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Abstract
The terahertz band lies between the microwave and in-
frared regions of the electromagnetic spectrum. This ra-
diation has very low photon energy and thus it does not 
pose any ionization hazard for biological tissues. It is 
strongly attenuated by water and very sensitive to water 
content. Unique absorption spectra due to intermolecu-
lar vibrations in this region have been found in different 
biological materials. These unique features make tera-

hertz imaging very attractive for medical applications in 
order to provide complimentary information to existing 
imaging techniques. There has been an increasing inter-
est in terahertz imaging and spectroscopy of biologically 
related applications within the last few years and more 
and more terahertz spectra are being reported. This 
paper introduces terahertz technology and provides a 
short review of recent advances in terahertz imaging 
and spectroscopy techniques, and a number of applica-
tions such as molecular spectroscopy, tissue character-
ization and skin imaging are discussed.
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INTRODUCTION
Terahertz (THz, 1 THz = 1012 Hz) radiation, also known 
as THz waves, THz light, or T-rays, is situated in the fre-
quency regime between optical and electronic techniques. 
This regime is typically defined as 0.1-10 THz and has 
become a new area for research in physics, chemistry, bi-
ology, materials science and medicine. Experiments with 
THz radiation date back to measurements of  black body 
radiation using a bolometer in the 1890s[1,2]. However, 
for a long time, this region remained unexplored due to a 
lack of  good sources and detectors, and it was commonly 
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referred to as the “THz gap”. In 1975, David Auston at 
AT&T Bell Laboratories developed a photoconductive 
emitter gated with an optical pulse that led towards bridg-
ing this gap - the ‘Auston switch’ emitted broadband THz 
radiation up to 1 mW. A coherent method to detect THz 
pulses in the time domain was also proposed[3]. This be-
came the foundation of  THz time-domain spectroscopy 
(THz-TDS)[4], since then many improvements in the gen-
eration and detection of  coherent THz radiation enabled 
THz-TDS and imaging techniques to be pioneered for 
applications in various fields such as biomedical engineer-
ing, physics, astronomy, security screening, communica-
tions, genetic engineering, pharmaceutical quality control 
and medical imaging[5]. In this paper, THz technology is 
introduced and some emerging applications in biology 
and medicine including molecular spectroscopy, tissue 
characterization and skin imaging are presented.

The aim of  this article is to review the potential of  
THz pulsed imaging and spectroscopy as a promising 
diagnostic method. Several unique features make THz 
very suitable for medical applications. (1) THz radiation 
has very low photon energy, which is insufficient to cause 
chemical damage to molecules, or knock particles out 
of  atoms. Thus, it will not cause harmful ionization in 
biological tissues; this makes it very attractive for medical 
applications; (2) THz radiation is very sensitive to polar 
substances, such as water and hydration state. For this 
reason, THz waves can provide a better contrast for soft 
tissues than X-rays; (3) THz-TDS techniques use coher-
ent detection to record the THz wave’s temporal electric 
fields, which means both the amplitude and phase of  the 
THz wave can be obtained simultaneously. The temporal 
waveforms can be further Fourier transformed to give the 
spectra. This allows precise measurements of  the refrac-
tive index and absorption coefficient of  samples without 
resorting to the Kramers-Kronig relations; and (4) The 
energy of  rotational and vibrational transitions of  mole-
cules lies in the THz region and intermolecular vibrations 
such as hydrogen bonds exhibit different spectral charac-
teristics in the THz range. These unique spectral features 
can be used to distinguish between different materials or 
even isomers.

PRINCIPLES OF THZ PULSED IMAGING 
AND SPECTROSCOPY
THz systems
Over the past two decades, technology for generating and 
detecting THz radiation has advanced considerably. Sever-
al commercialized systems are now available[6-10] and THz 
systems have been set up by many groups all over the 
world. According to the laser source used, THz systems 
can be divided into two general classes: continuous wave 
(CW) and pulsed.

