold for bile duct and 
hepatocytes. Immunohistochemical staining also detected 
CK19+/CK18-/ALB-tubular structures and clusters of  
ALB+/CK18+ cells in the parenchyma, which suggests 
that the bioscaffold is able to support the differentia-
tion of  the fetal hepatoblasts into biliary or hepatocytic 
lineages. The ability of  cells with immunophenotypes 
consistent with hepatocytes, cholangiocytes, and endo-
thelial cells to form discrete pockets in the bioscaffold 
suggests that some of  the micro-architectural “blueprint” 
was retained within the scaffold. This suggests that not 
only does the bioscaffold provide a three-dimensional 
vascularized scaffold (previously described) but it also re-
tains the necessary environmental cues, further explained 
by the retention of  the glucosaminoglycans that serve as 
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cells differentiated into mature functional parenchymal 
cells in approximately one week. These cells remained 
viable and presented stable mature phenotypes for more 
than 8 wk.

Similar results have been obtained by other groups[5,6]; 
however in all the above reported investigations liver ECM 
was produced from rodent livers. Instead, Barakat et al[7] 
recently developed a method to decellularize porcine livers, 
which were eventually repopulated with human cells[8,9]. 
The goal was to produce a clinically relevant model of  liver 
bioengineering. Livers from Yorkshire pigs were decel-
lularized with SDS. The ECM of  the posterior segment 
of  the right liver lobe was used as scaffold for cell seeding. 
Fetal hepatocytes co-cultured with fetal stellate cells were 
expanded, collected, resuspended in appropriate medium 
supplemented with hepatocyte growth factor and seeded 

active binding sites for growth factors that regulate cell 
phenotype, for progenitor hepatic and endothelial cells to 
grow, differentiate, and maintain functionality.

A related study reports on a refined decellularization 
procedure. This study demonstrated the ability of  liver 
progenitor cells to differentiate to both the hepatocyte 
and cholangiocyte lineages while seeded on the decel-
lularized scaffold[4]. The strategy for recellularizing the 
bioscaffold was aimed at creating a more rapid and effi-
cient differentiation of  the stem cells using tissue-specific 
extracts enriched in extracellular matrix and a hormonally 
specific defined medium using associated growth fac-
tors and cytokines. They reseeded the scaffold with hu-
man hepatic stem cells in a hormonally defined medium 
specific for adult liver cells. The stem cell markers were 
expressed in the cells after the reseeding process and the 

1 cm

Figure 1  Gross and microscopic anatomy of acellular ferret livers. Upper row: The liver on the left is almost entirely decellularized, however it remains a segment 
still cellular (interrupted line); on the left, instead, the liver is fully acellular as expression of successful decellularization; Middle row: Scanning electronic microscopic 
ruling out the presence of any cell remnant and showing the triad completely acellular (arrow); Lower row: Hematoxylin and eosin confirms the lack of cellular element 
within the remaining liver extracellular matrix (arrow).
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within the ECM. The so-obtained constructs were per-
fused for 3 d, 7 d and 13 d. During perfusion, pH, PO2, 
PCO2, lactate, glucose, urea nitrogen and albumin were 
measured to assess metabolic and synthetic functions. Of  
note, some constructs were implanted in vivo and perfused 
for 2 h to determine the behavior of  the matrix in vivo 
and its ability to withstand the shear stress produce by the 
blood flow in physiologic conditions. Results were en-
couraging. Liver organoids showed active metabolism and 
preserved capability to synthesize albumin, and were able 
to sustain blood pressure without harm. Notably, immuno-
histochemical analysis revealed cell differentiation into ma-
ture hepatocytes. This latter finding provides evidence that 
ECM is essential in that it supports cells and may drive the 
differentiation of  progenitor cells into an organ-specific 
phenotype[10]. Badylak’s group confirmed this informa-
tion in an elegant model of  liver hepatectomy in rats[11], in 
which he demonstrated that liver ECM implanted in intact 
and amputated livers enhances hepatocyte proliferation 
and ultimately liver regeneration. 

