ISSN |
1948-5182 (online) |
Open Access |
This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ |
Copyright |
© The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved. |
Article Reprints |
For details, please visit: http://www.wjgnet.com/bpg/gerinfo/247
|
Permissions |
For details, please visit: http://www.wjgnet.com/bpg/gerinfo/207
|
Publisher |
Baishideng Publishing Group Inc, 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA |
Website |
http://www.wjgnet.com |
Category |
Gastroenterology & Hepatology |
Manuscript Type |
Basic Study |
Article Title |
Ipragliflozin-induced improvement of liver steatosis in obese mice may involve sirtuin signaling
|
Manuscript Source |
Invited Manuscript |
All Author List |
Takayoshi Suga, Ken Sato, Tatsuya Ohyama, Sho Matsui, Takeshi Kobayashi, Hiroki Tojima, Norio Horiguchi, Yuichi Yamazaki, Satoru Kakizaki, Ayaka Nishikido, Takashi Okamura, Masanobu Yamada, Tadahiro Kitamura and Toshio Uraoka |
Funding Agency and Grant Number |
|
Corresponding Author |
Ken Sato, MD, PhD, Associate Professor, Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan. satoken@gunma-u.ac.jp |
Key Words |
Selective sodium glucose cotransporter 2; Nonalcoholic fatty liver disease; Sirtuin 1; Peroxisome proliferator-activated receptor γ coactivator 1α; Peroxisome proliferator-activated receptor α; Fibroblast growth factor-21 |
Core Tip |
The selective sodium glucose cotransporter 2 inhibitor ipragliflozin significantly ameliorated hepatic lipid accumulation in genetically obese (ob/ob) mice and increased both the mRNA and protein expression levels of sirtuin 1 (SIRT1), a NAD+-dependent protein deacetylase with numerous substrates, in the liver. Ipragliflozin also significantly increased the hepatic mRNA levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), peroxisome proliferator-activated receptor α (PPARα), and fibroblast growth factor-21 (FGF21). The liver steatosis-attenuating effects of ipragliflozin in ob/ob mice may have been mediated partly by hepatic SIRT1 signaling, possibly through the PGC-1α/PPARα-FGF21 pathway. |
Publish Date |
2020-07-23 05:00 |
Citation |
Suga T, Sato K, Ohyama T, Matsui S, Kobayashi T, Tojima H, Horiguchi N, Yamazaki Y, Kakizaki S, Nishikido A, Okamura T, Yamada M, Kitamura T, Uraoka T. Ipragliflozin-induced improvement of liver steatosis in obese mice may involve sirtuin signaling. World J Hepatol 2020; 12(7): 350-362 |
URL |
https://www.wjgnet.com/1948-5182/full/v12/i7/350.htm |
DOI |
https://dx.doi.org/10.4254/wjh.v12.i7.350 |