A typical CW system can produce a single fixed fre-
quency or several discrete frequency outputs. Some of  
them can be tunable. Generation of  CW THz radiation 
can be achieved by approaches such as photomixing[11], 

free-electron lasers[12] and quantum cascade lasers[13]. 
Figure 1 illustrates a CW THz system which photomixes 
two CW lasers in a photoconductor as an example[14]. The 
mixing of  two above-bandgap (visible or near-infrared) 
wavelengths produces beating, which can modulate the 
conductance of  a photoconductive switch at the THz 
difference frequency. The photomixing device is labeled 
“emitter” in Figure 1. Since the source spectrum of  the 
CW system is narrow and sometimes only the intensity 
information is of  interest, the data structures and post-
processing are relatively simple. It is possible now to 
drive a whole CW system by laser diodes and thus it can 
be made compact and inexpensive. However, due to the 
limited information that CW systems provide, they are 
sometimes confined to those applications where only fea-
tures at some specific frequencies are of  interest. 

In pulsed systems, broadband emission up to several 
THz can be achieved. Currently, there are a number of  
ways to generate and detect pulsed THz radiation, such 
as ultrafast switching of  photoconductive antennas[3], rec-
tification of  optical pulses in crystals[15], rapid screening 
of  the surface field via photoexcitation of  dense electron 
hole plasma in semiconductors[16] and carrier tunneling in 
coupled double quantum well structures[17]. Among them, 
the most established approaches based on photoconduc-
tive antennas, where an expensive femtosecond laser is 
required and configured as shown in Figure 2. Unlike CW 
THz imaging system, coherent detection in pulsed THz 
imaging techniques can record THz waves in the time do-
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Figure 1  Schematic illustration of a continuous wave THz imaging system 
in transmission geometry.
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Figure 2  Schematic illustration of a pulsed THz imaging system with re-
flection geometry.



main, including both the intensity and phase information, 
which can be further used to obtain more details of  the 
target such as spectral and depth information[18]. This key 
advantage lends coherent THz imaging to a wider range 
of  applications. 

Molecular interactions in the THz regime
There has been an increased interest in understanding the 
interactions between molecules and THz radiation. Many 
of  the intricate interactions on a molecular level rely on 
changes in biomolecular conformation of  the basic units 
of  proteins such as α helices and β sheets. In recent years, 
dynamic signatures of  the THz frequency vibrations in 
RNA and DNA strands have been characterized[19,20]. 
Furthermore, studies of  water molecule interactions with 
proteins have attracted significant research interest[21]. In 
a protein-water network, the protein’s structure and dy-
namics are affected by the surrounding water which is 
called biological water, or hydration water. As illustrated 
in Figure 3, hydrogen bonds, which are weak attractive 
forces, form between the hydrated water molecules and 
the side chains of  protein. These affect the dynamic relax-
ation properties of  protein and enable distinction between 
the hydration water layer and bulk water. The remarkable 
effects of  the hydrogen bonds associated with the inter-
molecular information are able to be detected using THz 
spectroscopy. THz spectra contain information about in-
termolecular modes as well as intra-molecular bonds and 
thus usually carry more structural information than vibra-
tions in the mid-infrared spectral region which tend to be 
dominated by intra-molecular vibrations.

Unique advantages and challenges for biomedical 
applications
The energy level of  1 THz is only about 4.14 meV (which 
is much less than the energy of  X-rays 0.12 to 120 keV), 
it therefore does not pose an ionization hazard as in X-ray 

radiation. Research into safe levels of  exposure has also 
been carried out through studies on keratinocytes[22] and 
blood leukocytes[23,24], neither of  which has revealed any 
detectable alterations. This non-ionizing nature is a cru-
cial property that lends THz techniques to medical ap-
plications. 

The fundamental period of  THz-frequency electro-
magnetic radiation is around 1ps, and so it is uniquely 
suited to investigate biological systems with mechanisms 
at picosecond timescales. The energy levels of  THz light 
are very low, therefore damage to cells or tissue should 
be limited to generalized thermal effects, i.e. strong reso-
nant absorption seems unlikely. From a spectroscopy 
standpoint, biologically important collective modes of  
proteins vibrate at THz frequencies, in addition, frustrated 
rotations and collective modes cause polar liquids (such 
as water) to absorb at THz frequencies. Many organic 
substances have characteristic absorption spectra in this 
frequency range[25,26] enabling research into THz spectros-
copy for biomedical applications. 