While the primary goal for the majority of  the re-
search pertaining to decellularizing and recellularizing an 
organ is the functional transplantation of  a bioengineered 
organ into a recipient host, there are the possibilities 
of  using this technology in in vitro studies for advanced 
preclinical drug development[12]. This report provided 
a 60-min rapid natural decellularization method for a 
3-dimensional scaffold prepared from a rat liver that 
maintained the microvascular system and was able to 
withstand fluid flowing through all three hepatic circular 
systems. The method utilized two thirty-minute perfu-
sion periods; a 1% Triton-X 100 solution followed by a 
1% SDS solution.  The development of  a novel in vitro 
3-dimensional model that closely represents the in vivo 
liver could present the potential for toxicity testing of  
key compounds in preclinical drug developments since 
the liver is the main metabolizing organ that is usually the 
target of  toxicity.

CELLS FOR LIVER REGENERATION
The liver is able to regenerate itself  with the ability to 

maintain adequate volume and function after undergoing 
up to 70% resection. However, the way the liver regener-
ates after a more or less extended amputation is not a true 
recapitulation of  liver ontogenesis. In fact, resumption of  
the original volume is accomplished by cellular hyperpla-
sia of  the remaining liver rather than true regeneration of  
the amputated portion whose original anatomy will not 
be resumed[13]. Therefore, from an evolutionary perspec-
tive, liver hyperplasia is a mechanism of  repair that has 
developed to restore normal function, not normal anat-
omy. Unfortunately, the actual system that regulates the 
hepatic regeneration after injury remains mostly obscure. 
When the liver regenerates after amputation, cellular 
hyperplasia occurs spontaneously through a complex cas-
cade of  events and pathways. This cascade of  regulation 
involves the inflammatory signaling, the recruitment of  
inflammatory cells, the stimulation of  hepatobiliary cell 
proliferation, and the ultimate aim of  cell migration and 
neo-angiogenesis. The restoration of  the tissue mass is 
thus carried out by the division of  mature hepatocytes. If  
the mature hepatocytes are unable to maintain sufficient 
proliferative potential to restore the organ, or if  there is 
complete inhibition of  this process, intervention occurs 
from the liver progenitor cells, known as oval cells[14-18].

There are many techniques that address regenerating 
the liver, without actually fully regenerating and replacing 
the organ, by attempting to enhance the natural regenera-
tion of  the injured liver. The basic idea behind this tech-
nique is to enhance the liver’s natural ability to regenerate 
itself  through the transplantation and mobilization of  
liver progenitor cells that are isolated from bone mar-
row. The studies that address this technique base the idea 
off  the fact that it has been found that the cells resident 
to the bone marrow are able to aid in liver regeneration 
by differentiating into fully functional hepatocytes[19-22]. 
While these studies have yet to fully characterize these 
cells, it has been clearly established that there are bone 
marrow populations that could have the ability to increase 
the quality of  the clinical conditions regarding patients 
that have chronic liver disease or injury. In these clinical 
trials the initial goal was to determine whether or not the 
infusion of  autologous bone marrow cells, through per-
fusion of  the peripheral vein or the hepatic artery, into 
patients who have liver cirrhosis, was safe. Some of  these 
studies were able to achieve more than just safety results, 
and showed that there was statistically significant clinical 
improvement in the patients[23-25].

More recent studies have attempted to determine the 
clinical safety of  administering patients with the hemato-
poietic stem cell mobilizing cytokine, granulocyte colony 
stimulating factor (G-CSF), which has been shown to 
improve the functioning of  the liver in patients with liver 
disease. It is thought that the function of  the G-CSF is 
to primarily activate cells that are within the bone mar-
row that have hepatocyte lineage differentiation potential. 
G-CSF not only interacts with the bone marrow cells, but 
it has also been shown to increase the ability of  resident 
progenitor cells that have the receptor for the cytokine 
to respond to injuries. In these studies it has been deter-

Figure 2  Movat-Pentachrome staining of acellular liver sections shows 
yellow staining for collagen and dark staining for elastin surrounding the 
vascular structures. 
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mined that the G-CSF is able to maintain the ability to 
mobilize cells from the bone marrow and the peripheral 
circulation, while there is an increase in the circulating 
hepatocyte growth factor that plays a major role in liver 
regeneration[26-29]. The bone marrow and peripheral blood 
are great sources for this because they are easily acces-
sible while having a large source of  stem cells and pro-
genitor cells that are able to proliferate in vitro. Since these 
studies primarily aimed to focus on the safety potential 
for administering the cytokine, there have been two large 
studies that have been conducted in order to actually 
determine the therapeutic treatment potential of  this 
technique. These trials were performed by administering 
G-CSF to the patient with liver disease, which was then 
followed by the isolation of  stem cells from both the pe-
ripheral circulation and the bone marrow. These isolated 
cells were then infused back into the patient through the 
already established perfusion methods. The trials clearly 
showed significant improvement in the serum bilirubin 
and the liver enzyme levels, while there was no improve-
ment noticed in the untreated control group[30,31].

As previously mentioned, despite the clearly seen 
therapeutic potential for bone marrow cells to help the 
regenerative process of  a diseased liver, the findings from 
these trials have yet to be able to determine the specific 
cell in the bone marrow that is actually aiding in the re-
generation. There have been a few in vivo animal models 
that have demonstrated the ability for bone marrow 
derived mesenchymal stem cells and hematopoietic stem 
cells (CD34+/Lin-) to have ability to differentiate into he-
patocytes[32-36].  Fetal liver progenitor cells have also been 
shown to improve the condition of  cirrhotic patients[37,38]. 
Therefore, the use of  these cells with the previously de-
scribed isolation and infusion techniques presents multi-
ple advantages for creating a potential therapy. This pres-
ents the possibility of  having an easily obtainable source 
of  cells that are from the isolated G-CSF mobilized bone 
marrow cells. The concern of  the patient having a rejec-
tion to the treatment would be absent because all of  the 
cells used in the therapy are autologous. A portion of  
these cells used could also possibly carry a progenitor 
phenotype following infusion, which could help partici-
pate in the liver repopulation over time when the damage 
to the native hepatocyte population is chronic. The cor-
rective gene could therefore be slowly increased in the 
native cells with as little as a repopulation of  10% of  the 
cells expressing the factor[39].

Other cell sources are also available, namely fetal hep-
atoblasts and stem cells from adult or fetal tissue. As re-
ported above, Baptista et al[3] used fetal liver hepatoblasts 
to recellularize liver ECM scaffolds. Once in this three-
dimensional environment, these liver progenitors were 
able to expand and differentiate into biliary and hepato-
cytic lineages. In the fetal liver, these cells are the main 
parenchymal cell type and are identified by their expres-
sion of  α-fetoprotein (AFP). These cells are rare in the 
normal adult liver, except in livers with severe injury or 
disease[40,41]. Because these cells are able to originate the 

two hepatic cell lineages, hepatocytes and cholangiocytes, 
they are named bipotential progenitors.

AFP-negative hepatic stem cells are the precursors to 
hepatoblasts that can mature into AFP-positive hepato-
blasts[42-44]. Human fetal hepatoblasts are then the putative 
transient amplifying progenitors in the liver lineage and 
can be cultured long-term and clonally, contributing to 
liver parenchyma when transplanted into SCID mice[45]. 
Hepatoblasts express biliary and hepatocyte markers such 
as CK19, CK14, α-GT, glucose-6-phosphatase, glycogen, 
albumin, AFP, E-cadherin[46], α-1 microglobulin, Hep-
Par1, glutamate dehydrogenase, and DPP-Ⅳ[42,47]. These 
progenitors do not express mesenchymal or hemato-
poietic markers like CD90, vimentin, and CD34[46]. The 
therapeutic potential and safety of  these cells has already 
been successfully tested in human patients with end-
stage chronic liver disease[48]. In these patients, there was 
significant clinical improvement in terms of  biochemical 
and overall clinical parameters. Moreover, mean MELD 
score decreased (P < 0.01) over the following 6 mo after 
stem cell therapy. Thus, fetal derived stem/progenitor 
cells have the potential to provide supportive therapy to 
organ transplantation in the management of  end-stage 
liver diseases[18,48-54].

This notwithstanding, it is the authors’ conviction that 
cell transplantation alone may not be appropriate. In fact, 
clinical transplantation provides incontrovertible evidence 
that the outcome of  cell transplantation is very poor 
when compared to whole organ transplantation. There-
fore, it cannot be proposed as an alternative to whole 
organ transplantation, rather it should be considered still 
an experimental treatment, as it has been proposed by 
Cravedi’s[55] in the case of  islet transplantation and by 
from a regenerative medicine perspective, the poor out-
come may be attributed to the fact that cells welfare is 
dramatically impaired when cells are extrapolated by their 
natural niche-namely the ECM-despite encapsulation. 
Therefore, research should direct efforts to bioengineer a 
suitable supporting scaffold, which would recapitulate the 
same characteristics of  the natural environment. 