THz wavelengths have a diffraction limited spot size 
consistent with the resolution of  a 1990’s vintage laser 
printer (1.22λ0 = 170 μm at 2.160 THz or 150 dots/in). 
At 1 THz, the resolution could be as good as a decent 
computer monitor (70 dots/in). Submillimeter-wavelength 
means that THz signals pass through tissue with only Mie 
or Tyndall scattering (proportional to f2) rather than much 
stronger Rayleigh scattering (proportional to f4) that domi-
nates in the IR and optical since cell size is less than the 
wavelength.

Since most tissues are immersed in, dominated by, or 
preserved in polar liquids, the exceptionally high absorp-
tion losses at THz frequencies make penetration through 
biological materials of  any substantial thickness infeasible. 
However, the same high absorption coefficient that limits 
penetration in tissue also promotes extreme contrast be-
tween substances with lesser or higher degrees of  water 
content which can help to show distinctive contrast in 
medical imaging. 

IMAGING VS SPECTROSCOPY
THz pulsed imaging
Early applications of  THz technology were confined 
mostly to space science[27] and molecular spectroscopy[28,29], 
but interest in biomedical applications has been increasing 
since the first introduction of  THz pulsed imaging (TPI) 
in 1995 by Hu and Nuss[30]. Their THz images of  porcine 
tissue demonstrated a contrast between muscle and fats. 
This initial study promoted later research on the application 
of  THz imaging to other biological samples. THz pulsed 
imaging actually can be viewed as an extension of  the THz-
TDS method. In addition to providing valuable spectral 
information, 2D images can be obtained with THz-TDS by 
spatial scanning of  either the THz beam or the object itself. 
In this way, geometrical images of  the sample can be pro-
duced to reveal its inner structures[31]. Thus, it is possible to 
obtain three-dimensional views of  a layered structure.
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Figure 3  Schematic representation of H-bond interactions between water 
and biomolecules.
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When a THz pulse is incident on such a target, a train 
of  pulses will be reflected back from the various inter-
faces. For each individual pulse in the detected signal, the 
amplitude and timing are different and can be measured 
precisely. The principle of  time of  flight technique is to 
estimate the depth information of  the internal dielectric 
profiles of  the target through the time that is required to 
travel over a certain distance. This permits looking into 
the inside of  optically opaque material and it has been 
used for THz 3D imaging. Among the earliest demon-
strations of  THz 3D imaging, Mittleman et al[31] imaged 
a conventional floppy disk. In their work the various 
parts inside the disk were identified and the discontinu-
ous refractive index profile was derived. This method was 
further extended into THz reflection computed tomog-
raphy[32,33], where the target was rotated to provide back 
reflection from different angles. In a similar way to X-ray 
CT imaging, the filtered back projection algorithm was 
applied to reconstruct the edge map of  the target’s cross-
section. With advances in interactive publishing, Wallace 
et al[34] highlighted the ability of  3-D THz imaging in a 
number of  niche applications. For example they were 
able to resolve two layers of  drugs beneath the protective 
coating of  a pharmaceutical tablet.

THz spectroscopy
THz spectroscopy is typically done with a single point 

measurement (with transmission geometry in most cases) 
of  a homogenous sample and the resulting THz electric 
field can be recorded as a function of  time. Thus, it can 
be Fourier transformed to offer meaningful spectroscopic 
information due to the broadband nature of  pulsed THz 
radiation, shown in Figure 4. Although the spectral resolu-
tion is not as good as that with narrowband techniques, 
coherent detection of  THz-TDS can provide both high 
sensitivity and time-resolved phase information[35]. This 
spectroscopic technique is primarily used to probe mate-
rial properties and it is helpful to see where it lies in the 
electromagnetic spectrum in relation to atomic and mo-
lecular transitions.