Interestingly, some authors have proposed a differ-
ent bioengineering method, which does not require any 
supporting scaffolds. However, cells are not manipulated 
alone but are grown in order to produce cell sheets. Hara-
guchi’s group[56] employs temperature-responsive culture 
surfaces onto which poly (N-isopropylacrylamide) is co-
valently immobilized to control cell adhesion/detachment 
with simple temperature change. Cells adhere, spread, 
and proliferate on temperature-responsive surfaces at 
37  ℃, which is the normal temperature for mammalian 
cell culture. By reducing temperature below 32  ℃, cells 
spontaneously detach from the surfaces without requir-
ing proteolytic enzyme such as trypsin, since the grafted 
polymer becomes hydrophilic. When temperature is 
reduced after cells reach confluency, all the cells are har-
vested as a single contiguous cell sheet. The advantage of  
this method is that, as trypsin is not used, all cell mem-
brane proteins including growth factor receptors, ion 
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channels, and cell-to-cell junction proteins are intact after 
the harvest. Furthermore, the ECM deposited during cell 
culture is retained under cell sheets, and therefore, cell 
sheets easily integrate to transplanted sites. In a murine 
model, sheets of  hepatic tissue transplanted into the sub-
cutaneous space resulted in efficient engraftment to the 
surrounding cells, with the formation of  two-dimensional 
hepatic tissues that stably persisted for more than 6 mo, 
while showing several liver-specific functions[57].

FUTURE PERSPECTIVES
The need for improved treatment modalities for patients 
with diseased or absent tissues or organs is evident. 
Regenerative medicine holds the promise of  regenerat-
ing tissues and organs by either stimulating previously 
irreparable tissues to heal themselves, or manufacturing 
them ex vivo[58-64]. In the first scenario, cells with regenera-
tive potential are targeted to the diseased bodily district. 
Given the multitude of  available sources of  these cells, 
it is still a mystery as to which are the most appropriate 
and best cell sources. Although this may vary depending 
on the tissue or organ of  interest, it is important to fully 
understand the biological mechanisms controlling differ-
entiation along a specific lineage of  all cell types. Ideally, 
it is desirable to have the ability to harvest autologous 
cells and employ them with minimal ex vivo manipulation. 
Ultimately, the goal is to identify cells that can be easily 
harvested and differentiated consistently along the lin-
eage of  interest. At the same time, research should aim to 
in-depth understanding of  all environmental stimuli that 
are required by liver SC niches to be activated and allow 
hepatocyte and/or biliocyte regeneration aiming to com-
pensate tissue loss.

In the second scenario, differentiated, adult liver cells 
or SC are seeded on supporting scaffolds and allowed to 
mature in custom-made bioreactors. Human or animal-
derived whole tissue ECM scaffolds are preferred, com-
pared to artificial homogeneous materials, because they 
preserve an intact vascular network that will allow regen-
eration of  the vascular system for optimal delivery of  
nutrients and oxygen. The utilization of  autologous cells 
holds the theoretical potential to rule out immunological 
breakdowns and concerns, and limits the response of  the 
immune system to a non-harmful inflammatory reaction.

In both cases, there are clearly a lot of  gray areas that 
need to be colored in[58,59,63,65-69]. There has been a greater 
understanding of  the cell types and numbers of  cells 
used for repopulation, but it is still lacking the perfected 
elements to produce optimal results. Even when this is 
fully understood and developed, there also needs to be 
an established standard or test on the bioengineered or-
gan that would reveal the successful incorporation of  all 
the necessary items that the organ requires in order to 
be fully functional in vivo. The actual functionality of  the 
cells within the decellularized matrix and of  the organ-
oid as a whole, as well as the biocompatibility of  the so-
obtained construct, absolutely must be confirmed before 

transplantation can ever be a feasible option. Importantly, 
it will be crucial to understand the mechanisms through 
which cells interact with the environment and in particu-
lar how the liver ECM drives and regulates cell fate and 
which additional molecules (namely growth factors) are 
essential to achieve this goal.
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