THz spectroscopy is complementary to THz imaging 
and is primarily used to determine optical properties in 
the frequency domain. Since THz pulses are created and 
detected using short pulsed visible lasers with pulse widths 
varying from approximately 200 fs down to approximately 
10 fs, it is now possible to make time resolved far-infrared 
studies with sub-picosecond temporal resolution[36]. This 
was not achievable with conventional far-infrared studies. 
An important aspect of  THz time-domain spectroscopy 
is that both the phase and amplitude of  the spectral com-
ponents of  the pulse are determined. The amplitude and 
phase are directly related to the absorption coefficient and 
refractive index of  a sample and thus the complex permit-
tivity is obtained without requiring Kramers-Kronig analy-
sis. Furthermore, another advantage of  THz spectroscopy 
is that it is able to non-destructively detect differences 
because it uses radiation of  sufficiently long wavelength 
and low energy that does not induce any phase changes or 
photochemical reactions to living organisms. 

BIOLOGICAL APPLICATIONS
Pharmaceuticals
There has been a strong drive in the pharmaceutical in-
dustry for comprehensive quality assurance monitoring. 
This motivates development of  new tools providing use-
ful analysis of  tablet formulations. The ability of  THz 
technology to determine both spectral and structural 
information has fuelled interest in the pharmaceutical 
applications of  this technique[37]. For example THz spec-
troscopy has been employed for polymorph identification 
and quantification[38], phase transition monitoring[39], and 
distinguishing between behaviors of  hydrated forms[40]. 
THz radiation can penetrate through plastic packag-
ing materials. To illustrate this we give an example using 
Maalox PlusTM - an over the counter medicine for stom-
ach upsets. Each tablet has “Rorer” engraved on one side 
and “Maalox Plus” on the other side. Figure 5A contains 
a photo of  a tablet in its packaging as well as a THz image 
taken after removing it from the packaging - the engraved 
lettering is clearly seen in the THz image. Figure 5C is a 
THz image of  the tablet taken through the packaging - we 
can still see the lettering on the surface of  the tablet. The 
cross-section of  the tablet is better conveyed by an image 
of  the depth profile. THz pulses are reflected first off  the 
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front surface of  the package and then from any subsurface 
structure within it resulting in multiple pulses returning to 
the detector. The dashed arrows in Figure 5B mark out 
the THz light paths at the edge of  the tablet (path A) and 
the center (path B). In path A the beveled edge means that 
there is an air gap between the packaging and the tablet 
and this corresponds to a greater optical delay between the 
reflected peaks in the waveforms illustrated in Figure 5D. 
Thus, THz imaging has non-destructively revealed the 
structure of  the tablet through the packaging.

Protein spectroscopy
Towards the higher frequency end of  the THz range (from 
about 1 THz and above) there are vibrational modes cor-
responding to protein tertiary structural motion; such 
intermolecular interactions are present in many biomol-
ecules. Other molecular properties that can be probed in 
the THz range include bulk dielectric relaxation modes[41] 
and phonon modes[42] these can be difficult to probe us-
ing other techniques. For instance nuclear magnetic reso-
nance (NMR) spectroscopy can determine the presence 
of  various carbon bonds, but it cannot be used to distin-
guish between molecules with the same molecular formu-
la, but with different structural forms (isomers)[10]. THz 
spectroscopy is able to distinguish between isomers and 
polymorphs[43] and is therefore emerging as an important 
and highly sensitive tool to determine biomolecular struc-
ture and dynamics[44,45]. Indeed THz spectroscopy can 

distinguish between two types of  artificial RNA strands 
when measured in dehydrated form[46]. Furthermore, 
Fischer et al[47] demonstrated that even when the molecu-
lar structure differs only in the orientation of  a single hy-
droxyl group with respect to the ring plane, a pronounced 
difference in the THz spectra is observed. Intermolecular 
interactions are present in all biomolecules, and since bio-
molecules are the fundamental components of  biological 
samples, they can be used to provide a natural source of  
image contrast in biomedical THz imaging[48].

Biomolecules, especially proteins, which play an es-
sential structural and catalytic role in cells and tissues, often 
require an aqueous phase in order to be transported to their 
target sites. In the protein-water system, the characteristic 
water structure induced near the surfaces of  proteins arises 
not only through hydrogen bonding of  the water molecules 
to available proton donor and proton acceptor sites, but 
also through electrostatic forces associated with the water 
molecule that arise from its large electric dipole moment. 
If  an electric field is applied to such a system of  protein-
associated water, there will be a torque exerted on each wa-
ter dipole moment inducing them to attempt to align along 
the direction of  the field vector. The dielectric spectrum 
has been widely used to describe the interaction between 
protein and its solvent molecule in THz frequency[49]. A 
dielectric orientational relaxation time τ can then be defined 
as the time required for 1/e of  the field-oriented water 
molecules to become randomly reoriented on removing 
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Figure 5  Terahertz imaging of the tablet. A: Photograph of the tablet in the plastic package and THz C-Scan section imaging without the packaging; B: THz B-Scan 
image shows the structure of the cross-section of the tablet and the THz light paths at the edge of the tablet (path a) and the centre (path b); C: THz C-Scan image 
shows the tablet face inside the plastic package; D: THz deconvolved waveforms in the time-domain reflected from the paths a and b in Figure 5B.
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the applied field. Measurements may be analyzed in terms 
of  the complex dielectric constant ε(ω) (where ω denotes 
angular frequency) or the complex refractive index n(ω). 
The degree of  orientational polarization and the rate of  
reorientational relaxation depend on how the water dipoles 
are influenced by local electrostatic forces and the extent 
to which the breaking and/or reforming of  local hydrogen 
bonds is required to accommodate the changes in orienta-
tion. Relaxations of  polar side-groups, vibrations of  the 
polypeptide backbone, and fluctuating proton transfer 
between ionized side-groups of  the protein also contribute 
to the overall polarizability of  the protein-water system. 
If  dielectric measurements are made on protein solutions, 
then orientational relaxations of  the protein molecule itself  
will also be observed[50]. Figure 6 shows that the vibration 
mode of  two types of  labeled antibodies (peroxidase con-
jugated IgG and the fluorescein conjugated IgG) can be 
distinguished at 0.76 and 1.18 THz using the THz dielectric 
spectrum. By investigating the concentration dependence 
of  the spectra it is also possible to obtain an estimate of  the 
hydration shell thickness around the protein molecules[51].

MEDICAL APPLICATIONS
Tissue characterization
There is also interest in tissue contrast for in vivo and ex vivo  

identification of  abnormalities, hydration, and subder-
mal probing. Only a small number of  measurements 
have been made to date, and systematic investigations to 
catalogue absorption coefficients, refractive indices and 
contrast mechanisms are just beginning to accumulate. 
Measurements on the absorption and refractive index of  
biological materials in the THz region go back at least to 
1976[52]. Several research groups have investigated excised 
and fixed tissue samples, either alcohol perfused[8], forma-
lin fixed[53-57], or freeze dried and wax mounted[58] looking 
for inherent contrast to define unique modalities. One of  
the first applications on human ex vivo wet tissue involved 
imaging of  excised basal cell carcinoma[59,60]. In vivo work 
has focused on the skin[61] and accessible external surfaces 
of  the body for measuring hydration[62] and tumor infiltra-
tion[60]. A catalogue of  unfixed tissue properties (including 
blood constituents) was compiled by the University of  
Leeds, UK[54] for frequencies between 500-1500 GHz us-
ing a pulsed time-domain system. Difficulties in extrapo-
lating measurements on excised tissue to in vivo results 
are numerous and include for example uptake of  saline 
from the sample storage environment, changes in hydra-
tion level during measurement, temperature-dependent 
loss, measurement chamber interactions, and scattering 
effects. In our previous work[63], we performed reflec-
tion geometry spectroscopy to investigate the properties 
of  several types of  healthy organ tissues, including liver, 
kidney, heart muscle, leg muscle, pancreas and abdominal 
fat tissues using THz pulsed imaging. The frequency de-
pendent refractive index and the absorption coefficient of  
the tissues are shown in Figure 7. All the results are the 
mean values of  the ten samples and error bars represent 
the 95% confidence intervals. We found clear differences 
between the tissue properties, particularly the absorption 
coefficient. Since fatty tissue largely consists of  hydrocar-
bon chains and relatively few polar molecules, the absorp-
tion coefficient and refractive index of  the fatty tissue are 
much lower that those of  the kidney and liver tissues.

We have also investigated the optical properties of  
fresh and formalin fixed samples in the THz frequency 
range using THz reflection spectroscopy[64]. As seen in 
Figure 8A, when the fixing time increased the waveform 
amplitude of  the adipose tissue also increased. This was 
primarily because the refractive index of  the adipose tis-
sue was decreasing over the majority of  the bandwidth 
(due to the fixing) and this meant there was a greater 
difference between the refractive index of  the quartz (n 
approximately 2.1) and that of  the adipose tissue (e.g. 1.5 
at 1 THz when fixed compared to 1.6 when it was fresh). 
From Fresnel theory, this increased difference in refractive 
indices resulted in a greater reflected amplitude. As the 
fixing time increased for the muscle, three main changes 
were apparent. A small peak started to appear preceding 
the trough and the width and magnitude of  the trough 
decreased (Figure 8B). These changes can also be ex-
plained by considering the effects of  the formalin on the 
refractive index and absorption coefficient of  the muscle. 
For the muscle, the formalin significantly reduced both 
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the refractive index and the absorption coefficient. Before 
fixing, the refractive index of  the fresh muscle was greater 
than that of  quartz over the whole of  the frequency range 
measured (Figure 8C). The fixing reduced the refractive 
index so much that the refractive index became lower than 
that of  quartz at higher frequencies (Figure 8D) and this 
was the cause for the small peak which appeared (arrow in 
Figure 8B) and increased as the fixing time was increased. 

Skin cancer, breast tumors and dental caries 
Due to the low penetration depth of  THz in biological 
tissues, THz biomedical applications investigated to date 

have been limited to easily accessible parts of  the body, 
such as skin and teeth, or those that would benefit from 
intra-operative imaging such as breast cancer. Figure 9 is a 
photograph of  the reflection geometry THz probe from 
TeraView Ltd. which we use in Hong Kong. 

One potential application of  THz imaging is the diag-
nosis of  skin cancer. Work by Woodward et al[60] has dem-
onstrated the potential to use THz imaging to determine 
regions of  skin cancer non-invasively using a reflection 
geometry imaging system. The first ex vivo measurements 
on skin cancer revealing the ability of  TPI to differentiate 
basal cell carcinoma (BCC) from normal skin were pro-
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duced by Woodward et al[59].
Breast-conserving surgery is also an area of  medicine 

which may benefit from THz imaging. Fitzgerald et al[65] 
conducted ex vivo studies of  breast cancer to investigate the 
potential of  THz imaging to aid the removal of  breast can-
cer intra-operatively. In particular, they studied the feasibil-
ity of  THz pulsed imaging to map the tumor margins on 
freshly excised human breast tissue. Good correlation was 
found for the area and shape of  tumor in the THz images 
compared with that of  histology. They also performed a 
spectroscopy study comparing the THz optical properties 
(absorption coefficient and refractive index) of  the excised 
normal breast tissue and breast tumor. Both the absorption 
coefficient and refractive index were higher for tissue that 
contained tumor and this is a very positive indication that 
THz imaging could be used to detect margins of  tumor 
and provide complementary information to techniques 
such as infrared and optical imaging, thermography, electri-
cal impedance, and magnetic resonance imaging[66,67].

Since in vivo THz imaging is currently limited to sur-

face features, another potential application of  THz imag-
ing is the diagnosis of  dental caries[68,69]. Figure 10 is a 
schematic diagram of  a THz reflection from the outer 
layer of  enamel. Caries are a result of  mineral loss from 
enamel, and this causes a change in refractive index within 
the enamel. The change in refractive index means that 
small lesions, smaller than those detected by the naked 
eye, can be detected[70]. However, in practice THz imag-
ing systems are large and cumbersome - even structures 
as obvious as teeth can make a challenging target. In this 
respect THz imaging is still some way off  offering a non-
ionizing alternative to X-rays in dentistry. 

Burn depth diagnosis
Since THz waves can penetrate several hundreds of  mi-
crons into the skin and most burn injuries are superficial, 
this opens up the possibility of  employing THz tech-
niques for burn assessment[71]. The waveforms and optical 
parameters of  the burn wounds were investigated and 
THz images have shown contrast between burn-damaged 
tissue and healthy tissue. Their results indicate that THz 
imaging may be promising in evaluating skin burn sever-
ity, especially for characterizing burn areas. Moreover, the 
time of  flight technique is able to reveal the depth profile 
thus could be used to evaluate burn depth. 

The potential of  THz imaging as a burn diagnostic 
has been demonstrated using chicken breast[6]. It is also 
conceivable that THz imaging could be of  use in moni-
toring treatment of  skin conditions (like psoriasis), since 
THz imaging is cheaper than MRI and does not require a 
coupling gel like ultrasound[72]. 

THz light can penetrate many materials: we have in-
vestigated whether it can resolve skin layers beneath a 
Tegaderm® plaster as this would also be of  benefit in 
monitoring burn wounds. Normal skin comprises three 
different layers: the stratum corneum, epidermis, and 
dermis. The stratum corneum on the palm of  the hand 
is 100-200 μm thick and thus has been resolved in previ-
ous in vivo skin studies. We placed the plaster on the palm 
of  the hand and the resulting THz reflected waveform 

Figure 9  Photograph of the THz hand-held probe.
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is shown in Figure 11. For comparison the measurement 
of  the palm alone is also plotted. In the figure, there are 2 
troughs, which correspond to the top and bottom surface 
of  the stratum corneum. The optical delay between them 
can be used to calculate the thickness of  this layer. These 
results show that THz light is able to penetrate through 
wound dressings with only slight attenuation to reveal 
the skin depth information. This therefore indicates that 
THz imaging is likely to be able to detect and measure 
changes to the stratum corneum and epidermis which 
could for example, be caused by burns. To illustrate how 
sensitive THz imaging is to the stratum corneum, we have 
also imaged the side of  a healthy hand. As the position 
of  the measurement changes, as indicated by the arrow in  
Figure 12A, the optical delay between the reflections from 
the top and bottom of  the stratum corneum increases. This 
is because the stratum corneum is thicker at the tip of  the 
arrow than at the arrow foot. By plotting the reflected am-
plitude intensity against position we obtain the depth pro-
file image of  the palm in Figure 12B. By using frequency 
and wavelet domain deconvolution we are able to resolve 
thinner layers of  skin than if  basic deconvolution is used[73].

COMPARISON WITH OTHER 
TECHNOLOGIES
Numerous groups have investigated direct transmission 
or reflection THz imaging as a means of  distinguish-
ing tissue types[30,55,74] and recognizing diseases including 
tumors penetrating below the surface layers of  skin or 
into organs[56,58,75]. Although progress is being made, the 
competition from other more developed imaging modali-
ties is fierce. Optical coherence tomography, ultrasound, 
near-IR, and Raman spectroscopy, MRI, positron emis-
sion tomography, in situ confocal microscopy, and X-ray 
techniques have all received much more attention and 
currently offer enhanced resolution, greater penetration, 
higher acquisition speeds, and specifically targeted con-
trast mechanisms. This does not preclude THz imaging 
from finding a niche in this barrage of  already favorable 
modalities. There is still no technique that can readily dis-
tinguish benign from malignant lesions macroscopically 
at the surface or subdermally. The sensitivity of  THz sig-
nals to skin moisture, which is often a key indictor, is very 
high, and competing techniques such as high-resolution 
MRI are less convenient and more costly. 

The resolution of  ordinary THz imaging is diffraction 
limited, however, its high sensitivity to water content and 
great surface imaging capability provide motivation for fur-
ther development and sub-wavelength resolution has been 
achieved in near-field studies[76]. Indeed shallow subsurface 
images can be very revealing and the first few hundred 
micrometers are hard to image with other modalities. The 
high sensitivity of  THz radiation to fluid composition and 
the variable conductivity in tissue[77] is likely to lead to sta-
tistically significant differences between nominally identical 
samples taken at different locations in the body at different 
times or from different subjects. This may ultimately prove 
advantageous; however, in the short term, it will tend to 
mask sought for differences that are indicative of  diseases.

CONCLUSION
THz imaging is still in its early stage of  development, but 
as this paper has shown, has great potential to be a valu-
able imaging technique in the future. In the past decade, 
THz imaging applications in biomedical fields have drawn 
extensive interest and advancements in imaging methods 
and theoretical analysis continue to enable further applica-
tions to be investigated. 
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